
DYNAMIC ADAPTATION OF ACCESS CONTROL POLICIES

Vijay Bharadwaj and John Baras
Institute for Systems Research

University of Maryland
College Park MD 20742

ABSTRACT

We describe an architecture andalgorithms forderiving an
access contml policy by composing access control require-
ments specified at multiple levels in a command hierarchy.
Our method can detect conflicts in requirements, andfind
a policy that maximally satisfies the requirements, by satis-
fying higherprioriq requirements at the expense of lower
priority ones. It also allows for easy verification of the
final policy by an administrato,: The architecture allows
quick adaptation ofpolicies to changing situations, bypm-
viding f o r delegation of authoriq while ensuring that high
priority requirements will always be satisfied.

INTRODUCTION

Modem military operations increasingly depend on the
rapid deployment and secure operation of exceedingly
complex computer systems and networks, involving tens
of thousands of users and an even greater number of data
objects and applications. Such systems need clearly de-
fined access control policies which define the privileges of
each user with regard to each data or program object, in
accordance with overall doctrine and mission objectives.
However, due to the large number of variables and inter-
dependencies involved, it is neither efficient nor practical
to specify such detailed policies manually. To make mat-
ters worse, a single mission may require the cooperation
of multiple units or policy domains, each with their own
systems and policies. FuIther, military policies are gen-
erally specified through a hierarchical chain of command;
commanders at the top of the hierarchy specify doctrines
and missions in general terms, and commanders at lower
levels refine this into a specific policy in accordance with
their specific needs and capabilities.

Current methods and systems for access control often
do not meet these needs. Access control policies must be
specified manually at a very detailed level, often in a lan-

guage that is not easily accessible to the average user. Few
automated tools exist for composing or refining policies, or
for checking that a given access control state accomplishes
the objective it is supposed to. It is hard to adapt policies
to changing mission needs; the entire policy may have to
he changed, and this must be done through the same man-
ual process used for specifying :he original policy. These
problems are exacerbated when coalition operations are in-
volved. In that case, each coalition member may not even
be willing to completely divulge their internal access con-
trol policies, or the capabilities and limitations of their ac-
cess control systems.

In this paper we describe an architecture and algorithms
that allow an access control state to be automatically com-
puted by synthesizing component policies specified at dif-
ferent levels of detail. This work arose from our previous
research on dynamic coalitions [I, 21. In our framework,
mission and operational requirements are treated as con-
straints on the final access control state. These constraints
are specified at varying levels of abstraction by human ad-
ministrators. Software agents then combine them with the
existing access control policies and hierarchies to derive
the access control state that is maximally consistent with
all the constraints. This is done through the use of soft
constraints, which mark some constraints as more impor-
tant than others and express hints to the system regarding
which states are more desirable than others.

In the following sections, we summarize some prior
work on access control and constraint programming. We
then describe our proposed architecture, and how such a
system can adapt to changing requirements. Finally, we
present the algorithms for deriving access control policies
in such an architecture, along with some illustrative exam-
ples.

761

0-7803-814MVO3117.00 (C) 2003 IFEE

RELATED WORK

An access control policy consists of all the d e s that a sys-
tem uses to control access to its resources. It includes a
definition of the objects to which access is controlled, the
mechanism for controlling access, and the rules for deter-
mining whether or not to grant an access request. Thus, in
large systems, access control policies can be very compli-
cated.

An access control model is an abstract mathemati-
cal representation of an access control system. Military
systems commonly use a multilevel Mandatory Access
Control (MAC, [3]) model.^ In such a model, each ob-
ject and each subject is assigned an access class con-
sisting of a security level and a set of categories. The
security level is drawn from an ordered set, such as
< TopSecrer,Secrer,Confidential,Unclassified >. The
set of categories is a subset of an unordered set and is as-
signed on a need-to,know principle. An access class A is
said to dominate another class B (denoted A 2 B) if A has
a security level at least as great.as B and A's categories in-
clude those of B. Thus the access classes form a lattice un-
der the dominance relation. These classifications are used
to restrict the access privileges of subjects to objects - the
exact semantics depends on whether the system is intended
to protect secrecy or integrity.

Moffett and Sloman [4] were among the first to discuss
the problem of automated management of large distributed
systems. They define policy hierarchies, where the ab-
straction levels of policies increase as we go up the hierar-
chy. They explore the refinement of policies in such a'sys-
tem, where high level policy is set by managers, and this
policy is refined and implemented at lower levels by hu-
man or automated agents. The authors also discuss the use
of Prolog to determine whether a set of lower level policies
completely satisfy a higher level policy without any con-
flicts between subjects. However, they did not discuss the
application of their work to a practical system.

Constraint solving has been an active area of research
in Artificial Intelligence. A Constraint Satisfaction Prob-
lem (CSP, [5]) consists.of a set of problem variables, a
domain of possible values for each variable, and a set of
constraints, each of which specifies an acceptable combi-
nation of values for one or more of the problem variables.
Therefore in a CSP, each constraint is simply a set of tu-
ples over some subset of the problem variables. A solution
for a CSP is an assignment of values to the variables that
satisfies all the constraints of the problem.

Semiring-based CSPs (SCSPs, [6, 71) a e an extension

of CSPs wherein the constraints an: not Boolean but de-
fined over an appropriate semiring. [n this way SCSPs are
able to model soft constraints (i.e. preferences), partial
knowledge and prioritized constraints.

Asemiringisatuple <A,+,x,0,1 > where
A is a set with 0 , l E A:
f, the additive operation, is closed, commutative and
associative over A with 0 as its identity element;
x , the multiplicative operation, is closed and associa-
tive over A with 1 as its identity element and 0 as its
absorbing element;

0 x distributes over +.
An Ic-semiring [6] is a special kind of semiring which

can represent a complete distributive lattice; the + and x
operations of the semiring correspond to the lub and glb
operations of the lattice. Thus the + operation defines a
partial order ss over the set A; we say a ss b if a + b = b.

A semiring-based constraint system is a tuple <
S,D, V > where S is a semiring, D is a finite set and V is an
ordered set of variables. A constraint over such a system is
a tuple < def,con > where con c V is known as the type
of the constraint, and def : Dk + A (where k is the cardi-
nality of V) is the value of the constraint. Thus def assigns
a value from the semiring to each combination of values of
the variables in con. This value can be interpreted as a
strength of preference, a probabilitf, a cost, or something
else depending on the problem. An SCSP is then a tuple
< C,v > where Y C_ V and C is a set of constraints.

The solution of an SCSP is the constraint obtained by
combining all the constraints in the SCSP and projecting
it over the set v of variables of interest. The best level of
consistency (blevel) of the SCSP is the projection of the
solution over the empty set. Thus the blevel represents the
highest valuation that can be attained by a tuple under the
constraints. In other words, the blevel gives the maximum
extent to which a given set of constraints can be satisfied.

SCSPs have also been used in a variety of applica-
tions. For instance, Bella and Bistarelli [8] used them to
model the Needham-Schroeder protocol and showed that
the model can be used to "discovei:" a well-known attack
on this protocol.

Constraint Logic Programming ICLP, [91) incorporates
the notion of constraints into Logic Programming, by re-
placing term equalities with consl.raints, and unification
with constraint solving. This allows much more concise
representation of problems; it also allows for more effi-
cient implementations of constrain! solvers, as it provides
additional information that helps guide the search for a so-
lution.

162

Provide telecommuting facilities hl employees
Upper I, management I

Figure 1: Policy refinement in organizations

Semiring-based CLP (SCLP) generalizes CLP to soft
constraints. The syntax and semantics of SCLP programs
are described in [lo]. Briefly, an SCLP program consists
of a set of clauses of the form H : -B. We say this clause
holds in an interpretation I iff for any ground instantiation
of H , say H e , we have / (H e) Is / (3BB) .

PROPOSED ARCHITECTURE

In large organizations, various requirements, specified at
various levels in the command hierarchy, impose con-
straints on the access control state. Usually, more general
constraints are imposed by higher levels in the hierarchy
whereas details are specified at lower levels. For instance,
i n corporations, policies such as “no employee may per-
form both ordering and procurement functions” are gener-
ally specified by upper management whereas details such
as “file orders.xls is related to purchasing” are filled in by
lower level employees. This process is illustrated in Fig-
ure 1.

In our system, access control policy is developed
through a multi-step process of composition as shown in
Figure 2. Each level in the command hierarchy has an
administrator. At each step, this administrator specifies a
set of constraints arising from requirements at that level
and a set of tests on the final access control state. These
constraints and tests are translated into SCLP clauses and
goals respectively, and communicated to a central server.
The server combines the constraints into a complete SCLP
program, which is then solved to obtain an access control
state. The different tests are then carried out on the state,
and results returned to the administrators, who may then
specify more constraints and tests. In later stages, admin-
istrators can also retract previously specified constraints.
The process concludes when all administrators send a null
message to the server, signifying that they have no more

Figure 2: Policy composition architecture

tests or constraints to specify. The server then communi-
cates the access control state to the entities responsible for
access control in the domain.

This architecture allows for rapid reconfiguration of the
access control state when requirements (and hence con-
straints) change. When this happens, the administrators
engage in a process similar to that described above, except
that constraints are added to or retracted from the previ-
ously existing SCSP. Such changes may require revocation
of privileges already held by users; in some systems, such
as those using certificates for access control, this can be a
significant problem. However, this is beyond the scope of
this paper. Some issues relating to certificate revocation
are discussed in [ll].

CONSTRUCTING THE ACCESS STATE

The problem of constructing an access state can be formu-
lated as follows. Given a set of access classes A, a set of
objectsoandac-semiringY=<V,+,x,O,l >,wewant
to construct a scheme to assign access classes to objects.
The scheme must allow multiple administrators to specify
constraints over this semiring, and then compute the opti-
mal access state satisfying these constraints. We assume
that access classes are assigned to users and subjects by
some other mechanism.

We observe that when a set of constraints is constructed
from different sources as above, there may not exist a
unique access control state satisfying all the constraints.
In some cases, there may be many such states: in this case
the system must pick the best one. Other times, constraints
may conflict with each other, such that no access control
state satisfies all of them.

We overcome these problems by attaching a priority
(taken from Y) to each constraint. The system tries to sat-
isfy high priority constraints first. During the multi-step

763

process described above, administrators can add or retract
constraints to guide the server to a better state.

Given A, the set of access levels, and 0, the set of ob-
jects to classify, we express the problem as an SCSP over
the constraint system < Y , A , 8 >, where B is a set of
variables containing one variable for every object in 0. We
proceed as follows.

Choose a semiring Y for prioritizing constraints. The
semiring is chosen so that the minimal element of Y
represents the highest constraint priority.
Let the highest level administrator specify a set of
constraints on the final access state. Each constraint
associates the value 1 (the maximal value of the
semiring) with tuples of variable values that are ac-
ceptable and its priority v E V to the rest.
Proceed to the next highest administrator, and so on.
Solve the resulting SCSP. The blevel gives the pri-
ority of the highest priority unsatisfied constraint - a
blevel of 1 means all constraints were satisfied. The
maximal solution of the SCSP gives the required clas-
sification.

The choice of Y will depend on the application. For
example, a reasonable choice might be to use the access
class of the administrator specifying the constraint as its
priority. However, the rest of the algorithm is not altered
by the choice of Y .

In practice, the SCSP and its constraints are specified as
predicates in an SCLP language. In our initial implementa-
tion of this concept, we are using the c l p (F D , S) [12] sys-
tem, which provides support for user-defined semirings.
So far, we have implemented some simple scenarios simi-
lar to those described below.

Note that by using SCLP, we also obtain the capability
to verify the algorithm's output. By formulating appropri-
ate goal clauses for the constraint solver, an administrator
can run sanity checks to see if the final state satisfies some
desired property. Also, we can allow for hierarchical pol-
icy refinement.

More formally, we assume that the domain and the o b
jects in it are divided hierarchically into parts, with a corre-
sponding hierarchy of administrators, as in Figure 3. The
highest level (Level 1) administrator sets the high-level
policy, much like in Moffett and Sloman [4], by defining
a few high-level predicates, and leaves some of the pred-
icates undefined. The level 2 administrators then define
these predicates and state some high-level objectives for
the level 3 administrators, and so on. At the lowest level,
constraints are defined on the variables in 8.

We use a logical language with the following useful fea-

Figure 3: Hierarchical administration

tures added to c l p (F D , S) :
Constant Symbols: Every member of A, the set of
access classes.
Variable Symbols: We have finite domain variables
ranging over A. In particular, there is one such symbol
per object to be classified.
Predicate Symbols: The predicate dominates / 2
expresses the dominance relation on A . The predi-
cate classify_up/3, which takes an object (Obj),
an access class (Class) and a semiring value (Val)
as arguments, is defined to yield a constraint which
assigns semiring value 1 to all assignments which
classify Obj in a class that dominates Class, and
Val to all other assignments. The predicate clas-
sify.down/3 is similar, excrept it assigns 1 to as-
signments that classify Obj lower than Class. In ad-
dition to these, a number of application-specific pred-
icates are also used.

Since our language does not cont;in any function sym-
bols, we have from [lo] that once the program is fixed, the
value of any goal is computable in time that is finite and
bounded by a constant. Thus our language is efficient.

EXAMPLE: CLASSIFYING OBJECTS IN A
MULTILEVEL MAC SYSTEM

To illustrate our techniques, we now show how to solve
a classification problem given in [13]. As mentioned in
the previous section, we could use the access level of the
administrator who specifies a constraint as the priority of
that constraint. However, in order to achieve a minimal
classification, we also need to prioritize states that assign
lower classification levels to objects while satisfying the
constraints.

Consider the Ic-semiring Y =< V, +, x,O, 1 > where A
represents the set of all possible access classes, and 0 and 1

164

denote the highest and lowest access classes respectively.
Now define the + operation as follows: for two access
classes a and b having classification levels 1, and I , and
access groups Sa and S,, c = a + b is the access level with
classification level min(l,,lb) and access groups S, m S b .
Similarly, d = a x b is the access level with classification
level mnx(l,,Ib) and access groups S, USb. Thus c is the
highest access class dominated by both a and b, whereas d
is the lowest access class that dominates both a and b.

Now consider the semiring Y =< V 2 , + * , x2,0,, 1, >,
where V z is the Cartesian product of V with itself, while
+,, x2, 0, and 1, are simply componentwise extensions
of the corresponding elements of Y . Then Y is also an Ic-
semiring [6]. Now we associate each assignment of access
classes to objects with an ordered pair < v , , v, > where v ,
is the access class of the highest level administrator whose
constraint it violates, while v, is the highest access class
it assigns to an object. Due to the inverted nature of the
semiring we have chosen, this means that a maximal solu-
tion will be one which tries harder to satisfy higher level
administrators, while also trying to avoid overclassifying
data.

It is easy to see that basic constraints (lower bound
and upper bound constraints) are easily expressed using
c l a s s i f y - u p and classify-down respectively. Ex-
pressing more complicated constraints from [13], such
as inference and association constraints, is also fairly
straightforward, if a bit messy to include here.

It is worth mentioning that once the constraints from our
example are translated into an SCLP, the semiring can be
changed completely without altering the program. So if we
wanted to find the maximally closed solution that satisfied
a set of constraints, all we would need to do is to exchange
the action of the + and x operators on the second com-
ponent of W . In this configuration, the constraint solver
would try and make sure that no object was underclassi-
fied. This ability to switch from a “trusting” to a “para-
noid” mode of operation without the need for rewriting the
policy may in itself be a useful feature in some situations.

CONCLUSION

In this paper we described an architecture and mathemat-
ical framework for composing access control policies and
to allow for quick adaptation of policies to changing re-
quirements, as well as verification of the resulting policy.
The framework is very flexible: we can accommodate both
MAC and RBAC systems by simply configuring some pa-
rameters. We investigated the automated negotiation of ac-

cess state in RBAC systems in a separate paper 1141.
Many questions remain open. This paper did not address

in detail the computational issues related to the constraint
solver and with regard to incremental solvers. We also did
not address user interface issues in this paper. Finally, we
are still working on extending the framework to incorpo-
rate more general operators for composing policies, such
as those defined in [15].

ACKNOWLEDGMENT

This research effort was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command,
WAF, under agreement number F30602-00-2-0510. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon.

The views and conclusions contained herein are those
of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, ex-
pressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force Research Lab-
oratory, or the U.S. Government.

REFERENCES

[l] V. D. Gligor, H. Khurana, R. K. Koleva, V. G.
Bharadwaj, and J. S . Baras. On the negotiation of
access control policies. In B. Christianson et al., ed-
itors, Proceedings of the 9th Infernational Security
Protocols Workshop, Cambridge, U.K., April 2001,
volume 2467 of Lecture Notes in Compurer Science,
pages 188-201. Springer Verlag, 2002. Also see
transcript of discussion, pp. 202-212.

[2] V.G. Bharadwaj and J.S. Baras. A framework for
automated negotiation of access control policies. In
Third DARPA Informarion Survivability Conference
and Exposition (DZSCEX ZZZ), 2003.

131 D. E. Bell and L. J. LaPadula. Secure computer sys-
tems: Mathematical foundations. Technical Report
ESD-TR-278, vol. 1, The MITRE Corporation, Bed-
ford, MA, 1973.

[4] J. D. Moffett and M. S . Sloman. Policy hierarchies
for distributed system management. IEEE JSAC Spe-
cial Issue on Nerwork Management, 11(9), 1993.

765

[5] S. Russell and P. Norvig. ArtiJkial Intelligence:
A Modern Approach. Prentice Hall, Upper Saddle
River, NJ, 1995.

[15] P. Bonatti, S. de Capitani di Vimercati, and P. Sama-
rati. An algebra for composing access control poli-
cies. ACM Transactions on Information and System
Security (TISSEC), 5(1):1-35.2002.

[6] S. Bistarelli, U. Montanan, and E Rossi. Semiring-
based constraint solving and optimization. Journal
of the ACM, 44(2):201-236, March 1997.

[7] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex,
G. Verfaillie, and H. Fargier. Semiring-based CSPs
and valued CSPs: Frameworks, properties and com-
parison. Constraints, 4(3), 1999.

[8] G. Bella and S. Bistarelli. SCSPs for modelling at-
tacks to security protocols. In Principle and Practice
of Constraint Programming - CP2000 Workshop on
Soft Constraints, Singapore, 2000.

[9] J. Jaffar and M.J. Maher. Constraint logic program-
ming: A survey. Journal of Logic Programming,
19/20:503-581, 1994.

[IO] S. Bistarelli, U. Montanan, and E Rossi. Seminng-
based constraint logic programming: Syntax and'se-
mantics. ACM Transactions on Programming Lun-
guages and Systems (TOPLAS), 23(1):1-29,2001.

[l I] H. Khurana. Negotiation and Management of Coali-
tion Resources. PhD thesis, University of Maryland,
2002.

Y. Georget and P. Codognet. Compiling semiring-
based constraints with clp(FD,S). In M. Maher
and J-F. Puget, editors, Proceedings of the 4th In-
ternarional Conference on the Principles and Prac-
tice of Constraint Programming (CP98). Pisa, Iraly,
October 1998, volume 1520 of Lecture Nores in
Computer Science, pages 205-219. Springer Verlag,
1998.

S. Dawson, S. de Capitani di Vimercati, P. Lincoln,
and P. Samarati. Maximizing sharing of protected
information. Journal of Computer and System Sci-
ences, 64(3):49&541, May 2002.

V.G. Bharadwaj and J.S. Baras. Towards automated
negotiation of access control policies. In Proceed-
ings of the Fourth International Workshop on Poli-
cies for Distributed Systems and Networks (POLICY
2003), Lake Como, Italy, June 2003.

166

