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1. INTRODUCTION

Trying to predict the wear of a tool from the sound it makes,
has a long history. People have always been interested in
real-time monitoring of machinery to detect faults as and
when they occur, rather than wait until the next maintenance
period. This way, unnecessary maintenance, as well as long
runs in a faulty condition, can be avoided. In the case of
a cutting tool, trying to cut with a blunt tool can lead to
the breakage of the tool and degradation of the job, while
pulling the tool off for frequent assessments are expensive
in terms of the machinist’s time. It is of interest to develop
a method that can give an estimate of the wear from easily
observable signals. This estimate, along with some kind of
a confidence measure, can be used by the machinist to help
his own intuition.

To a machinist, the most important cue is the sound of
the tool. Our goal in this work is to develop a system of
classifying sounds according to the wear level of the tool
that makes it.

This problem has many parallels with speech recogni-
tion, but there are some difficulties unique to the tool mon-
itoring problem. Classifying the sound is not the final goal
here, as it is in the case of speech recognition. Here the aim
is to classify sounds and then correlate these classes to the
physical state of the tool. Efficient ways of using wear mea-
surements are of the utmost importance. In addition, modifi-
cations are needed because the training data is very sparsely
labeled (2-3 wear measurements per lifetime of tool).

Previous work on estimating tool wear or damage from
acoustic emissions include using the power density spec-
trum ([7], [8],[6] and [4]). Other approaches include look-
ing for high energy transients in the sound signal [2], and
using torque and thrust information in addition to vibration
data [5] .

Determining the effect of wear on the acoustic emis-
sions of a piece of machinery is complicated by the fact that
machine tools have very complex vibration modes. Usu-
ally such machines can be modeled accurately only as 3-
dimensional, non-linear, distributed systems, whose outputs

(measured vibration)depends on the inputs (tool and job sur-
faces) in a very complex way. Non-linear phenomena like
chatter are evidence for this [1].

Since simple models of the tool surface - vibration re-
lationship are not available, one is forced to look for non-
parametric solutions to this problem. Our approach in this
paper, is to first extract a feature vector from the sound,
and then do a non-model-based classification using Vector
Quantization [12]. Obviously, the selection of the feature
vector is of paramount importance for this approach to give
any good results.

In this investigation we use filters based on a model of
mammalian audition, followed by a tree structured classi-
fier, based on vector quantization.

2. AUDITORY FILTERS

We use two auditory filters, developed by Shamma et.al., for
preprocessing. The first one is a model of the filter banks
and nonlinear operations that take place in the inner ear [9].
The second filter mimics the analysis of the filtered signal
that take place in the primary auditory cortex [10].

2.1. Inner Ear

This filter describes the mechanical and neural processing
in the early stages of the auditory system. In the Analysis
Stage, a bank of constant-Q filters, approximate the function
of the eardrum and the basilar membrane in the cochlea with
the continuous spatial axis of the cochlea as the scale pa-
rameter. Another way to interpret the output of the cochlear
filters is as an affine wavelet transform of the stimulus. The
Transduction Stage models the conversion of the mechan-
ical displacements in the basilar membrane into electrical
activity along a dense, topographically ordered array of au-
ditory nerve fibers. The third stage called the Reduction
Stage effectively computes an estimate of the spectrum of
the stimulus, through alateral inhibitory network (LIN).
The details can be found in [9].
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Figure 1: Mean and variance of wear estimates (in thou-
sandths of an inch) versus time (in frames) for tool s1

2.2. The Auditory Cortex

The second filter that acts on the output (spectral estimate)
of the first filter is based on the action of the primary audi-
tory cortex (A1). In the A1, the 1-D acoustic spectrum is
analyzed along three feature axes: thespectral symmetry on
the� axis, thelocal bandwidth on the scales axis, and the
frequency components on the tonotopicx axis. This analy-
sis can be thought of as a local Fourier (technically, affine
wavelet) transform of the acoustic spectrum.

3. TREE STRUCTURED VECTOR QUANTIZER
(TSVQ)

TSVQ is an example of a classification tree where the given
test vectors are classified stage by stage, with each stage giv-
ing a sharper classification than the previous. Each node of
the tree is associated with a centroid, which can be thought
of as a paradigm for a particular class. All test vectors start
out by belonging to the root node. Then the vector is com-
pared with the centroids of all nodes which are children of
the node it currently belongs to. The vector is classified
into the child with the centroid that is “closest” to it accord-
ing to some metric. The vector eventually ends up in a leaf
node, and is assigned a class according to the class of the
leaf node.

The challenge is to preserve fidelity in the classifica-
tion. Any substituting of an optimal partitioning of the sig-
nal vector-space by a tree structured partitioning reduces the
optimality. Our goal is to make this difference as small as

possible. Proper choice of the pre-processing and the tree-
growing algorithm is crucial to this end.

3.1. MULTI-RESOLUTION TSVQ (MRTSVQ)

One special kind of a tree classifier using VQ is the Multi-
Resolution TSVQ (MRTSVQ). Data vectors in an MRTSVQ
is represented in multiple resolutions or scales. One obvious
method of creating such a representation is through affine
wavelet transforms. In this paper, the auditory cortex fil-
ter used is an example of a multi-resolution transform that
follows from studies of the primary cortex.

This method of classification offers one advantage over
the unembellished TSVQ. At the higher levels, where more
comparisons have to be made, we can use a vector with
lesser number of bits, thus doing many simple computa-
tions. As we go down the tree (and sharpen our classifica-
tion), we do lesser number of progressively longer distance-
calculations. This computational advantage is very impor-
tant in online algorithms.

4. TRAINING

In one way of combining class labels in growing TSVQ,
we build a tree for each class, using only the appropriately
labeled data. This method, usually called Parallel TSVQ,
gives better results than making one tree for all the classes
combined. In the combined tree, an initial wrong misclas-
sification into one particular sub-tree can end in a vector
being incorrectly classified. This problem is avoided, to a
great extent, in the parallel case. The Parallel TSVQ is also
quicker to execute when we have a large number of classes.
Testing on each tree can be done in parallel, which reduces
computational time.

5. TESTING

Testing was done on data corresponding to three different
tool geometry and job material configurations. Tools that
had not been used in training were used in the testing proce-
dure. The preprocessing was similar to what was done for
training. Each vector was dropped down all five trees and
the distance to the centroids of the leaf nodes it fell into,
was compared. The vector is assigned a wear-class accord-
ing to the wear level of the tree that gives the least distance
from the centroid to the vector. This way, we get a time
series of wear-class prediction for all the frames for all the
passes.

Next we take a sliding window of 500 frames and find
the mean wear estimate for this window. An example of
the plot of the mean wear estimate vs. tool-life in frames
(revolutions) is given in Fig.1. The solid line is the mean



and the dotted line is the variance of the wear estimate. It is
apparent that our method has picked up features in the sound
that seem to be correlated to the tool-life and the wear of the
tool. The periodic variation in the wear estimate is a result
of variation in wear rate during the period of one pass.

6. CONCLUSIONS

In conclusion, the mammalian ear model coupled with a
TSVQ seems to pick out features that are strongly indicative
of wear. Furthermore, trees trained on one particular tool-
job configuration seem to generalize easily to other config-
urations. This indicates that our features are not tool or ma-
terial specific, but are characteristic of the cutting process,
in general. Algorithms that seek to predict tool wear based
on just the spectrum cannot do this.
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