
A Framework for Supporting Intelligent Fault
and Performance Management for

Communication Networks

Hongjun Li and John S. Baras

Center for Satellite and Hybrid Communication Networks
Department of Electrical and Computer Engineering
University of Maryland, College Park, MD 20742

{hjli, baras}@isr.umd.edu

Abstract. In this paper, we present a framework for supporting intel-
ligent fault and performance management for communication networks.
Belief networks are taken as the basis for knowledge representation and
inference under evidence. When using belief networks for diagnosis, we
identify two questions: When can I say that I get the right diagnosis and
stop? If right diagnosis has not been obtained yet, which test should I
choose next? For the first question, we define the notion of right diag-
nosis via the introduction of intervention networks. For the second ques-
tion, we formulate the decision making procedure using the framework
of partially observable Markov decision processes. A heuristic dynamic
strategy is proposed to solve this problem and the effectiveness is shown
via simulation.

1 Introduction

In a communication network environment, we categorize the term fault as either
hard or soft. Hard faults consist of hardware or software faults [20]. Hardware
faults include incorrect or incomplete logic design, damage, wear or expiry, etc.
Software faults usually come from incorrect or incomplete design and implemen-
tation. However, there are still some other important kinds of faults that need
to be considered. For example, the performance of a switch is degrading or there
exists congestion on one of the links. Another example is to model faults as devi-
ations from normal behavior [21]. Since there might not be a failure in any of the
components, we call such faults soft faults. Hard faults can be solved by replac-
ing hardware elements or software debugging. Such diagnosis is called re-active
diagnosis. Soft faults are in many cases indications of some serious problems and
for this reason, the diagnosis of such faults is called pro-active diagnosis. Han-
dling soft faults is typically part of the functionality of performance management
[8][17] and in the sequel, we use the term fault to represent both hard and soft
faults for convenience.

The task of fault management is to detect, diagnose and correct the possible
faults during network operations. Fault detection can be thought of as an online

E.S. Al-Shaer and G. Pacifici (Eds.): MMNS 2001, LNCS 2216, pp. 227–240, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

228 H. Li and J.S. Baras

process that gives indication of malfunctioning. Such indications of malfunction-
ing are manifested in the form of events, which must be correlated to diagnose
the most likely fault(s) [5][12][16]. Finally, corrective actions are taken to restore
the normal operations. In this paper, we focus on fault diagnosis issues.

Efficient fault management requires an appropriate level of automation.
Knowledge based expert systems, as examples of automated systems, have been
very appealing for communication networks fault diagnosis [14]. Usually, such
systems are based on deterministic network models. A serious problem of us-
ing deterministic models is their inability to isolate primary sources of faults
from uncoordinated network events. Observing that the cause-and-effect rela-
tionship between symptoms and possible causes is inherently nondeterministic,
probabilistic models can be considered to gain a more accurate representation.

Hood and Ji [9] proposed a pro-active network fault detection scheme based
on AR models and belief networks. However, their belief network model is over
simplistic in that there is only one root node, which will explain whatever anoma-
lies as detected by the AR modeling. It estimates the network status in a snap-
shot; there is no further test suggested. In [10], Huard and Lazar used a more
general belief network model with multiple root nodes as the candidate faults.
They also presented a dynamic programming (DP) formulation for the network
troubleshooting problem. However, single fault assumption was made, which lim-
its the applicability. In this paper, we develop a framework that supports fault
diagnosis for communication networks. General belief network models with mul-
tiple root nodes are chosen as the knowledge representation scheme. We handle
multiple faults and formulate the fault diagnosis procedure as a Partially Ob-
servable Markov Decision Processes (POMDP) problem with optimal stopping.
To help solve the problem, we introduce the notion of right diagnosis for optimal
stopping and provide a dynamic, heuristic strategy for test sequence generation.

The rest of the paper is organized as follows. In section2, we introduce belief
networks and identify two problems when using belief networks for diagnosis.
We introduce the concept of intervention networks and right diagnosis for the
first problem in section 3, and the decision theoretic fault diagnosis strategies
are studied in section 4. We run simulation in section 5, and conclude the paper
in section 6.

2 Fault Diagnosis Problems Using Belief Networks

A belief network, also called a Bayesian network or a causal network, is a graph-
ical representation of cause-and-effect relationships within a problem domain.
More formally, a belief network B=(V,L, P) is a Directed Acyclic Graph (DAG)
in which: The nodes V represent variables of interest (propositions); The set of
directed links L represent the causal influence among the variables; The strength
of an influence is represented by conditional probability tables (CPT). For any
node in the DAG, given its parents, that node is conditionally independent of
any other node that is not its descendent. This conditional independence makes
a belief network model a compact representation of the joint probability dis-

A Framework for Supporting Intelligent Fault and Performance Management 229

tribution P over the interested variables. Belief networks can also serve as the
inference engine, and can compute efficiently any queries over the variables mod-
eled therein[11][22]. Let us look at one example.

Suppose we are handling the problem call failure and identify the possible
causes as follows: Server, link and switch may fail, and there might be heavy
traffic that causes the network congestion. Luckily, we have access to the alarms
associated with link failure and switch failure. This scenario is modeled as a
belief network, as shown in figure 1. Each node takes binary value and the table
associated with it represents the conditional probability distribution, given its
parent nodes’ instantiations.

Serve Failure

Net Congest

Call Failure
Linkk Alarm

Link Failure

Switch Alarm

Switch Failure

.01

P(SF)

.02
Heavy Traffic

P(HT)

.2

P(SWF)

P(LF)

.05

SWF P(SA)

F
.98
.02

T

HT P(NC)

T
F

.91

.09

P(LA)LF

T
F .

.98

.05
T
T
...

T
T

T
T

T
F

F F FF

SF NC SWF LF P(CF)

1

1

0.02

Fig. 1. An example Belief Network

In communication networks, probes are attached to some hardware/software
components to get operation status. Typically the raw data returned from the
probes will be grouped into vector form d ∈ Rn and then processed to get some
aggregated values (e.g. average, peak value, etc.). A statistics is a function from
Rn to R that maps the raw data vector d to a real number. Such statistics
will usually be quantified and represented using discrete values. We use 0 to
represent normal status, and other positive integers to represent abnormal status
with different level of severity. A node v in a belief network model B=(V,L, P)
is called observable if and only if it represents the health status of a statistics, or
corresponds to a user report. The set of observable nodes is denoted by O. The
non-observable set is simply Õ = V \O. We restrict these observable nodes to be
leaf nodes only, and vice versa. The regular evidence set R contains those nodes
that we observe during regular network monitoring operations. Each r ∈ R is
called a symptom node. The test set ST contains all other observable nodes that
are not currently in R, namely ST = O \ R. The fault set F is the set of root
nodes, and they are not observable, F ⊆ Õ. We restrict that all root nodes are
binary valued. The hidden node set H contains all nodes in Õ but not in fault

230 H. Li and J.S. Baras

set F , H = Õ \ F . Hidden nodes are intermediate nodes between faults and
symptoms and we don’t usually put queries on them during diagnosis.

The problem domain is said to be working in normal status with respect to
regular evidence set R if and only if every node in R takes value 0, or vector
r = 0, where r = (r1, r2, . . . , r|R|). The problem domain is said to be working in
abnormal status with respect to regular evidence set R if and only if there is at
least one r ∈ R whose value is other than 0. There might be cases when multiple
symptom nodes in R take nonzero values. The syndrome with respect to regular
evidence set R is simply the nonzero vector r. Any syndrome can trigger the
diagnosis process.

After fault diagnosis is triggered, the initial evidence is propagated and the
posterior probability of any f ∈ F being faulty can be calculated. It would be
ideal if we can locate the fault with efforts up to this. But most of the time,
similar to what happens in medical diagnosis, we need more information to help
pinpoint the fault. So naturally, we identify two important problems associated
with belief network based fault diagnosis: When can I say that I get the right
diagnosis and stop? If right diagnosis has not been obtained yet, which test
should I choose next? We address these two problems in the next sections. In
our work, we postulate that all the observations and tests are constrained within
the belief network model.

3 Right Diagnosis via Intervention

Consider what a human usually think during diagnosis. After obtaining one pos-
sible reason, one may naturally ask, for example, “Will the problematic circuit
work normally if I replace this suspicious component with a good one?” He/she
then goes ahead and sees what will happen after the replacement. If the syn-
drome disappears, one can claim that he/she actually found and trouble-shooted
the fault. If the problem domain is tiny, not very complex, and the replacement
burden is light, this paradigm will work well. But for communication networks,
the story is totally different. We would like to do intelligent diagnosis via com-
putation, rather than brutal replacement before we are very confident what the
fault is.

To do this, we need to distinguish between two kinds of semantics for the
instantiation of a node in a belief network: passive observation and active set-
ting. All the instantiations of nodes we have talked about so far are passive
observations, and we would like to know the consequences of, and the possible
causes for such observations. The alternative semantics is that we can also set
the value of a node via active experiment. One example is the above question,
where external reasons (the human diagnoser) explain why the suspicious com-
ponent becomes good and thus all the parent nodes for this node should not
count as causes during belief updating. Other belief updating like evaluating
consequences, however, are not influenced by this active setting. This external
force is called intervention in [23].

A Framework for Supporting Intelligent Fault and Performance Management 231

With this set semantics, we could do virtual replacement in our belief network
model. For simplicity, we assume here that the single symptom node is S1. For
each node in F , we could get its posterior probability of being faulty given
S1 = 1. Let f = argmaxg∈FP (g = 1|S1 = 1), and we would evaluate P (S1 =
0|setting(f = 0)). Other nodes in F are treated as background variables and they
keep at the same status as what has just been updated. In our work, we introduce
the so-called intervention belief network to help this virtual replacement.

Definition 1. An intervention belief network B̃=(V,L, P, S, Fs) is obtained
from the original belief network B=(V,L, P) with the same V , L, P . S is the
symptom set and Fs ∈ F is the set of suspicious nodes. We compute for each
s ∈ S the probability P (s = 0|setting(Fs = 0)) using B̃.

For our particular example above, the virtual replacement procedure is as
follows. First, in B=(V,L, P), update for each node fi ∈ F the probability

pi
�
= P (fi = 1|S1 = 1). Suppose f1 = argmaxg∈FP (g = 1|S1 = 1). Then

in intervention belief network B̃ = (V,L, P, S1, f1), set node f1 = 0, and with
P (fi = 1) = pi, i = 2, · · · , |F |, compute P (S1 = 0|setting(f1 = 0)). To deter-
mine whether or not this virtual replacement has led S1 to an acceptable status,
we need a reference value for the computed P (S1 = 0|setting(f1 = 0)) to com-
pare with. Without any evidence input, the belief network model B itself gives
the marginal probability of each leaf node to be normal. We use these values as
the reference in our work.

Definition 2. Given a small number ε, we say that node S1 becomes ε -normal
via intervention on f1 if and only if P (S1 = 0) − P (S1 = 0|setting(f1 = 0)) < ε.

Note that during diagnosis process, some of the testing nodes chosen may al-
ready manifested themselves as values other than “normal”. These nodes should
also be included in intervention network B̃.

Definition 3. A nonempty set of suspicious nodes Fs is called the explanation
or right diagnosis if and only if every node in set S, including both initial and
newly-found symptoms, becomes ε-normal if we set every node in Fs to normal
in the intervention belief network B̃ = (V,L, P, S, Fs). It is when Fs explains
the set S that we terminate the diagnosis process.

4 Decision Theoretic Fault Diagnosis Strategies

We formulate the test selection procedure as a partially observable Markov deci-
sion processes (POMDP) problem with optimal stopping. At each decision epoch,
we could either choose a node to test or stop there. Test is rarely free, and termi-
nation incurs some costs. The goal is to find a good test sequence and the right
time to stop. We will show that by choosing termination cost appropriately, the
optimal stopping rule matches our notion of right diagnosis.

232 H. Li and J.S. Baras

4.1 POMDP Formulation

State Space S
The state is the status of the root nodes F = {F1, . . . , F|F |}, and for a

particular s ∈ S=2|F |, s = {f1, . . . , f|F |}. We use Sk to denote the state at
time k. In our diagnosis case, the current state, which is unobservable, does not
change regardless what tests will be chosen. The goal of diagnosis is to identify
this state by using initial symptoms and subsequent test results. So here we have

P (Sk+1|Sk) =
{
1 ifSk+1 = Sk

0 otherwise (1)

History Process
If we choose one test per decision epoch, the time step set is defined as

N = {1, 2, . . . , |ST |}. The active evidence set AE contains the nodes that are
instantiated during the process of diagnosis. Initially AE = R and it expands as
more test nodes in ST are added into it. Nodes in AE are not to be considered for
future use. The candidate test set Cst contains the nodes in ST that are available
to be chosen and tested. Initially Cst = ST and it shrinks as instantiated nodes
are removed from it. The action set A = Cst ∪ {STOP}. Let Zat denote the
value obtained by observing at, and we define the history process up to time
k as Ik = (Z0, (a1, Za1), . . . , (ak, Zak

)) , where Z0 =
(
(r1, Zr1), . . . , (r|R|, Zr|R|)

)
represents the regular evidence set and corresponding instantiations. Ik grows
with diagnosis and obviously, Ik = (Ik−1, (ak, Zak

)), the Markov property. We
can simply take Ik as the state at time k and obtain a completely observable
Markov decision problem. But the growing state process makes this approach
impractical.
Belief / Information State

Given Ik, we define bk = P (F|Ik) as the probability distribution of states
in S. It is proven that bk is a sufficient statistics that contains all information
embedded in the history process for control, and we call it belief or information
state [2]. Using Bayes rule, we can easily verify that the process {bk} is also
Markov. If we choose bk as the state at time k, we avoid the growth of the state
space; but now, the state space is continuous, and we call it Bc. In our case, if we
are given Ik, ak, andZak

, the next belief state bk+1 is uniquely determined via

belief network propagation, and we define Ψ(bk, ak, Zak
)

�
= Pr(bk+1|bk, ak, Zak

).
If we let X = Bc∪{T} and xk be the state at time k, then the augmented states
evolve according to

xk+1 =
{
Ψ(xk, ak, Zak

) ifxk
= T and ak
= STOP
T ifxk = T or (xk
= T and ak = STOP) (2)

The observation model for ak
= STOP is P (Zak
|Ik, ak) = Pr(ak = Zak

|Ik).
Choosing Suspicious Nodes

After we obtain xk, it will not suffice to give out this probability distribution
directly as the result. What is needed is the explanation. To see if we could obtain
the explanation as defined above, we need to extract from xk the suspicious

A Framework for Supporting Intelligent Fault and Performance Management 233

nodes. However, in our belief network model and the parallel intervention model,
we should be discreet in choosing multiple nodes. If we simply choose all nodes
in F and do the intervention, the symptom nodes will all become ε-normal for
sure. But clearly, calling every node in F as faulty is not acceptable; One of the
most important aspects of fault diagnosis in general is to bias among the many
possible faults and locate the real one(s)! In our work, we used the following
scheme.

We first compute the belief state and get a table that contains the joint
distribution of the root nodes given Ik. Then we choose the largest entry from
the table and mark the index of the entry. The suspicious nodes are obtained
from the index. For example, if we only have four root nodes and the binary
string corresponding to the index of the largest entry is 0101, then the second
and fourth nodes are chosen. In this scheme, there is no need to find a good η,
and it adapts to multiple causes easily.
Cost Structure

There is an immediate cost associated with each si ∈ ST . The cost function
C(si, t) entails careful deliberation about many factors like the difficulty and time
to be consumed for the test, etc. Here we assume that the cost function is of form
C(si). This is usually the case in that the cost is normally associated with the test
itself only, and the test itself does not usually change with time. Also, we wish
to diagnose promptly and we penalize on diagnosis steps. If ak = STOP at time
k, no penalty. Otherwise, we penalize this extra step using function g(k). Here,
we simply take g(k) = 1 for all k. At time k with state xk
= T , if we choose ak =
STOP , we incur t(xk) as the termination cost. Note that t(T) = 0. Given xk
= T
and suspicious node set Fs, we compute t(xk) as follows. First, in original belie
network, let K = F \Fs and compute for each node in K the probability of being

faulty as qi
�
= Pr(Ki = 1|Ik). Second, in intervention network, set the root nodes

that correspond to those in K with the same probabilities as those in {qi}, and
set the root nodes that correspond to those in Fs to state ”normal”. Finally, in
intervention network for each node Si in the active symptom set S, and for some
given small ε, define ∆ = P (Si = 0) − P (Si = 0|Setting root nodes as above).
If ∆ < ε, tSi(xk) = 0, else tSi(xk) = CONST [∆ − ε], where CONST is a
constant to make tSi(xk) large. The total cost is t(xk) =

∑
Si∈S tSi(xk). So, the

immediate cost of choosing action ak at time k with state xk
= T is

gk(xk, ak) =
{
c(ak) + g(k) if ak
= STOP
t(xk) otherwise (3)

At the last step N , the terminal cost gN (xN) is defined as

gN (xN) =
{
t(xN) ifxN
= T
0 otherwise (4)

Note that both gk(xk, ak) and gN (xN) are deterministic functions. Now we have
the finite horizon problem

min
ak,k=0,...,N−1

{
gN (xN) +

N−1∑
k=0

gk(xk, ak)

}
. (5)

234 H. Li and J.S. Baras

4.2 Solution for the Problem

Define Jk(xk) as the cost-to-go at state xk and time k [2]. At termination state
T , Jk(T) = 0, ∀k = 0, . . . , N−1. For xk
= T , we have the dynamic programming
algorithm:

JN (xN) = gN (xN) (6)

Jk(xk) = min

t(xk), min
ak∈Ak

[c(ak) + g(k) +
∑

j

P (ak = j|Ik)Jk+1(xk+1)]

 , (7)

where xk+1 = Ψ(xk, ak, Zak
). So the optimal stopping policy is: Choose STOP

if

t(xk) ≤ min
ak∈Ak

[c(ak) + g(k) +
∑

j

P (ak = j|Ik)Jk+1(Ψ(xk, ak, Zak
= j))] , (8)

at current state xk and time k. If we choose t(xk), as shown above, such that
t(xk) = 0 in the case of right diagnosis and let t(xk) be very large otherwise,
then the optimal stopping policy is: STOP if and only if we obtain the right
diagnosis. Now let us look at the test selection strategies.

As discussed above, we need to extract from state xk
= T the suspicious
node set Fs. We ignore those root nodes that are not very fault-prone and this is
our first approximation. Now, given that Fs does not explain the current active
symptoms, we need some heuristics to help choose the next test. Let us begin
with a simpler problem for intuition.

Suppose the concern here is to locate the single faulty component. There
are symptoms indicating the malfunction (e.g. car doesn’t start) and for each
possible faulty component there is a direct test associated with it. The cost for
testing component i is ci. Based on the symptoms, we obtain Pi, the probability
that component i is in failure, for every component. We are supposed to test
those components one at a time. As soon as one component fails its associated
test, we claim that we find the single fault and stop. By interchange argument
[2], it is easy to see that in an optimal strategy, all elements must be in non-
decreasing sequence of c/P values, see also [13].

Our problem is different from this scenario in the following aspects. It tackles
failures while our problem integrates both hard and soft faults. It assumes the
existence of direct test while we don’t have that luxury. For a communication
network environment which is distributed, complex and heterogeneous, it is im-
possible to predefine and store a direct test for each possible cause. Actually one
of the goals here is to generate dynamically the test sequence on the fly. In our
setup, right diagnosis is determined through computation, rather than brutal
replacement. Finally, our algorithm should be able to tackle multiple faults.

But the c/P algorithm does provide insight in that it reflects the following
observation: in order to minimize the total cost, people are more likely to try
those more fault-prone, cheaper components before the less-probable, expensive
ones. In our diagnosis algorithm, we wish to find an appropriate test node st
if Fs could not explain the active symptom set S. In particular, we would like

A Framework for Supporting Intelligent Fault and Performance Management 235

to choose the test node from candidate test set Cst that is cheapest and most
relevant to Fs. To achieve this, we need a measure for relevance between a test
node in Cst and a fault node in Fs.

Definition 4. Given Ik, the relevance of random variable Y relative to random
variable X is defined as

R(X;Y |Ik) = I(X;Y |Ik)
H(X|Ik) ,

where H(X|Ik) = − ∑
x∈X p(x|Ik) log p(x|Ik) is the conditional entropy of a ran-

dom variable X, I(X;Y |Ik) =
∑

x∈X
∑

y∈Y p(x, y|Ik) log p(x,y|Ik)
p(x|Ik)p(y|Ik)

is the con-
ditional mutual information between random variableX and Y [4]. R(X;Y |Ik) ∈
[0, 1] indicates to what extent Y can provide information about X. R(X;Y |Ik) =
1 means that Y can uniquely determine X, while R(X;Y |Ik) = 0 indicates that
Y andX are independent, given current Ik. Note that R(X;Y |Ik)
= R(Y ;X|Ik).
More generally,

Definition 5. Given Ik, the relevance of random variable Y relative to a set of
random variables X is

R(X; Y|Ik) = I(X; Y|Ik)
H(X|Ik) ,

where H(X|Ik) and I(X; Y|Ik) are defined similarly as above.

With the relevance measure, our next test node given Ik at time k is simply

st = argmaxg∈Cst
R(Fs; g)/c(g), (9)

and our fault diagnosis process is summarized as follows, also shown in figure 2.

– Step 1. Initialization
• Set time step tp = 0, AE = R, Cst = ST .
• Input evidence by setting the nodes in set AE according to current active

values ae.
– Step 2. Belief Propagation in belief network B and get the set of suspicious nodes

Fs according to scheme one or two.
– Step 3. Set the root nodes in B̃=(V, L, P, S, Fs) accordingly, and execute the in-

tervention. If Fs explains S, update total cost and TERMINATE.
– Step 4. Get next testing node

• If Cst = Φ, update total cost and give out the set Fs and say ”Didn’t find the
right diagnosis, but here is the list of possible faults in decreasing order”.

• Else: Get node st according to (9).
– Step 5. Observing test node st and get observation Zst

• Input this evidence st = Zst to original belief network B. Update tp, Cst, and
AE .

• Goto Step 2.

236 H. Li and J.S. Baras

Belif Network
Suspicious NodesPropagation Suspicious Nodes

Intervention on

Right
Diagnosis?

Termination

Get Next
Test Node

N

Y

Observation a(k)Z(a(k))

F_sI_k
Choosing

Original Belief Network Intervention Network

Fig. 2. Illustration of the diagnosis process using intervention belief network

5 Simulation

To illustrate the effectiveness of our fault diagnosis algorithm, consider the ex-
ample network in figure 3. Two switches SW1 and SW2 are connected via link
L1. We have a probe a hooked at the end of SW2 to measure the traffic through-
put going out of SW2. Suppose the information we could obtain during network
operation include whether or not: SW1 alarm is normal, A could connect SW2,
B could connect SW2, A could connect C, C could connect SW1, throughput at
probe a is normal, and D could connect SW1. The possible faults are identified
as: SW1 works normal or not, L1 normal or congested, SW2 normal or not,
and source pumped from C to L2 is normal or not. We set up a belief network
model for such situations, and figure 4 shows the structure and initial probability
distributions.

probe a

L2 C

D

SW2SW1
L1

A

B

Fig. 3. Example Network

Let us look at one diagnosis scenario. Suppose we observe that A Conn SW2
goes wrong, and we get the updated distribution as shown in figure 5. We see that
SW1 is the suspicious node and the intervention result is P (A Conn SW2 =
yes|Intervention) = 0.78. Initially, P (A Conn SW2 = yes) = 0.83, and we
have not yet got the right diagnosis for ε = 0.4. Based on our test selection
scheme, node SW1 Indicator is chosen and the observation of it is “normal”.

A Framework for Supporting Intelligent Fault and Performance Management 237

L1
yes
no

95
5

D_Conn_SW1
yes
no

78
22

L2_Cong
yes
no

86
14L1_SW2

yes
no

84
16

Src_C_L2
yes
no

85
15

SW2
yes
no

87
13

B_Conn_SW2
yes
no

77
23

SW1_L1
yes
no

87
13

SW1
yes
no

90
10

Thru_Prob_A
yes
no

79
21

C_Conn_SW1
yes
no

84
16

A_Conn_SW2
yes
no

83
17

A_Conn_C
yes
no

84
16

SW1_Indicator
yes
no

87
13

Fig. 4. Belief Network for Example Network

The updated distribution is shown in figure 6. Again, L1 is intervened and no
right diagnosis is obtained. The next node selected this time is A Conn C and
the observation is “abnormal”. We got the updated distribution again in figure
7. If we intervene node L1, we have P (A Conn SW2 = yes|Intervention) =
0.87 > 0.83, and we obtain the right diagnosis!

L1
yes
no

77
23

D_Conn_SW1
yes
no

73
27

L2_Cong
yes
no

86
14L1_SW2

yes
no

74
26

Src_C_L2
yes
no

85
15

SW2
yes
no

87
13

B_Conn_SW2
yes
no

27
73

SW1_L1
yes
no

28
72

SW1
yes
no

52
48

Thru_Prob_A
yes
no

70
30

C_Conn_SW1
yes
no

76
24

A_Conn_SW2
yes
no

-
100

A_Conn_C
yes
no

62
38

SW1_Indicator
yes
no

54
46

Fig. 5. After A Conn SW2 Goes Wrong

As a comparison to our node selection scheme, we use the random scheme
meaning that each time we need a test node, we simply choose one uniformly
from all current available nodes in Cst. In our simulation, the outcome of chosen
test node st is uniformly generated as either 0 or 1. The costs for testing each
leaf node is shown in Table 1, with 40 as the penalty for not being able to find
the right diagnosis. Table 2 shows for three scenarios the comparisons of the two
test generation schemes with 2000 runs, which take only about 40 milliseconds

238 H. Li and J.S. Baras

L1
yes
no

64
36

D_Conn_SW1
yes
no

70
30

L2_Cong
yes
no

86
14L1_SW2

yes
no

66
34

Src_C_L2
yes
no

85
15

SW2
yes
no

87
13

B_Conn_SW2
yes
no

45
55

SW1_L1
yes
no

48
52

SW1
yes
no

92
8

Thru_Prob_A
yes
no

63
37

C_Conn_SW1
yes
no

69
31

A_Conn_SW2
yes
no

-
100

A_Conn_C
yes
no

64
36

SW1_Indicator
yes
no

100
-

Fig. 6. After SW1 Indicator Observed as Normal

L1
yes
no

31
69

D_Conn_SW1
yes
no

53
47

L2_Cong
yes
no

86
14L1_SW2

yes
no

31
69

Src_C_L2
yes
no

85
15

SW2
yes
no

80
20

B_Conn_SW2
yes
no

16
84

SW1_L1
yes
no

15
85

SW1
yes
no

91
9

Thru_Prob_A
yes
no

31
69

C_Conn_SW1
yes
no

41
59

A_Conn_SW2
yes
no

-
100

A_Conn_C
yes
no

-
100

SW1_Indicator
yes
no

100
-

Fig. 7. After A Conn C Observed as Abnormal

per run for each scenario on a SUN Ultra2 running Solaris 8. We see that node
selection via relevance is much better than that via random selection.

Table 1. Cost for All Leaf Nodes

SW1 Indicator A Conn SW2 B Conn SW2 A Conn C Thru Prob A C Conn SW1 D Conn SW1
2 1 7 1 3 1 3

6 Conclusions

In this paper, we presented a framework that supports intelligent fault and
performance management for communication networks. We used belief networks
as the knowledge representation scheme and inference engine for the problem

A Framework for Supporting Intelligent Fault and Performance Management 239

Table 2. Comparison of Node Selection Schemes

Symptom Nodes
Random Selection Relevance Selection

Avg. Cost Success Rate Avg. Cost Success Rate
A Conn SW2 15.38 84.5% 9.13 94%
A Conn C 26.21 70.1% 14.22 88%

A Conn SW2 and A Conn C 24.68 67.8% 3 100%

domain. The optimal stopping problem is tackled by using the notion of right
diagnosis via intervention, and test selection is based on a heuristic dynamic
strategy. Simulation shows that this scheme is much superior than a random
selection scheme.

This framework is quite general. The belief network model and the associated
decision making algorithm could exist at any management station in a network
management system. After a test node is chosen, the observation for this test may
take advantage of the traditional SNMP paradigm by polling appropriate MIB
variables; or, delegated (mobile) agents could be sent to the network elements
to collect the data by using the management by delegation paradigm [6]. As
one example of such an agent-based environment, the authors presented in [19]
a couple of system designs for adaptive, distributed network monitoring and
control. Further, the managed system could be divided into domains [24], and
for each domain we could assign such an “intelligent” module that take charge
of the fault and performance management for it [1][18].

The dynamic heuristic strategy could be improved via reinforcement learn-
ing [3][25], and in particular, Q-learning techniques [26]. The idea is that, by
interacting with the environment, the decision making module could accumu-
late experience and improves its performance. We could use the above dynamic
strategy as the starting point. We will discuss the details in a forthcoming paper.
Also, simulation on a more complex network environment is on the way.

References

1. J. S. Baras, H. Li and G. Mykoniatis, “Integrated, Distributed Fault Management
for Communication Networks”, Technical Report, CSHCN TR 98-10, University
of Maryland, 1998

2. D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. I and II ,
Athena Scientific, Belmont, MA, 1995

3. D. P. Bertsekas, and J. N. Tsitsiklis, Neuro-Dynamic Programming, Athena Scien-
tific, 1996

4. T. M. Cover, and J. A. Thomas, Elements of Information Theory , Wiley Inter-
science, 1991

5. Gabrijela Dreo, “A Framework for Supporting Fault Diagnosis in Integrated Net-
work and Systems Management: Methodologies for the Correlation of Trouble Tick-
ets and Access to ProblemSolving Expertise”, PhD Dissertation, Department of
Computer Science, University of Munich, 1995

6. G. Goldszmidt, Y. Yemini, “Distributed Management by Delegation”, in Proceed-
ings of 15th International Conference on Distributed Computing Systems, 1995

240 H. Li and J.S. Baras

7. D. Heckerman, J. S. Breese, and K. Rommelse, “Decision-Theoretic Troubleshoot-
ing”, Communications of the ACM, vol. 38, pp. 49-57, 1995

8. H.G. Hegering, S. Abeck, and B. Neumair. Integrated Management of Networked
Systems: Concepts, Architectures, and Their Operational Application. Morgan
Kaufmann, San Francisco, CA, USA, 1999.

9. C. S. Hood, and C. Ji, “Probabilistic Network Fault Detection”, GlobalCom, pp.
1872-1876, 1996

10. J. Huard, and A. A. Lazar, “Fault Isolation based on Decision-Theoretic Trou-
bleshooting”, Tech. Rep. TR 442-96-08, Center for Telecommunications Research,
Columbia University, 1996

11. http://www.hugin.dk
12. G. Jacobson, M. Weissman, “Alarm Correlation”, IEEE Network, Vol. 7, No. 6,

1993
13. J. Kalagnanam and M. Henrion, “A Comparison of Decision Analysis and Expert

Rules for Sequential Diagnosis”, in Uncertainty in Artificial Intelligence 4, pp.
271-281, Elsevier Science Publishers B. V., 1990

14. L. Kerschberg, R. Baum, A. Waisanen, I. Huang and J. Yoon, “Managing Faults
in Telecommunications Networks: A Taxonomy to Knowledge-Based Approaches”,
IEEE, pp. 779-784, 1991

15. L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “ Planning and acting in
partially observable stochastic domains”, Artificial Intelligence, Vol 101, pp. 99-
134, 1998

16. S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo. “A Coding Approach
to Event Correlation.” In Sethi, Raynaud, and Faure-Vincent, editors, Integrated
Network Management , no. 4, pp. 266-277. May 1995.

17. A. Leinwand and K. F. Conroy, Network Management, A practical perspective,
second edition, Addison-Wesley, 1996

18. H. Li, J. S. Baras and G. Mykoniatis, “An Automated, Distributed, Intelligent
Fault Management System for Communication Networks”, ATIRP’99, 1999

19. H. Li, S. Yang, H. Xi, and J. S. Baras, “Systems Designs for Adaptive, Distributed
Network Monitoring and Control”, IFIP/IEEE International Symposium on Inte-
grated Network Management, Seattle, Washington, May 2001, to appear.

20. G. Mahamat, A. Das, G.V. Bochmann, “An overview of fault management in
telecommunication networks”, Advanced Information Processing Techniques for
LAN and MAN Management, 1994 IFIP

21. R. Maxion, “A case study of ethernet anomalies in a distributed computing envi-
ronment”, IEEE Trans. on Reliability, Vol. 39, No. 4, pp. 433-443, Oct 1990

22. J. Pearl, Probabilistic Reasoning In Intelligent Systems: Networks of Plausible In-
ference, Morgan Kaufmann, 1988

23. J. Pearl, Causality, Cambridge Press, 2000
24. M. Sloman and K. Twidle. ”Chapter 16. Domains: A Framework for Structur-

ing Management Policy”. In M. Sloman (Ed.). Network and Distributed Systems
Management, pp. 433-453. Addison-Wesley, Wokingham, UK, 1994.

25. R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT Press,
1998

26. C.J.C,H. Watkins, P. Dayan, “Q-learning”, Machine Learning, 8, pp. 279-292, 1992

	Introduction
	Fault Diagnosis Problems Using Belief Networks
	Right Diagnosis via Intervention
	Decision Theoretic Fault Diagnosis Strategies
	POMDP Formulation
	Solution for the Problem

	Simulation
	Conclusions

