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ABSTRACT 

We derive estimators for the multiple lag process, a 
generalization of the lag process, via spectral repre- 
sentations of stationary processes by complex random 
spectral measures. We present estimators of transfer 
functions for the multiple lag model with a given vector 
of lags and derive a multiple-lag (quadratic) coherence 
which can be maximized to choose the best vector of 
lags in the minimum mean squared error sense from 
a given set of lag vectors. We also demonstrate the 
estimation scheme by a simulation example and point 
out possible applications for the multiple-lag model in 
speech processing. 

1. INTRODUCTION 

Let { X t ,  x}? t = O,hI, f2,. . . , be a zero mean, vector 
process stationary to the fourth order. The lag process 
is defined as follows [2] 

L ( t )  = xtxt,, - Rxx(u)  (1) 

where Rxx(u)  is the covariance function of Xt and the 
lag U is a fixed integer. Clearly, {L,(t)} is a zero-mean 
process. The multiple lag process is a natural extension 
of the lag process, i.e. a vector of lag processes 

LU(t) = {L,(t) ,  U E U} (2) 

where U E { u l ,  . . . , U N }  is a vector of lags in the set 
U c 2'. The model of interest for the (multiple) lag 
process is 

CO CO 

where { a k } ,  { b i }  are absolutely summable and { e t }  is 
a stationary noise process independent of { X t  }. 
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The problem of interest in this paper is the esti- 
mation of { a k } ,  { b i } ,  and selection of U from a set 
of lag vectors U. The main mathematical tool used 
throughout the analysis is the spectral representations 
of stationary processes. We outline the random spec- 
tral measures in Section 2 to establish notation, and 
give the derivation of the estimators for the single lag 
case in Section 3. The generalization to multiple lags 
is sketched in Section 4. Section 5 contains an example 
and discussion of several areas where the multiple lag 
process may be useful. 

The multiple lag process has been introduced by 
Kedem in [a] where estimators have been derived using 
orthogonal Wiener filters. Currently, the authors of 
this paper are co-authoring a paper with B. Kedem 
[4] which discusses both approaches and presents the 
application of the multiple lag process to short term 
speech prediction. 

2. SPECTRAL REPRESENTATION VIA 
COMPLEX RANDOM MEASURES 

The Wiener-Khintchine theorem establishes the spec- 
tral theory of stationary processes by providing a Fourier 
representation for the autocovariance function. It is of 
interest to the development in this paper that a similar 
representation exists for the process itself in terms of a 
random spectral measure. In the following, I x ( . )  refers 
to the random spectral measure of the process Xt which 
is defined over Borel-subsets of ( -T,  T ]  and assigns ran- 
dom, complex-valued weights to Borel-subsets. Thus, 
( x ( A )  is a complex-valued random variable. For two 
disjoint subsets A and B,  <x(A)  and Ex(B) are un- 
correlated. There also exists a real-valued non-random 
measure F( . )  such that 

(4) 

where is the complex conjugate. 
A stochastic integral with respect to Ex(.)  may be 

constructed by (i) defining the integral for complex- 
valued step functions defined over partitions of (-r, T ]  
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as a weighted sum of random variables obtained from 
the partition by ( x ( . )  (ii) observing the limits in mean 
square of such sums as the partition gets finer [3]. There- 
fore, for random processes X ,  which are zero-mean and 
weakly stationary, it makes sense to speak of represen- 
tations such as 

xt = J_: e i tw tx (dw)  ( 5 )  

E [ X , E ]  = Rxy(s  - t )  = J:: edsw e -i tw fxr (w)(dw). 

which satisfy 

(6) 
Here, f x y ( w )  is the cross-spectral density and dw may 
be thought of as a small interval containing w. In the 
following sections, we make use of spectral representa- 
tions extensively. 

3. SINGLE LAG PROCESS 

Let A ( w ) [ B , ( w ) ]  = C ~ = M ) = - C o e - ” w a k [ b ~ ] ,  --‘IT < w 5 -‘IT 

assuming ak , bk  are absolutely summable. To facilitate 
the argument, we define a process {ZU(t)}  as follows: 

To start with, { X t } ,  { L u ( t ) } ,  {Zu( t )}  and {Y,} are all 
stationary processes, so they possess spectral represen- 
tations. Therefore, with the notation of Section 2, the 
following holds 

yt = S_: P A ( ~ ) J ~  (dw)  + eitWB(w)eL, (dw) + Et  

(7) 

(8) 

L 
or 

yt = /: ei twJz,(dw) + E t  

with 

<z,(d4 = A ( w ) t x ( d w )  + B(W)SL,(dU) (9) 

as the spectral measure for the process {Z,(t)}. 

3.1. Estimation of Transfer Functions 

We would like to obtain expressions for A ( w )  and B ( w )  
in terms of spectral densities. We can get two equa- 
tions by multiplying (7); (i) with X t ,  (ii) with L,(t), 
and taking the expectation. The following fact and its 
corollary are used in their derivation which consists of 
replacing the processes with their spectral representa- 
tions and evaluating the integrals: 

E[JX(dA)JY (dull = l [ A = w ] f X Y  (w)dw (10) 

f Y X ( W )  = f X Y ( W ) .  (11) 
The following linear system of equations is thus ob- 
t ained: 

Solving the linear system, we find 

as estimators for transfer functions in terms of spectral 
densities. 

where 

From (20), it is evident that 
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If (7) is a good model for the given data series, the 
noise power must be small. Therefore, the best lag U* 

may be estimated by maximizing r ( w ;  U )  over U since 
the particular model parameter U* which maximizes 
I ' ( w ; u ) ,  minimizes the noise variance as can be seen 
from (20): 

U* = argmaxI'(w; U U ) .  (23) 

Notice that U* is a function of w and in general need 
not be unique over the whole frequency band. 

4. MULTIPLE LAG PROCESS 

The processes { X t }  and {LU(t)} admit spectral repre- 
sentations which allow us to write (2) as 

Yt = L: ei"A(w)Ex(dw) 

where Ex(.) and E L , ( - )  are random spectral measures 
as defined in Section 2. The key to the development is 
the definition of the following spectral measure 

Ez, ( d w )  = A ( w ) E x  (dw)  + Bu ( 4 E L  ( d w )  (24) 
U € U  

where, as in Section 3, ZU(t)  is defined to be: 

k u € U  k 

4.1. Estimation of Transfer Functions 

Now, by using properties of the random spectral mea- 
sures we derive estimators for the linear and quadratic 
transfer functions A ( w ) ,  Bu(w) in terms of the spectral 
densities of the processes. We derive a linear system of 
equations for the the transfer functions of the model 
with the given set of lags U in terms of the spectral 
densities of the processes. Let us define the vector of 
transfer functions 

B ( w )  E 

Extending the argument in Section 3, it can be shown 
that 

B(w) = F(w)-'C(w) (27) 

where C(w) is the vector of cross-spectra between the 
lagged processes and the output 

and F ( w )  is a matrix containing cross-spectra of lagged 
processes 

where, for convenience, Xu, E X. 
Thus, estimators of the transfer functions can be ob- 

tained as functions of spectral density estimators. Note 
that the introduction of the lag processes has trans- 
formed a nonlinear (quadratic) problem in Xt  to a lin- 
ear problem in quadratic processes Lu(t), thus allowing 
the solution to be expressed in terms of bispectra only. 

4.2. Multiple Lag Coherence: 

It can be shown in a similar way to that in Section 3 
that the following quantity which we call multiple lug 
coherence must be maximized to estimate (choose) the 
optimum set of lags in the minimum mean square error 
sense. 

- - a < w < a  

where Bu,(w) 3 A ( w ) .  

5. SIMULATION EXAMPLE: 

A lag process with a lag of U = 2 was synthesized using 
Gaussian noise as the input process X, . The estimators 
for the transfer functions were computed using Bartlett 
window smoothed periodograms of the spectral densi- 
ties for U = 0 , 1 , 2 , .  . ., 10. Figures 1 and 2 depict the 
values of the quadratic coherence in terms of w and 
U respectively. It is seen that there is a strong maxi- 
mum at the true parameter U = 2, and the rank holds 
throughout the whole spectrum. 

In conclusion, the estimation of the process involves 
the estimation of transfer functions for the sets of lags 
in the lag set, and the maximization of the multiple 
lag coherence over the set. The analytic expressions for 
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both the transfer function estimators and the quadratic 
coherence have been derived. In general, a unique set of 
lags which maximize the quadratic coherence through- 

sets of lags may maximize it over different bands. In 
practical applications such as speech processing, the set 
of lags which maximize the coherence over a perceptual 
sampling of the frequency band may be chosen. 

The intended application for the nonlinear model 
is short-term prediction in speech coding, especially as 
the short-term predictor in set excited analysis by syn- 
thesis coders. Currently, such coders are based on lin- 
ear models which do not allow extraction of non-linear 
dependencies, the existence of which has been demon- 
strated in [5]. 

out the spectrum does not have to exist and different Gamma(1ambda.u) 
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Figure 2: Quadratic coherence vs. delay: 
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