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Abstract

This paper presents a framework for carrying out robust
Run by Run (RbR) control via a set-theoretic approach.
In particular the RbR controller developed tries to mini-
mize the worst case performance of the plant. This gives
us a methodology to handle uncertainty. An interesting
consequence of using the set valued approach is that now
we can relax the assumptions made on the statistics of
the noise. Hence, we can also deal with non-Gaussian
and correlated noise. We provide results comparing the
performance of the controller to a recursive least squares
based controller.

1. Introduction

Recently, there has been a strong interest in RbR con-
trol in the semiconductor industry. With device toler-
ances shrinking, it becomes necessary to squeeze maxi-
mum performance out of existing equipment. A further
advantage of the RbR control framework, is that it en-
ables automatic recipie generation to meet different tar-
gets, and also aids in the recovery of the process after a
large disturbance. In this paper, we present a worst case
framework for carrying out RbR control. The advantage
of this approach is its ability to handle uncertainty. This
is useful in cases when we do not have confidence in our
models, such as after a sudden change in process char-
acteristics. Furthermore, the set theoretic approach fol-
lowed allows us to relax assumptions on the statistics of
the noise. Towards the end of this paper, we present an
example where the controller successfully handles both
correlated and skewed Gaussian noise.

As with any control strategy, some apriori information
needs to be available about the process model. What
we require is the structure of the map between the re-
cipie and the measured variables. Such maps could
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be provided by the response surface models (RSM).
However, the conceptual development is not restricted
to RSM alone. A number of reseachers have success-
fully employed RSM to the problem of automated
recipie generation, process optimization and design,
[8],(12],(11],(9},13),(7], 2]

In addition to the above, we will also need bounds on
the process noise, in the sense that the assumed model,
with these noise bounds can account for (1 — a)% of the
observevations, where a is a very small number. For ex-
ample, if we choose a to be 0.27, then the model with
these noise bounds can account for 99.73% of the obser-
vations. The problem of selecting these bounds is simi-
lar to the problem of specifying control limits for control
charts in statistical process control (SPC). The idea here
is, that if we define our process model in this manner,
then the RbR controller hardly ever observes process re-
sults which are inconsistent with the model, and if the
results are in fact inconsistent, then they will also gen-
erate an alarm via SPC. Hence, the RbR controller has
to be used in conjunction with SPC. However, by car-
rying out consistency checks on every measurement, the
RbR controller can also generate alarms. The influence
of these bounds on the performance of the RbR con-
troller is similar to that observed in control charts. For
example, if the bounds are chosen to be smaller than
what they actually are, the controller will generate an
alarm, even if the process is in control. On the other
hand if they are too lax, then the controller becomes less
sensitive to process variation.

These bounds are linked to the basic process variance
(process noise), over which we have no control and the
prediction error of the RSM. For example, if we assume
that both the model error, and the process noise are
normally distributed with (in the single measurement
case) variances o3, and 0% respectively, then the bounds
around the RSM are £3,/0% + 03, for a = 0.27. An in-
teresting problem in this regard is given the upper and
lower control limits of a variable, and the process noise
statistics, what order RSM is required to ensure that the
combined model prediction error and the process noise
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will still result in (1 - )% of the observations falling be-
tween the control limits. Furthermore, for quick recipie
calculation, we need the smallest number of terms in the
RSM as possible. Initially, one can determine this via a
designed experiment. However, once the RbR controller
is implemented the process noise statistics and/or the
error statistics of the RSM may change. Currently, work
is underway to implement a strategy for carrying out
automated online modifications of the RSM structure.

The rest of the paper is organized as follows. The general
conceptual framework is presented in Section 2. Section
3 specializes the framework to polynomial models. This
is followed by simulation results in Section 4, and con-
clusions in Section 5.

2. Conceptual Framework

This section gives the general framework under which we
develop the RbR controler. The system is modeled as

My € F(My), Mo=M
Y1 € G(My,u) (1)
Zker = Uyker), k=0,...

Here, yx € R! are the variables to be controlled, 2z, € R
is the cost which is a function of yi, ux € U C R™ is the
vector of recipies, and M € M are disturbance driven
states. At this stage, the structure of G, F, [, and M;
has been left undefined, since the conceptual framework
is applicable to any such structure. In the next section,
we will fix the structure to obtain an implementable so-
lution. Furthermore, note that the recipies are assumed
to belong to the set U. One could consider U = R™,
however in practice this will hardly ever be the case.
In fact natural bounds can be placed on U based on
the operating limits of the equipment, using engineering
judgement, or by forcing U to be the set of recipies over
which the RSM is valid.

The aim of the RbR is to minimize the worst case cost
on the onset of every run. Although, the cost has been
assumed to be scalar, we could have considered a multi-
objective problem with the aim of obtaining Pareto-
optimal recipies. We could have also penalized changes
in the recipie settings by incorporating additional terms
in the cost function [, or restricted the maximum allow-
able change by redefining U at the onset of each run
as a function of the previous recipie settings. The only
change required would be in the final optimization stage
(defined later on in equation 3).

At this time, it becomes necessary to differentiate be-
tween what we call (i) nominal disturbances, and (ii)
exceptional disturbances. Nominal disturbances repre-
sent the changes that the process normally undergoes
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between runs. An example of this is drift due to equip-
ment aging. We assume that one can bound these and
represent them via F. Exceptional disturbances, on the
other hand are those that are not represented by our
model (1). Their magnitude is in general much larger
than that of the nominal disturbances, and they occur
infrequently. They can be caused by various reasons,
such as maintainence operations e.g. renewal of parts.
Furthermore, exceptional disturbances will also flag an
error in the consistency check carried out by the RbR
controller. The process noise is modeled separately from
the above mentioned disturbances, and is included in G.

We now turn to the problem of designing the RbR con-
troller for the system (1). Assuming, we have carried out
J — 1 runs, we have available to us measurements y;, for
k =0,...,7, and past recipies u; for k = 0,...,j — 1.
Based on this, we compute the set of feasible states P,
that the system could be in during run j assuming that
we will not encounter an exceptional disturbance. We
can carry out this computation recursively as follows:
First compute

Pi={MeP;_,:y;€ G(M,u;-1)} (2)

and then calculate P; as
P;= U F(M) (3)
MeP;

The initial set Pg could be defined depending on the
amount of confidence one has on the initial value of the
states M. Once, we obtain P j» we obtain the recipie u]
which solves

(4)

min max max [(y)
welU MeP; v€G(M,u)

In the development above, we have ignored the special
case when the set P; calculated in (2) is empty. In this
case the problem is similar to that encountered in SPC,
i.e. to determine whether an exceptional disturbance oc-
cured, or that y; is just a bad data point. This situation
can be handled in various ways. Two of these are as
follows:

1. Assume that an exceptional disturbance occured
and reset P;_; = M. Now recompute P;. In the
next section, and during simulations, we adopt this
approach.

. Assume that y; is a bad data point. In this case set
P; = P;_;. If the process has shifted, this strategy
will generate a large number of faults. We check
the number of faults generated in a fixed number of
runs, and if this exceeds some threshold value, we
reset the set of feasible states to M.

1995 IEEE/CPMT Int' Electronics Manufacturing Technology Symposium



If (M) = {M}, i.e. one does not expect the process to
change between runs, then

PJ' CPj._l

and hence we have a sequence of nested sets. However,
if 7(M) is a set, we can no longer guarantee that the
sets remain nested. However, informally one may ar-
gue that the larger P; becomes, more of its elements
are invalidated by the next observation Yj+1, and hence
the sequence of sets Pj, j =0,1,... will ultimately be
bounded. Moreover, since for normal operation F(M)
will be a small set, the inflation introduced by it will
also be small. While carrying out simulations, we have
observed that this is indeed the case, and the sets P; do
infact remain bounded. Work is currently in progress to
derive analytic bounds on these sets.

The main difficulty in the general approach is the exces-
sive computational time required to calculate P, in (3),
and for solving the optimization problem with respect to
P; in (4). However, this result may be used offi-line to
estimate the best guaranteeable performance achievable
under the given model assumptions. We now turn to a
technique for approximating these sets using ellipsoids.
However, before doing so, we need to impose a suitable
structure on the models.

3. Polynomial Models and Ellipsoidal Ap-
proximations

Considerable simplifications can be obtained in the above
developments, is we impose a polynomial structure on
the models. An additional advantage is that this is com-
patible with the models obtained via RSM [1]. In gen-
eral, since RSMs are obtained for one quantity at a time,
we treat the problem of having t outputs as, ¢ single out-
put problems in parallel. For the it# output Yi, we model
Gi(6:,u) as an ellipsoid given by

Gilsu) E{ye R:g7 y-0Tw)? <1} (5)

where u = [1v; v3 ... v,|T, with vj,j =1,...,m being
known functions of the recipie settings, and 8; being the
vector of coefficients. In particular, 9? u represents the
RSM for the quantity y;, and g; > 0 represents the bound
on the noise. Also, (5) implies that

vi € [0 u~vgi , 0Tu+ /1] (6)

This representation can take care of non-symmetric
bounds on the noise by adding a bias term to the first
element of 4;.

We now turn to the definition of Fi(8,u), which we also
define as an ellipsoid as

F@)S{0eR™: (9-0)TF ' (6~5)<1)

with F; € R™ ™, F; > 0, i.e. F, is a positive definjte
matrix. As an example, for the case of a process with
drift only, F; will be diagonal with very small entries for
all the diagonal elements, except the first.

Ellipsoidal algorithms return an ellipsoidal estimate of
the feasible parameter set. Specifically, on the onset of
run k, we have

Pigp={0: € R™ : (6: - ;) TP} (8: - 8,1) < 1)

where 67,-,k is the center of the ellipsoid, and the matrix
Pix € R™™ P, > 0 specifies the size and orientation
of the ellipsoid. Various ellipsoidal algorithms exist in
the literature, [6],(4],(14]. The algorithm implemented
by us, has two stages:

1. First using the optimal volume ellipsoid (OVE) ap-
proach of [4], we try to find the minimum volume
ellipsoid P; ; which bounds the set

{6: € Pis_y :yx € Gi(6, Ug-1)}

where P; ;_, is the ellipsoidal estimate of 8; at the
onset of run k — 1.

2. We then inflate f’i,k by finding the minimal volume
ellipsoid which bounds

U 76

0EPi.k

and set that equal to P; . For this stage, we use a
result from [3].

The initial values of P; ¢ can be fixed depending on the
amount of confidence we have on the initial parameter
vectors 9-1-,0. Furthermore, if the intersection in stage 1 of
the update algorithm returns an empty set, we reset the
entries of F; x_; to large values (in certain cases, we may
be able to use our judgement and only modify selected
entries) and then repeat stage 1.

Now assuming, we have ¢ outputs, and hence ¢ ellipsoids

characterized by (6; x, P;x), i = 1,...,t, we can pose the
final optimization problem (4) as

min max [ 7
R e @

where U = {[uo v]T : up = 1,v € U}, and y,, 5 are
t dimensional vectors, whose ith components are given
by G-Z'ku - \/uTP,-,ku - \/g_, and 6_1.7:,:1; + \/uj P pu+ \/g—;
respectively. We now force ! to be convex with respect
to y (such as a quadratic cost function). Then, the inner
maximization is achieved at one of the verticies of the boz
defined by y , 7, and the optimization algorithm takes
advantage of this fact to cut down the complexity.
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we mention nere the iact, that the OVE algorithm does
not propagate the center of the ellipsoid as a weighed re-
cursive least squares (WRLS) estimate. However, there
do exist ellipsoidal algorithms which do propagate the
center as a WRLS estimate of the model parameters
[6],(5]- In these cases, however, the ellipsoid may greatly
overbound the feasible set, and hence could yield very
conservative recipies. If however, the bound is tight,
then one can view (7) as minimizing the cost based on
the WRLS estimate with modulation due to the uncer-
tainty in the estimate. However, trying to measure the
tightness of the bounds is as hard as solving for the ac-
tual feasible set, i.e. the exact problem of the previous
section.

Note that, since the feasible set for each output is com-
puted independently of the others, we could sample the
different outputs at different rate with only minor mod-
ifications to the structure of the RbR controller. For
example, if we had only two outputs (y1,y2), we could
sample y; after every run, and y, after every two runs.
Then we would update P; as mentioned above. How-
ever, for P, we would do a full update only when we
obtain a new measurement, else we will only inflate it as
done in step 2 of the update algorithm. This also raises
the possibilities of carrying out multi-rate sampling.

4. Simulation Results

In this section, we present some simulation results. We
consider four cases: (i) system under steady drift, (ii) a
step disturbance, (iii) presence of bad data points, and
(iv) correlated noise. the simulations are based on the
models for an LPCVD reactor presented in [10]. Here,
we limit our concern to the deposition rates on the first
and last wafer. We augment the models with drift terms.
The models express the deposition rates in terms of de-
position temperature T', deposition pressure P, and the
silane flow rate Q. They are given by

Rl = explci+c:lnP+cT™ +cQ7Y) +dy
~ A 1-5'Co, R Q!

= i ¥
Ry R, [1+S’CQ,R1Q"] +d2

(8)
with the rates expressed in A /min, P in mtorr, T in K,
and @ in sccm. The parameters are given [10] to be
¢ = 20.65, ¢; = 0.29, ¢3 = —15189.21, ¢4 = —47.97,
S' = 477738, and Cy, = 1.85 x 107°, where we have
dropped the units for convenience. d;, and d; represent
the drift terms. The measured rates are obtained from
the above model by adding a zero mean noise to R, and
R,. For the first two cases, we take it to be gaussian with
variance 9, and for the last case, we filter it to obtain a
colored noise. Furthermore, the maximum drift expected
between runs is 0.3. This actually represents a shift of &
in 10 runs, and may be too large to be true in practice.
However, we choose this value, since it enables us to see

the corrective action of the RbR controller in a fewer
number of runs. The targets T) for Ry, and T, for R,
are fixed at 169.75 A/min and 141.7 A/min respectively.

For the purpose of the RbR controller, we work in the
In space. The controller observes y; = In R;, and y3 =
InR;. We now set u; =InP, ug =T71, and uz = Q71
and define the vector u = [1 u; us u3]T. Assuming, that
the RbR controler keeps the process on target, we fix gy,
and g2 as 0.0025. Note, that this value yields smaller
bounds than the actual bounds on the noise, however,
due to overbounding by the ellipsoids, no consistency
error was -generated by the RbR controller. Based on
the drift information, we now fix F; and F; as

[3.2x10"* 0 0 0
F- 0 10712 0 0
1= 0 0 1072 0
I 0 0 0 107 |
[ 4.7 x 104 0 0 0
A= 0 10-12 0 0
= 0 0 1072 0
I 0 0 0 1072 |

The initial parameter vectors 8; 0, and 83 are fixed as

213

20.65 16.3509
g = 0.29 g o | 02177
LO= 1 _15189.21 | ° 207 | —10992

—47.97 -71.774

where 05 o is obtained by fitting a polynomial model to
the data generated by the system (7). The model is valid
for a fixed range of the inputs, namely the experimental
design space. Hence, we place bounds on the recipie
settings, and these translate to the vector u as follows:
5.67 < u; <6.33,1.053x107% < up < 1.1777x 1073, and
0.003 < uz < 0.01. We initialize P o = P;o = 10712],
where [ is a 4 x 4 identity matrix. Finally, the cost is
expressed as a quadratic function of the measurements
as

Iy) = wi(y —InT1)* +wa(y2 — InT3)?

where, w; = (InT})?, and we = (InT3)2. These, weigh
the component involving y; more than that involving ys,
since the former is less sensitive to error in the depo-
sition rate, due to the non-linearity of the In transfor-
mation. Moreover, one can experiment with different
weights, however our results show these weights to be
good enough.

(i) Drifting Process

We let both the equations (7) have a drift of —0.3 A /min
between runs. Simulation results for both the controlled
and uncontrolled trajectories are displayed in Figure 1.
The dash-dot lines give the target and the 3o noise
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RbR Controller-solid: Uncontrolled Process-dashed
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Figure 1: Process under drift.

bounds, where ¢ = 3 is the standard deviation of the
noise. For comparison, both the controlled and uncon-
trolled trajectories have been obtained under identical
noise conditions.

(ii) Step Disturbance

Here, we change the process parameters after the 379
run. The parameters are changed to ¢; = —-14600, ¢4 =
—55.97,d2 = 11, and Cy, = 1.57 x 10~5. The controller
generated a consistency fault after run 3, and we reset
Py, and P; to Py 3 = P53 = 10%I. Figure 2 shows the
controlled and uncontrolled trajectories obtained under
identical noise conditions. The dash-dot lines represent
the target, and the noise limits as in Figure 1.

(iii) Bad Data Points

Two bad data points are generated during the simula-
tion runs. These occur during run 10 for Ry, and run
20 for R;. The controlled trajectories are shown in Fig-
ure 3. The dash-dot lines represent the target, and the
noise limits. The simulations show the controller to be
minimally affected by bad data points.

(iv) Colored Noise

It should be noted that the noise seen by the controller
is in fact skewed due to the In transformation of the
data. We now color the noise via filters, such that the
first correlation coefficient (i.e. E(nin;~1)/0?) is equal to
—0.2680 for the noise added to R,, and —0.0627 for the
noise added to R,. The simulation is similar to the step
disturbance case, and we present the plot for data from
runs 6 to 30 in Figure 4. Here, WCA corresponds the
controller designed in this paper. We also plot the output
(shown via a dashed line) obtained by using a controller
based on the recursive least squares (RLS) estimate of
the model coefficients. For purposes of comparison, both
the WCA and RLS based controllers were simulated with
the process subject to identical noise. The means and
standard deviations (STD) of the outputs are given in
Table 1. The RbR controller presented in this paper
outperforms the RLS based controller in terms of both
mean and standard deviation.

5. Conclusions

A worst case approach to RbR control is presented, and
we have demonstrated its viability via simulation results.
It is able to compensate for drift, and step changes. We
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RbR Controller-solid; Uncontrolled Process—dashed
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WCA Controller-solid; RLS Controller—dashed
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RLS | R; | mean 172.90 as estimating a confidence set for the RSM parameters.
STD 4.19
R, | mean 144.87
STD 481 References
WCA | R; | mean 169.04
STD 2.96 N
R, | mean 142.08 (1] G.E.P. Box and N.R. Darper. Empirical Model-
STD 3.48 Building and Response Surfaces. Wiley, New York,

Table 1: Comparison of WCA and RLS Controllers

have also demonstrated its robustness to skewed and col-
ored noise.

Work is continuing to develop an expert system based
monitor for automated model order changes, and to carry
out online tuning of the RbR controller. We are also
looking into an application of the controller to an indus-
trial process.

We would also like to point out the fact that level sets
in probability obtained from multi-variate normal dis-
tributions are in fact ellipsoids. Hence, the ellipsoidal
algorithm maybe equivivalent to fitting a normal distri-
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ters. However, the exact relationship between the two is
still an open question. One can also view the ellipsoids
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