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ABSTRACT

We provide a purely combinatorial view of the essential
structure of uniformly bounded DRS theory without any
reference to discrete probability, and highlight the two fun-
damental functionals arising out of this exposition. The
key tool is Moebius inversion. We conclude that the study
of uniformly bounded DRS theory is the study of Incidence
functions on Boolean algebras of finite rank. Some useful
results arise as a by-product of this investigation.

1. INTRODUCTION

The celebrated Choquet-Kendall-Matheron theorem [1, 2,
3, 4] for Random Closed Sets (RACS), states that a RACS
X is completely characterized by its capacity functional,
i.e., the collection of hitting probabilities over a sufficiently
rich family of so-called test sets. RACS theory is a mature
branch of theoretical and applied probability, whose scope
is the study of set-valued random variables. There exist
numerous references on the subject; e.g., cf. [3, 4, 2, 5, 6]
for foundations, (7, 8, 9, 10, 11, 12, 13, 14, 15, 16] for
statistical inference and applications, (17, 18, 19, 20] for a
related statistical theory of shape, and [21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40] for
expectation, laws of large numbers, and related themes.

Our interest is in Uniformly Bounded Discrete Random
Sets, or DRS for short, a special class of RACS defined
on 2 finite lattice. A DRS may be thought of as a sam-
pled version of an underlying RACS; cf. [41] for a rigorous
algebraic analysis of a suitable sampling process, as well
as a formal argument which establishes the usefulness of
DRS theory. DRS's can be viewed as finite-alphabet ran-
dom variables, taking values in a finite partially ordered
set (poset). Thus, the only difference with ordinary finite-
alphabet random variables is that the DRS alphabet nat-
urally possesses only a partial order relation, instead of a
total order relation. However, this simple deviation calls
for a radical change in perspective.

One of the “wheels” of discrete probability and com-
binatorial theory is the celebrated principle of inclusion-
ezclusion (e.g., cf. the classic book of Feller [42]). Al-
though this principle applies to numerous problems, it is
often hard to make the connection, and realize that it in-
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deed applies to a particular problem at hand. As noted by
Rota [43] “It has often taken the combined efforts of many
a combinatorial analyst over long periods to recognize an
inclusion-exclusion pattern”.

As it turned out, the inclusion-exclusion principle is the
simplest but also the typical case of a very general prin-
ciple of enumeration, regarding the inversion of indefinite
sums ranging over an arbitrary poset. This principle is
known as Moebius inversion, and it is the analog of the
“fundamental Theorem of calculus” in the context of enu-
meration. Moebius inversion is one of the most pervasive
“ground truths” in modern multi-dimensional signal pro-
cessing; e.g., it is the basis of an important representation
Theorem for Markov random fields. The first coherent
instance of this principle is due to Weisner [44]. In its
full generality it first appeared in Ward [45). Excellent ac-
counts can be found in the classic papers by Rota {43), and
Crapo [46]; a more up-to-date exposition can be found in
Aigner [47).

In [48] it was first observed that, for the special case of
DRS’s, a variant of Moebius inversion provides an elemen-
tary constructive proof of the Choquet-Kendall-Matheron
Theorem. Here, constructive means that it allows one to
compute the probabilities of all events of interest, based on
the hitting probabilities. Published accounts can be found
in [49, 50]. As a result, the use of the so-called generat-
ing functional (the complement of the capacity functional
with respect to arithmetic unity) has been advocated in
(48, 49, 50] for modeling and inference purposes. Goutsias
(51] came up with a probabilistic proof of a similar result
based on the inclusion-exclusion principle. He instead ad-
vocated the use of the so-called cummulative distribution
functional, which measures the probability that a DRS X
does not cover a given finite set. His argument was that
the latter functional is a natural extension of the notion of
the cummulative distribution function for ordinary random
variables.

In this paper we revisit these approaches, demonstrate
that both are, in fact, complementary incarnations of Moe-
bius inversion, and, therefore, all the beauty of DRS theory
has nothing to do with probability; the underlying tool is
combinatorial theory. We also argue that, if our goal is the
morphological processing of DRS’s, then both the generat-
ing functional and the cummulative distribution functional



are needed.

2. PRELIMINARIES

The following theorem is a cornerstone of enumeration and
combinatorics. See [47] for a general proof.

Theorem 1 (Moebius inversion) Let B be a finite set
(i.e.,, |B| < o0), and £(B) its power set. (Z(B),C) is e
complete lattice with unit element B and zero element 0.
(2(B), C) is isomorphic to the Boolean Algebra of (finite)
rank |B|. Letp be a real-valued functional on IZ(B). Define
the lower and upper sum Junctionals, g, and r, respectively,
by
9(4)2 3" p(5), A€ 5(B)
SCA

r(4)2 Y p(S), VA € 5(B)
S$24
Then, VS € I(B) (inversion from below)

P(S) =) (-1)4g(snA%) = 3 (~1)S1-14ig(4)

ACS ACS

and, VS € I(B) (inversion from above)

P(S)= 3 (-)MIr(SU A% = 3 (~1) M-Sl g)

ADS ADS
where A° = B — A, VA € £(B).

A stand-alone proof involves a convenient change of vari-
ables, followed by the application of an enumeration

We will need the following technical Lemma. Strangely
enough, we haven't been able to locate it in the classic
references [43, 46, 52], or in the relatively up-to-date book
of Aigner [47]. A proof can be constructed using Moe-
bius inversion from above. We skip it here due to space
limitations.

Lemma 1

94) = Y~ (-1)¥r(8) = 37 (-1)*I(s%), vA € B(B)
SGAe SDA

and

rd) =3 (-1)g(s%) = Y (-1)¥Ig(S), VA € £(B)
SGCA S2A¢

Consider a mapping ¢ : £(B) = Z(B). ¢ is called an
erosion if it distributes over intersection. ¢ is called a dila-
tion if it distributes over union. A pair (e, 6) of mappings
from Z(B) to itself is called an adjunction on (B) if*

6(A4) C S <= AC ¢(S), VA€ X(B),VS € T(B)

1The definitions and properties given here are sufficient for
our purposes; see (53] for a general treatment.
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If (¢,0) is an adjunction, then ¢ is necessarily an erosion
(i.e., it distributes over intersection), and § is a dilation
(i.e., it distributes over union). For any given erosion, ¢,
there exists a unique dilation, 8, dubbed the right adjoint

of ¢, such that the pair (e, d) is an adjunction. This § is
given by

$(A)=n{S€Z(B) | AC¢(S)}
Similarly, for any given dilation, d, there exists a unique
erosion, ¢, dubbed the left adjoint of &, such that the pair
(¢,9) is an adjunction. This e is given by
«(S)=u{deX(B)| i4)cS)

If (¢,d) is an adjunction, then € and § are adjoint to each
other. A thorough treatment of adjunctions can be found
in [53]. Related material can also be found in {54).

We have the following elementary Lemma. The proof
follows along the lines of [53, pp. 85-86).
Lemma 2 Any dilation, 8, can be represented as

6(‘4) = UzEAS(z)

Given §(A) = U,eaS(2) define

(A= {zeB|S(z) C A}

It can be proven [53, pp. 85-86), that (¢, 8) is an adjunction.
Furthermore,

Lemma 3 Any erosion, ¢, can be represented as
«(4)={z€ B| 5(z) ¢ A}

The proof follows by uniqueness of left adjoint. We will
need the following Lemma. The proof is elementary.

Lemma 4 Let (¢,8) be an adjunction. Define

AVVERPTE))

§(S)CA
and
r(2 Y p(8)
«(S)2A
Then
95(A) = q(e(4)), VA€ £(B)
and

re(4) = r(6(4)), VA€ I(B)



3. CONNECTION WITH UNIFORMLY
BOUNDED DRS THEORY

Let us now make the connection with DRS ‘theory. A
DRS X is simply a measurable mapping from some
abstract probability space to the measurable space
(Z(B),Z(Z(B))). As such, it induces a unique probability
measure on Z(Z(B)). Denote this by Px(-). Let px(-) de-
note the restriction of Px (-) to the atoms, i.e., the elements
of Z(B). This is the probability mass function of the
DRS X. Define the capacity functional, generating
functional, covering functional, and cummulative
distribution functional, Tx(-),Qx(-), Rx(-), Fx(-), re-
spectively, by

Tx(A) 2 Px(X NA#0)
Qx(A) EPx(XNA=0)=1-Tx(A)= Y px(5)

SCAc

Rx(4) 2 Px(X 2 4)= " px(5)
soaA

Fx(A) 21— Rx(4)

Identify px with the functional p of Theorem 1. Then, it
becomes clear that

Qx(A) = q(A°)

and
Rx(A) =r(A)

where g, 7 are the lower, and upper sum functionals, re-
spectively, of Theorem 1. It then follows from Theorem 1,
and Lemma 1, that VS € £(B)

px(S) = E(_I)IAIQX(ScuA) = Z(_1)|S|-|AIQX(A¢:)
ACS ACS

and

px(8)= Y (-1"*"Rx(SUAY) = Y (-1) IRy (4)

ADS A2S

Furthermore, VA € (B)

Qx(4) =Y (-1)*'Rx(S) = Y (-1)*"IRx(5%)

SCA SDAe
and,
Rx(4) =Y (-1)¥10x(8) = 3 (-1 IQx(5°)

SCA SDAs

Since Qx{A) = 1 — Tx(A) and Fx(A) = 1 — Rx(A),
VA € T(B), we now have identities which relate all five
functionals Tx,Qx,Rx, Fx, and px. As a trivial corol-
lary, any one of these functionals is a sufficient and con-
structive specification of X.
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4. CONNECTION WITH MATHEMATICAL
MORPHOLOGY

Mathematical morphology is an important quantitative
shape analysis tool in image processing. Its foundations
were laid down by Matheron [3, 4], Serra [10, 11], and col-
laborators, during the late ’60’s to early '80s. Since then,
the theory has been generalized by its founders, as well
as several other researchers; an excellent recent treatment
which unifies several seemingly distinct approaches within
a purely algebraic framework can be found in [53).

- Morphological Image Operators [53] are compositions of
two classes of elementary building blocks, namely erosions
and dilations. Several types of erosions and dilations can
be defined; the definition given in section 2. is the most
general one within our framework.

Let (¢,6) be an adjunction. Identify px with the func-
tional p of Theorem 1. Then, as before, Qx (4) = ¢(A°)
and Rx(A) = r(A). We further observe that Qs(x)(A) =
¢5(A°), and Ry(x)(A) = r.(A), where g5, and r, have been
defined in Lemma 4. By applying this latter Lemma, we
conclude |

Qsx)(4) = Qx((«(A%))°), VA€ Z(B)

and

Rex)(A) = Rx(6(A), VAeX(B)
A probabilistic proof of the first result for the special
case of translation-invariant operators has appeared in [48];
similarly, a probabilistic proof of the second result for the
special case of translation-invariant operators has appeared
in [51].

In the previous section we have concluded that either
one of the functionals Tx,Qx,Rx, Fx, or px, is a suffi-
cient and constructive specification of X. From the latter
two identities we now conclude that Qx (or, equivalently,
Tx = 1—-Qx) is the most convenient specification if our in-
terest is in processing X via an operator which distributes
over union (i.e., a dilation), whereas Rx (or, equivalently,
Fx = 1—Rx) is the most convenient specification if our in-
terest is in processing X via an operator which distributes
over intersection (i.e., an erosion). This picture is depicted

Ry Qx

Py

Figure 1. The two fundamental functionals of DRS theory
in figure 1. One may obviously substitute Tx for Qx,



and/or Fx for Rx. The choice of Qx versus Rx depends
solely on whether one will apply a dilation, or erosion, re-
spectively, on X. However, in morphological shape analy-
sis and synthesis we sequentially process X using a variety
of erosions and dilations. This means that one is forced
to use both specifications, i.e., move between the two in
anticipation of the next operation in line. This movement
is made possible by Lexama 1, which is essentially another
incarnation of Moebius inversion. As such, it involves a
combinatorial computational cost. This is the single most
important barrier in applications.

5. CONCLUSIONS

We have argued that all the essential structure of DRS
theory has nothing to do with probability: it is purely due
to a synergy of underlying combinatorics. We may then
conclude that the study of DRS theory is the study of so-
called Incidence functions (in the sense of [47]) on Boolean
algebras of finite rank.

DRS theory inherits two fundamental functionals from
combinatorial theory. There is nothing “magic” about the
choice of a “working” functional specification of a DRS X.
It all depends on the kind of operations one is interested
in. In general, one is forced to use both functionals, and
this brings complezity into the picture. In our view, this is
the single most important obstacle in applications.
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