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Abstract

We describe a design technique for optimal con-
trol in active structural vibration damping us-
ing smart materials. The vibration of a can-
tilever beam is stabilized by using distributed
sensors and actuators. We model the beam by
the Timoshenko beam model together with the
distributed sensors and actuators. A control law
using the weighted integration of vibration ve-
locity is incorporated in the closed loop system.
We propose a method to find the optimal layout
design of the smart material so as to maximize
the damping effect. An objective functional is
defined based on the vibration energy of the sys-
tem. The optimal shapes of the sensor and ac-
tuator are determined through minimizing the
energy functional of the beam over the admissi-
ble shape function space subject to certain geo-
metric constraints. An algorithm has been de-
veloped to determine the optimal sensor and ac-
tuator layout. This method can be generalized
to the plate damping problem and more compli-
cated structures as well.
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1 Introduction

An important issue in the control system de-
sign for flexible systems is the determination of
the optimal number and location of the con-
trol system components: sensors and actuators
as well as their backups. In general there is a
larger number of candidate locations than avail-
able sensors and actuators. Based on experience
and knowledge on structure dynamics and con-
trol objectives, a priori selection is usually avail-
able. However, this may not give the optimal
effect on the closed loop system. Extensive ex-
perimental work is expected to justify the de-
sign. For discrete optimal sensor and actuator
locations, a method based on the orthogonal pro-
Jjection of structural modes onto the intersection
of the controllable and observable subspaces is
introduced [3]. The controllability and observ-
ability Gramians are used to reflect the degrees
of controllability and observability of an actua-
tor/sensor pair. However, this method is based
on a second order linear model. In [1], an objec-
tive function is defined based on the elements of
the actuator influence matrix, and an optimiza-
tion study is performed to compare the system
performance. This work suggests that a rela-
tive even distribution of the actuators can lead
to satisfactory results. Again, pointwise sensors
and actuators are analyzed here.

The use of smart materials as sensors and
actuators allows the adjustment of geometry
and dynamical behavior of flexible space struc-
tures. It also provides means of signal process-
ing by sensor’s geometry. In [2], model sen-



sors/actuators are proposed and developed. The
sensors and actuators can provide signals related
to certain elastic modes. It has been pointed out
that the location of distributed sensors and ac-
tuators need to be placed away from the nodes of
the specified elastic modes to be sensed or con-
trolled to achieve maximum effect. The choice of
the sensor and actuator shapes is also an impor-
tant factor in system'’s performance. A question
arises naturally: what are the optimal shapes of
the distributed sensors and actuators made from
smart materials?

We know that the flexible beam is an infi-
nite dimensional system. In order to faithfully
measure and control the system without using
a truncated model, there is a need in design-
ing control algorithms directly from the partial
differential equation model to avoid spillover.
We can develop certain performance measures
to carry out the optimal design.

We consider the design issue associated with
the vibration damping control of a cantilever
beam. The beam is modeled as the Timoshenko
beam. Both sides of the beam are covered by
PVDF and PZT materials for sensing and ac-
tuation. Using the control algorithm developed
in [4], the closed loop system can be asymptot-
ically stabilized. Based on this result, we want
to further determine the optimal layout of the
continuous distributed sensors and actuators for
the system based on minimizing the vibration
energy of the system. We hope that this can
lead to a general design methodology or at least
provide a design guideline.

2 Problem formulation

We model the cantilever beam with the Timo-
shenko beam model which accounts for shear ef-
fects and rotary inertial. The Timoshenko model
describes the physical behavior better than the
Buler-Bernoulli model does especially for the
high frequency vibration components. The ac-
tuator and sensor are the layers made of piezo-
electric ceramic (PZT) and piezoelectric poly-
mer polyvinylidene fluoride (PVDF) materials
attached to both sides of the beam. Figure 1
shows the structure of the composite beam. The
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Figure 1: The composite beam
equations of motion are given [4] by,
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The constant ¢ is determined by the PZT ma-
terial property and the manufacturing process.
The functions w(z,t) and ®(z,t) are the dis-
placement of the centroid and orientation of the
cross section of the beam. G is the Young’s mod-
ulus in shear. ET is the bending rigidity with
the subscripts b, @ and s denoting beam, sensor
and actuator layers respectively . A is the area
of cross section. The distributed control V(z,t)
appears in (2) as the distributed bending mo-
ment.

Figure 2 shows the structure of the PVDF sen-
sor. The sensor output is given by [4]

a2¢>

Vi(t) = K, / F(z)5; (5)




Figure 2: The PVDF sensor

which is a weighted integral of beam curvature
along the longitudinal direction of the beam.
The function F(z), the sensor shape function,
is the width of electrodes covering both sides of
the PVDF sensor simultaneously. K, is a con-
stant determined by the sensor material. The
feedback control is given by

Viz,t)= K v(:z:)/ F(x)ata (6)

where v(z) is the actuator shape function. Sim-
ilarly to the sensor shape function, v(z) is the
width of the electrodes covering the surfaces of
the PZT actuator.

We want to introduce active damping to ex-
tract vibration energy from the system. It is
natural that the value of the vibration energy
measures the amount of vibration. The energy
functional is defined as

E(t) = % /L{pA[—]"’+ I[

+K[— -2+ EI[ ]2}

where

K = kAG.

The first two terms in the integral are kinetic
energy of the beam due to the displacement and
rotation. The third term is the energy due to
shear. The last term is the stored energy from
bending. The vibration energy defined above is
a function of time ¢.
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3 Optimal control and a
numerical algorithm

Unlike point sensors and actuators, the geometry
of the spatially distributed sensor and actuator
has a function of preprocessing the sensor output
signals and control weight. A judicious choice of
the shapes can extract the desired signals and
implement the control algorithm. We discussed
in [4] a method of choosing the appropriate sen-
sor and actuator shapes for active damping con-
trol by means of modal analysis. We would like
to develop a systematic approach to deal with
this problem here.

The control (6) is a functional of sensor and
actuator shape functions and the weighted in-
tegral of the beam curvature. We have proved
that the control (6) asymptotically stabilizes the
system [4], i.e., we have

tlixg E(t) =0. (8)
We seek the optimal control in the sense that
the energy functional is minimized over all the
possible sensor and actuator shapes. Our task
here is to find the optimal sensor and actuator
shape functions v(z) and F(z) 8o as to minimize
the energy functional (7). The problem is to find
functions vy(z) and Fy such that

1/L {/’A[%t’ﬁ]2

+ I[—]2 + K[a—w - )

min

JIT, v0, Fo] veV, FE}'

+ EI[-V} dz, )

where V and F are the sets of all the admissible
actuator and sensor shape functions. The ad-
missible functions here depend on geometry of
the structure. For beam and plate like struc-
tures, the geometry is usually simple. Since the
region of the beam which could be covered with
smart materials is assumed to have length L and
width b, the sets V and F contain the collec-
tion of all the piecewise continuous curves within
this region. The optimization hence has a geo-
metric constraint. The functions v(z) and F(z)
denote the width of the electrodes covering the
smart materials; we have 0 < v(z) < b and
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Figure 3: Discretizing the sensor and actuator
layout

0 £ F(z) < b. We are interested in observing
the amount of energy at time T.

For numerical solution of a shape optimiza-
tion problem, one typically starts by guessing
an initial design. One then discretizes the elas-
tic problem using finite elements or using dif-
ference method or a Galerkin procedure. After
discretization, the optimal design problem be-
comes a large nonlinear programming problem.
Different routines are available for working on
the later.

We start our numerical scheme by discretizing
the region along the longitudinal spatial variable
z as in Figure 3. Let N be the total number
of segments with equal size, then the width of
each segment is L/N. The discretized shape
functions v(z) and F(z) assume constant val-
ues v(k) and F(k) inside the k** element. We
thus have piecewise constant functions v(k) and
F(k) with £k = 1,2,...N. The 2k members of
v(z) and F(k) become the optimization param-
eters. We then compute the distributed control
V(k,t), k = 1,2,...N, based on the initial con-
ditions of the system and the discretized shape
functions. The time response to the input can
be computed through solving the equations of
motion numerically. This procedure yields the
value of the cost functional J at time T. An
optimal routine shall be followed to search and
adjust the piecewise constant sensor and actu-
ator shape functions toward reducing the value
of the cost functional (9). The new shape func-
tions are then used to generate the system input
V(k,t) again. This procedure is repeated un-
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Figure 4: Optimization algorithm

til the optimum criterion is met. The resulting
v(k) and F(k) can be smoothed to give the final
optimal shape functions vy(z) and Fy(z) for the
sensors and actuators. The algorithm is given in
Figure 4.

4 Other considerations

The optimization scheme can be used to deal
with more complicated structures. The sensors
and actuators may be piecewise continuously dis-
tributed on the structures. When structures con-
tain both distributed and pointwise sensors and
actuators, our formulation still holds. The corre-
sponding shape functions v(z) and F(z) become
both piecewise continuous and pointwise in the



relevant regions.

In terms of computation, the bottleneck is
the simulation of the systems governed by par-
tial differential equations. Different methods can
be implemented to solve the partial differential
equations (1) and (2).

Modal sensors and actuators can be designed
through optimization as well. This may re-
duce the influence of leak-through, i.e. the
crossover effect among different modes, to im-
prove the overall performance. Different perfor-
mance measures and cost functions are required
to formulate the optimization problems.

5 Conclusions

We have developed a method to facilitate the
optimal design of active vibration damping us-
ing smart materials. The optimal algorithm de-
scribed above can be expected to yield reason-
able good design for the layout of the distributed
sensors and actuators. Although the algorithm is
developed based on the beam model, the method
can be extended to the plane case. This proce-
dure is expected to work for the cases with irreg-
ular geometry or nonuniform structural material
as well.

References

(1] K. Choe and H. Baruh. Actuator placement
in structural control. Journal of Guidance,
Control and Dynamics, 15(1):40-48, Jan.-
Feb. 1992.

[2] C. K. Lee and F. C. Moon. Modal sen-
sors/actuators. Journal of Applied Mechan-
ics, 57:434-441, June 1990. Trans. of the
ASME.

[3] K.B. Lim. Method for optimal actuator and
sensor placement for large flexible structures.

Journal of Guidance, Control and Dynamics,
15(1):49-57, Jan-Feb 1992,

(4] Y. Zhuang and J.S. Baras. Distributed con-
trol of a Timoshenko beam. In Proceedings of
the Third International Conference on Adap-

)

tive Structures, San Diego, California, Nov.
9-11 1992. Technomic Publishing Co., Inc.



