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ABSTRACT
The template matching problem, for binary images corrupted with spatially white, binary, symmetric noise, is studied.
We compare matching based directly on the pixel-valued image data as well as on data coded by two simple schemes: a
modification of the Hadamard basis and direct coarsening of resolution. Bayesian matching rules based on M-ary hypothesis
tests are developed. The performance evaluation of these rules is provided.

The paper presents a study of the trade-off between the quantization level and the ability of detecting an object in the
image. This trade-off depends on the (external) noise generated at the moment we receive the uncoded image.

The sum-of-pixels and the histogram statistics are introduced in order to reduce the computational load inherent in
the correlation statistic, with the resulting penalty of a higher probability of false alarm rate.

In the present work we demonstrate by examples that it is beneficial for recognition to combine an image coding
technique with the algorithm extracting some “basic” information from the image. In other words coding (for compression)
helps recognition. Numerical results illustrate this claim.

1. INTRODUCTION

Consider the following simple instance of the Template Matching Problem: A binary image represents an m xm-pixel
black square in white background. The image is transmitted over a noisy channel causing several pixel inversions. We
want to find the mxm windows on the image containing part or all of the black square. For this purpose we may scan
the noise corrupted image, correlate with a full black mxm template and decide “black square detected” if the correlation
is higher than a certain threshold. We model the noise effect by saying that the image is corrupted by White (in space)
Binary Symmetric Channel (BSC) Noise with some inversion probability ¢. We use the hypothesis testing framework to
develop a Bayesian matching test and more specifically determine a threshold value that minimizes the Bayes cost. The
computational complexity for designing this test is reduced by using the sum-of-pixels statistic. The analytical performance
evaluation we obtain gives us the opportunity to compare the matching rules based on a sequence of instances of the same
image but on different resolutions.We conclude that compression of noise corrupted data, via coding, may “kill part of the
noise” providing thus more reliable data for object detection.

A Bayesian matching rule, which is applied directly to block coded image data'?># is also developed. The coding
scheme we introduce is inspired by the usage of the Hadamard basis in image coding® and it encodes binary image data
with a modified Hadamard basis. Here we use the histogram statistic to reduce the computational complexity of the
matching rule with a penalty on the reliability of the rule. Nevertheless, with this technique we can detect quite robustly
some class of simple binary objects in a heavily noisy environment.

In section 2 we show how the template matching problem and the problem of matching based on the sum-of-pixels
statistic can be formulated as hypothesis testing problems when both problems have non coded image data as their input.
In section 3 the modified Hadamard basis is introduced. In section 4 the histogram matching test is formulated as a
hypothesis testing problem. In section S we compare two classes of statistics : the position dependent ones, like the
correlation statistic, and the position independent ones like those we introduce in sections 2 and 4. In section 6 we present
performance evaluation results for these two rules. In section 7 we rely on our conclusions from the maiching problem

to visualize the Image Compression and Image Understanding problems as two possibly related abstractions of the same
information retrieval problem.

2. DETECTION OF A BLACK SQUARE IN WHITE BACKGROUND

Suppose we are given an nxn-pixel binary (zero/one) image which represents an mxm-pixel black square in white
background and is corrupted by BSC noise with pixel inversion probability . We want to locate the black square on
the image.
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2.1 Detection Based on the Sum-of-Pixels Statistic

The use of the sum-of-pixels statistic y is equivalent to counting the black pixels on the image window we scan. We
construct an M-ary hypothesis test for which the states

H,, we {0}u {1,2,-~-,m2} ={0}usS
are characterized by the Hamming weights of the possible mxm patterns generated by scanning the noise free image ;

more specifically S is the set of non all-white such patterns. The prior probability of a state A, i.e. he probability that the
Hamming weight of the test window on the noise free image has the value w = h, is denoted as pj.
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By selecting the cost matrix in eq.1 for our M-ary test we implicitly impose the grouping of the states H;, i =

1,2,...,M into a new one H,, thus reducing our M-ary rule into a binary one. More explicitly we can apply the theory
supporting the M-ary test®; this will give the following decision rule :

d:d(y)=1i & gi(y)<agn(y), he Su{o}, (2) where

P, , i=0
9 (y) = Z pule(h, i) ~c(h,h)] Pa(y), or 9i={2ph v

Aesu{o}
A

h€S .
PoPo(y), ies

which minimizes the mean cost value : J (d) = E [c(H,d (Y))]. Note that all g;’s are identical for h € S. This means
that essentially we have two hypothesis for our test :

Hy : h=0, Hy : h>1
The decision rule is :
, > pPu(y), i=0
d: dy)=i & ¢:i(y) <g1-i(y), 9i(y) = {"65 . ()
poPo (y), i=1

Py (y),h € SU {0}, is the probability of observing an image window with y black pixels in it, while the corresponding
noise free window had h ones. We will call these probabilities transition probabilities and they are shown’ to be equal to

pw= 3 () (GIl)amoran ®

‘k=ma.x(0,h+y-r?1) y

If we substitute this expression of P, (y) in the decision rule the latter becomes:

aw=egga £ ()00 <0) ®

and by a further numerical simplification :

d: dy)=0ey<w, - (6)



where yo is a threshold in the range from 0 to m’.
Performance evaluation :
Probability of false alarm = Pr{ decide there is a square while it is not present } :
Pfa:Pr{d#OlH:O}:Pr{y>y0|Ho}=>.

pae 3 (P)aore .

y=yo+l

Probability of detection = Pr{ decide there is a square while it is present } :

Py=Pr{d#0|H#0}=> Pr{d#0|H=h}Pr{H=h|H#0}

hes
=1-) Pr{y<uyo|H=h)} B o
hes 2 Ph
heS
1 Z Yo
Pi=1- pny Puly) . (8)
2 Ph hes  y=0
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2.2 Detection Based on Image Data of a Coarsened Resolution

Suppose now that we code each 2x2-pixel block of the noise corrupted image with one bit indicating all-black or
all-white block, depending on the bit value. The noise of the original image will “propagate” to the coded data, resulting
in bit inversions. The white noise in the original data will cause the noise to be white in the coded data too.

The relation of the noise-free-coded data and the noise-corrupted-and-then-coded data is depicted in figure 2. The
inversion probabilities eq=Pr{0 is inverted} and €,=Pr{l is inverted} depend on the specific coding rule. We adopt the
following coding (quantization) scheme :

For each 2 x 2-pixel block (call it y) of the noise corrupted image do :

if w(y) < 2 then decode y—0

. if w(y) > 2 then decode y—1

3. if w(y) =2then

decode y—0 with probability 0.5
decode y—1 with probability 0.5

N =

where w(y) is the Hamming weight of y. We will have é=eo=€; because of the symmetry of the rule. So the noise on
the coded data can be modeled again as BSC noise with inversion probability €, which depends on the noise parameter
¢ of the original data as follows :

=Z(4) c‘(l—e>““+§(‘;)e2<1—e>2 . (9)

An analysis for the detection of the black square based on these coded data is identical to the one we have seen
in subsection 2.1.
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3. THE MODIFIED HADAMARD BASIS

In this section we introduce a simple block coding scheme for binary images. Both the observation data and the
template we wish to match will be treated as matrices of block codewords instead of matrices of pixel values. A
consequence of this fact is that the noise in the original image will “propagate” in the coded image data. For example,
suppose that a noise free block of pixels is coded by a codeword i; but due to some pixel inversion(s) in this block the
decoded codeword assigned to it is j, which is different from i. We would like to be able to evaluate the probabilities
of such events called block transition probabilities ¢;; = Pr {i — j} in terms of the pixel inversion probability of the
original data. On the other hand the size of the block alphabet M will impose a second restriction on the selection of the
coding scheme we can use. In the next section we will show that the complexity of the matching test will be exponential
with respect to M. A third constraint which conflicts with the latter arizes from the fact that we do not want our template
to be too minute. We wish to develop a matching rule for templates of size 8 x8-pixel or 12x 12-pixel.

The 16—¢clement 4 x4—pixel block alphabet shown in figure 1, called the modified Hadamard basis has been inspired
by the 4 x4 Hadamard basis* and responds satisfactorily to all of the above constraints. The Hadamard basis is used for
multiple gray level images; negative intensity factors can reverse the pattern, e.g. a black block may be converted into
a white one. In our application we do not use such a factor; instead we use the first 8 patterns of the Hadamard basis
plus their reversed versions.

a. binary pattern b. normalized variance
C. prior probability estimation ( pi )
b| ¢ b| c
1.00 |0.3594 0.038 | 0.0137
0.098 0.0352 0.051} 0.0183
0.087(0.0313 0.048/0.0173
0.035{0.0126 0.034/0.0122

Figure 1: The modified Hadamard basis

The block transitions are caused by the white binary noise corruption. Nevertheless they are governed by the
quantization procedure, i.c. the rule used to map the noise corrupted data back to the limited alphabet of the 16 blocks.
Both the quantization procedure and the block transition probabilities evaluation rely on a useful property of this block
alphabet : for each pair of distinct blocks i, j the Hamming distance d(i,j) is either 8 or 16. Therefore we may think of
the codewords as the centers of spheres in the {0, 1}16 — space with radius half the Hamming distance p=4.



The quantization rule :
For each 4 x4—pixel block (call it y) of the noise corrupted image do:

1. if d(y,i) < 4 for some codeword i then decode y—i
2. if d(y,i) > 4 for all i

a. if “weight of y” (w(y)) > 8 decode y—0 (full black block)
b. if w(y) < 8 decode y—1 (full white block)
c. ifw(y)=S8,

decode y—0 with probability 0.5,

decode y—1 with probability 0.5

3. if d(y,i) = 4 for one or more i’s then
decode y—j,,, where j,, = arg max {prior(j)}.
j

The transition probabilities : Recall that we call transition probability Pr{i—j} = P(j /i) = Pr{d=j / H=i] the
probability of deciding that the element (codeword) j appears in some place of the image, given that the element (codeword)
i was at that place of the original image. The probabilities ¢;; = P(j | j), i,j = 0,1,---,15 are found to be expressed
by fairly complex combinatorial formulas;.

4. OBJECT DETECTION BASED ON CODED IMAGE DATA

In section 3 we introduced a block coding scheme transforming a binary image into a matrix of codewords in the
range O, ..., 15. A 12x12-pixel image window is thus transformed into a 3 x3—code sub-matrix, since 4 x 4-pixel blocks
were considered. The 9 elements of this sub-matrix are independent random variables, because the BSC noise is white
(in space) and their values define a configuration which will be called the original state. If we now group together all the
original states having the same (1st order) histogram (i.e. all sub-matrices having the same multitude of each element)
then we form a new set of states. We will call this new set the histogram alphabet.

Let M be the number of all possible distinct components (block codes) which may constitute the template. Let also
n be the length of the template in blocks (in the example above we had n = 9 = 3x3 blocks). We will denote by S(M,n)
the size of the histogram alphabet. Call h the M-vector representing the histogram of the noise-free coded template of
size n; call also y the M-vector representing the histogram of a noise corrupted and afterwards coded image window of
size n. The vector h represents some feature we want to detect on the image; our problem amounts to comparing the two
histograms h and y and infer a decision about their matching.

We formulate this matching as an M-ary hypothesis testing problem which leads to an optimal binary decision rule.
To do so we assume we are given the prior probabilities and the transition probabilities of the histogram elements (i.e.
the block priors p;, ¢ = 0,1,---,M — 1 and block transitions ¢;;, i,7 = 0,1,---, M — 1) so that we are able to find
the histogram priors and histogram transitions.

In this section we develop a rule which is a generalization of the one developed in section 2. One may observe that
if we set M = 2, i.e. if we have a binary code, then the histogram reduces to the “sum-of-pixels” statistic we discussed in
section 2. The generalized rule can be applied to compare arbitrary histograms, provided we have the information about
the histogram elements mentioned above.

4.1 The Histogram Alphabet

Let {ag, a1, -+, apm—1} be the block alphabet. Evidently we will have M™ possible n-tuples of blocks. We introduce
an equivalence relation onto this set of n-tuples. An equivalence class will be composed of all n-tuples having the same
histograms, i.e. two n-tuples are in the same class if one is a permutation of the elements of the other. A representative
element of an equivalence class will be called a histogram pattern. Consider now the following power expansion® :

n!
n N ng,.nj Na-1
= E —— .
(ao+m+ +0M—1) 0! l' 1! 0 Oy Apr—1 (10)

{n-}tzn.=n
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Observe that :
1. Each term in the summation above can be considered as a histogram pattern, i.e.

no N1 NM-1
Qp ) Oy

represents an a-tuple in which we have n, times the element oy, n, times the element «; and so on; note that if
n; = 0 for some i, then ¢; is not in the n-tuple.
2. The size of each equivalence class will be equal to

n!
no!nl! o 'ﬂM_l!

3. If p; is the prior probability for a;,i = 0,1,---,M — 1, then the independence assumption implies that the prior
probability for a specific element in the equivalence class will be

ng,n nM-1
PPy PM-1 >

while the prior for the class itself, i.e. the prior of the histogram pattem will be

n! _— raros
no!nl!---nM_l!pO 1 51 Pym-1
4. We can systematically construct the histogram patterns with the following procedure :

a. Find all integer partitions of the number n in at most M places

{n01nl"")nM~l} .

b. For each such partition find all the distinct permutations of n;’s in M places. Note that we have
() (“2) - (2
ny ny nM-1
Each permutation will determine a set of exponents in the expansion formula and therefore a histogram pattern.

5. The number of histogram patterns, i.e. the size of the histogram alphabet, S(M,n) will be equal to the number of

summands and therefore
S(M,n) = (M+n"" 1) . (11)

of them,

Note that in the case of the binary block alphabet (e.g. black/white) we get S§(2,n) = n+1 = the number of possible
variations of black-white mixtures in a pattem of size n.

The equivalence classes described (histogram patterns) will determine the states for the M-ary test we will develop;
the state space will be denoted by H.

4.2 The Observation Data and the Cost Function
The observation data in our test correspond to some n-vector of block codewords. This information can equivalently be
represented by an M-vector y being the histogram pattern of the image window we scan. For example if n =4 and M = 16
we may have the observation /I S 15 1] which is equivalent to the histogram pattern y = [0200010000000001].
We introduce a partition Hy, H; of the state space H. Given an observation y we want to decide “matching” (H,) or
“not matching” (Hy). We will do so by imposing the cost function :

_ [0, if both h,y belong to either Hy or H,
c(by)= { 1, if h,y donot belong to the same set Hy, ¢ = 0,1 (12)

Note that H, is not necessarily a singleton. This means we may consider matching with multiple histogram patterns
simultaneously.



4.3 The Transition Probabilities Among the Histogram Patterns

Let us summarize our notation and introduce some new one. We have :
h : Histogram pattern, h € H; e.g. for n = 4 : the template [1 0 2 2] gives the histogram h = [I I 2]
h;,i=0,1,2 : Number of occurrences of the block i in the pattern, e.g. ho =1, hy =1, hy =2
y : Observation pattern : it has the same format as h and is subject to comparison with it.
yi, 1 = 0,1,2 : Number of occurrences of the block i in the observation vector.
€;; . Block transition probability Pr{i—j}.
k;; : Number of (original) blocks i in h “transformed” (as a result of noise
corruption) into blocks j in the observation pattern y.

It has been shown’ that the histogram transition probability

A, (y) = P[;,D,;,,,...,;._h]'([yo, Y, yn,])
= Pr{y is composed by yo elements (blocks) of type to,

y; elements of type ty,
Yn, elements of type tn, /
h is composed by ho elements (blocks) of type tg,
h, elements of type t],
ha, elements of type ty, '}

X the size of the histogram class of y

is equal to
n!
AY) =s———— T1 7 Gkir, kizy- - kiny 1) (13)
YUU2S " Yny 'y e of somcpabe §
mtwh
where
n'_2 ni—:\
. s h; — z ki hi— . kij
P; (kiv, kiz, -+ kin,—1) = (h' ) (h' k'l) P I kel e T (14)
kiy kiz kn -1 v
— ny -1 —_— - n, —

and ny, n, are the number of distinct elements in the template and the observation data respectively’. The acceptable
k;;—tuples satisfy the inequalities :

ny—1

max {0, h; — yn, -1} < '21 kij <hg, i=1,2,---,n3 -1
i=

(15)

np~—1 .

maX{O)yj_hnb-l}S E k,‘j Syj) 7 =1v2"">ny_1
i=1
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4.4 The Decision Rule

Let y be the observation pattern, p, , q € H be the prior probabilities for the histogram patterns and P, (y), h,y €

H be the transition probabilities. The rule d(.) that minimizes the mean cost of the “matching”/’non matching” decision
is :

. . ’ Y paPaly), i=1
dy)=ied(¥) <), g‘(Y)={q§z'j{°p.,Pq(y), i=0 ° (16)
q€H,

We can numerically determine a partition { Ry, R,} of H’ such that
dy) =i y€ER;, i=0,1.
We recall that

d(y) = 1 if we decide matching
()= 0 if we decide non matching

Note also that the calculation of the partition { Ry, R,} corresponds to the calculation of a threshold value in the case of
the binary block alphabet as we have seen in section 2.

4.5 Performance Evaluation of the Decision Rule
We will calculate the (Py,, Py) pair for our rule.

Probability of false alarm :

P]¢=Pr{d€H1|h€Ho}: 2 P"{d=i|h€H0}

i€H, 1=
Pr{d=ilhe€Hy})= ¥ Pr{d=ilh=j}Pr{h=j|h€ Ho}
iEHo

Pla=Y Y Pr{d=ilh=j}Pr{h=j|he Ho}=>

i€Hy jEH,
Pla=Y Prih=jlheHo} Y Pr{d=ilh=j} , a7

JEHo i€EH,y

where Pr{d=i|lh=j}}= Zﬂ(y)
yeﬁ;

for some decision region R;. So

Pa=—=—2_ p) 2 A=
leH Plich, icHyeR,
P = Z %Y. B . (18)

le" JGHO YER,

Similarly the probability of miss P,, is found to be

~ 3 n) AW (19)

leH‘ lEH, YERy

and as usually the probability of detection Py is Py = 1 — Py,



5. POSITION INDEPENDENT STATISTICS v.s. POSITION DEPENDENT STATISTICS

The tests we have examined so far rely on the sum-of-pixels or the histogram statistic. As already demonstrated
the common characteristic of these two statistics is that they do not take into consideration the position information. We
will call this type of statistics position independent statistics. On the other hand we will call position dependent statistics
the ones which rely on position information, like the correlation statistic or the number of matches between two binary
patterns. In this section we will compare the two kinds of statistics in terms of computational complexity and the reliability
of the related tests; the latter will be called position dependent tests and position independent tests respectively.

Consider the case of a dxd-element template (note : d?=n) of M-valued elements. The set of possible templates is
of size M4 = M™, which refiects the size of the state space of a position dependent test. On the other hand the state

space size of the position independent tests is S (M,n) = (M t:“l). The template size determines the computational
complexity for determining the Bayesian rule, as well as the complexity and memory requirements for evaluating the rule.
By using Stirling’s approximation for the factorials one can easily show that for the hard case of M>>n we have

S(M,n) __, [e\®
TTMn M>On (;)

Still the position dependent rules imply computationally expensive matching tests, since at each time instant of the image
scanning they need O(n?) operations, while the position independent ones require O(min(max(d,M).&#) or for smooth
enough images O(d) operations’.

The penalty for the reduced complexity of the position independent statistics is a higher probability of falsc alarm
compared to that of the position dependent ones. Let us suppose that among the d°=n elements of X* we have k distinct
ones namely ng of type 0, n; of type 1, ..., n, of type k, so that ng + n; + --- 4+ n; = n . This histogram corresponds
to c(n) = (:0) (";:‘°) ("":;’;"*) deag::) possible template patterns. Suppose that among these ¢ = c(n) patterns
there is the one we want to detect. Ideally our rule will respond positively each time it scans one of these patterns.
Consequently, each time we scan our target patiern, the rule will recognize it; but it will recognize all the ¢ — 1 patterns
sharing the same histogram with our target as well. Let us denote with A, Py, Py, h P,a, Pd the state and performance
evaluation parameters for the position independent test and the position depended test respectively and also with d the
decision outcome 0 or 1. In figure 2 we can see the relations of the regions characterized by the values of h, h and d.

h=0,d=0 1-P

fa

Figure 2: Comparison of the performance characteristics
for the position dependent and position independent tests.

We now make the following assumption : Given that an image element lies in a template the probability mass function
of the random variable indicating its position and ranging over all the allowable positions is a uniform pmf. In other words
if c(m) distinct patterns result in the same histogram n (and no other does), given the histogram n any pattern resulting
it may occur with probability 1/c(n).
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From figure 2 we induce that the above assumption implies :

From (21) we get :

Pr{i)'—f 1} :-i—Pr{h= 1}

Pr{d:l,fa:l}-—-%P"{d‘—'lvh=1}-

Pa=pr{a=1lh=1}=- 1Pr{d= ;Jrh{;i}llir{h* 1)

(20),(22) = P; = %Pd.c= Ps

as it was expected. We also have :

and similarly

Pr{ﬂ:O}=Pr{h=0}+Pr{h=1,i&=0}
=Pr{h=0}+Pr{h=:l}—Pr{71= 1}

= Prih=0}+Pr{h=1}-zPr{h=1)

=Pr{h=0}+(1——) Pr{h=1}

Pr{dzl,i;:o}zpr{d=1,h=0}+ (1—%)Pr{d=1,h=1}

Pr{d:l,ix:O}

Pr{i‘t:O}
_Pr{d=1,h=0}+(1-4)Pr{d=1h=1}
- Prih=0}+(1-2%)Pr{h=1)}

ﬁja=Pr{d=l|iz=O}=

~ 1-41
Pjazapla+ﬂpd L a= 1 , B =
a+f Pr{h::l} Pr{h:O}

(20)

(21)

(22)

(23)

(24)

(25)

We may observe that as n gets larger ¢ gets larger and consequently 5 gets larger, so I~’,a gets larger. Note also that the

prior knowledge Pr{h =i}, i = 0,1, explicitly affects Py,

priors we have P;, = Py, . This result holds for the all-white template as well.
Thus our position independent tests :

*  Are faster but tend to have higher probability of false alarm than the position dependent tests.
*  Accept analytic performance evaluation and have the same power with the Bayesian position dependent tests.

. For the full black template we have c(n)=1; so for equal

*  Are more attractive from the computational complexity point of view than the position dependent Bayesian tests, but
still not adequately attractive for non trivial templates.
*  Are equivalent with the Bayesian position dependent tests, in terms of the Pg, and P4 characteristics, for the case of
the full black and ali-white templates, under mild conditions.

Before we close this section we would like to point out that in the case of color patterns the fact that position
independent matching tests are faster than the position dependent ones reflects the human ability of recognizing the color
faster than the shape of an object °.



6. NUMERICAL RESULTS

The fundamental question raised in the previous sections is how the noise on the observed image will affect the
capability of object detection. The noise level is expressed in terms of the pixel inversion probability ¢, while the
capability of object detection is captured by the pair : probability of false alarm P¢, and probability of detection P4 which
correspond to the optimal Bayesian detection rule.

We use the results of section 2 to obtain the plots of the figures 4a and 4b, where we depict the ROC (Region Of
Convergence) of the decision rule for pixel inversion probabilities ¢=0.1 and e=0.3 respectively. Recall that we want to
detect an 8 x8-pixel black square in white background. Figure 4a refers to the rule based on the original pixel data and
figure 4b refers to the rule based on the coarsened resolution data. The first is characterized as a (2,64)-KB type test,
since the observation data are composed by 8 x8=64 2-valued pixels. The second test is characterized as a (2,16)-KB
type test, since the observation data are composed by 4 x4=16 2-valued blocks (of 2x2=4 pixels each one) as described
in subsection 2.1. The symbol KB stands for * Known Background” and it is justified from the fact that we know the
background of the target square. Indeed, the M states of the underlying M-ary test correspond to the possible distinct
relative positionings of the target square and the scanning window in the noise free case.

In figure 4c we give the ROC curves for pixel inversion probabilities 0.1 and 0.3 when the target object is the one
shown in figure 3 and the image is coded with the first four elements of the modified Hadamard basis. This test is a
(4,2)-UB type test, since the target object is composed by 2 x 1=2 4—valued blocks. The symbol UB stands for “Unknown
Background” and it is justified from the fact that we do not make any use of background knowledge as we have seen from
the formulation of the problem in section 4. Nevertheless, we may observe that the(4,2)-UB test seems to perform much
better than the (2,16)-KB and (2,64)-KB tests (the ROC curve is closer to the point {P,=0, P4=1)}). This is explained by
the fact that in the KB type tests we wish to decide H;, i.e. “target object detected”, if a black square or even a part of a
black square is observed, while in the UB-type tests we wish to decide H; only if the target object itself is observed.

Figure 3: An example of 1x2-block template

Given a ROC curve there is a point on it that represents the performance of the related optimal Bayesian decision
rule. In our problem we have such a point for each value of the pixel inversion probability e. If we draw the curve
passing from the points representing the optimal Bayesian rules for a continuity of values of ¢ we obtain a Pr,—Py curve
parametrized with ¢. An example of a P,—P, curve is given in figure 4d for the (2,64)-KB test. We observe that for
low noise, i.c. for small values of ¢, Py, is small and Py is high. This happens for small values of the threshold yo of the
sum-of-pixels statistic (see section 2). For instance if ¢=0.02 the optimal Bayesian rule is “decide black square detected
if sum-of-pixels > 37”. Adding more noise, i.c. letting ¢ get larger, causes P;, to augment, while Py gets smaller and
yo gets larger; yo getting larger means that the rule gets conservative, i.e. it needs more evidence (darkness) in order to
infer “black square detected”. This process gradually leads to the rule “never decide black square detected”, ic. to the
point (0,0) of the P;,—Py plot. The stairs-like shape of the curve is due to the discrete nature of the threshold and makes
apparent the trade-off between the high P4 and the low Py, that the optimal Bayesian rule attempis t0 compensate.

In figures 4¢ and 4f we compare the performance characteristics of four detection tests used for detecting a black
square in white background. Note that the last of them does not make any use of the background information. The first
two are the already known (2,64)-KB and (2,16)-KB tests. The third is a (2,4)-KB test, i.e. the 8 x8-pixel black square
is treated as a 2x2 matrix of 2 valued-blocks where each block is of size 4 x4—pixel. The block value is determined by a
majority rule similar to the case of the 2 x2-pixel blocks used in the (2,16)-KB type test. The fourth test into consideration
is a (16,4)-UB type test. The black square again is treated as a 2x2 matrix of blocks, but now the blocks take values in
the modified Hadamard basis as presented in section 3.
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fi 4e we represent the probability of detection Py as a function of the pixel inversion probgbility e. Itis
apparI:nt ﬁ at certain r‘:)?se level tl;:c comprtZssion of data favors detection capability, while for higher noise l.evcl better
detection results are obtained by a rule based on the uncoded data. More specifically the (2,16)-K§ test has higher Py at
three distinct intervals of ¢ (around the points ¢=0.02, ¢=0.14 and €=0.22). Also the (2,4)-@ test is superior to. th.e‘other
two tests for heavily noise corrupted data (¢>0.15). In figure 4f however it becomes evident that these superiorities of
the coarsened resolution data always are penalized with peaks of the e—Pg, curve. Nevertheless, note that for €<0.05 the
(2,16)-KB test performs better than the (2,64)-KB test in terms of both P, and P4. We also observe that. the performance
measures for the (16,4)-UB type test appears to behave in a much better way than the other tests do. Thls is again due to
the fact that the last test concerns the detection of the black square and not the detection of any part of it.

7. DISCUSSION

Image compression and image understanding have been traditionally developed as separate fields of research. In image
compression one is primarily interested in designing efficient coding schemes which allow the transmission and accurate
reconstruction of images at low bit data rates. In image understanding one is primarily interested in extracting high level
or “content” information from the image pixels. It is clear that both fields address the problem of efficient information
extraction and that in principle they are strongly coupled. We believe that in order to understand the simultaneous top-down
"and bottom-up processing performed in human vision, one needs to unify these two fields. It was the purpose of this work
to perform an initial investigation in this direction.

More specifically we were interested in linking image coding and object recognition quantitatively in some simple
generic examples. We have considered recognition based on a well structured feature detection algorithm, which we
developed, resembling Template Matching algorithms. In trying to link image processing with image understanding we
introduced a novel idea. Namely the “numerical image” for us was not necessarily a pixel image but a block-coded
image. In this way the image compression (performed by the code) is linked directly to image understanding. We can now
expect to observe the two types of interference or ‘contamination induced on the image data; namely the “external noise”
introduced by the physical media (¢.g. the camera or the transmission channel), and the “quantization noise” introduced
by the coding procedure. We were interested in analyzing the process where image recognition can be performed based
on the reduced (coded) image data. It is clear that if we reduce the image beyond certain point, recognition capability
will be affected. On the other hand it is desirable from a practical point of view to design schemes which can perform
object recognition on the basis of block-coded data and not requiring the full image reconstruction. It is concluded that
what we need to understand and quantify, in a general setting, is the explicit relationship between code efficiency and
image compression with the required performance. '
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