
Pmcrdlng8 of the 29th Conference
on Doclalon and Control
Honolulu, Hawall December 1990 WP-12-1 = 240

FAST ERROR-FREE ALGORITHMS
FOR POLYNOMIAL MATRIX COMPUTATIONS

John S. Baras, David C. MacEnany and Robert L. Munach
Systems Research Center
University of Maryland
College Park, MD 20742

Abstract
Matrices of pol nomials over rings and fields provide a unify-
ing framework $r many control system design problems. These
include dynamic compensator design, infinite dimensional sys-
tems, controllers for nonlinear systems, and even controllers
for discrete event s stems. An important obstacle for utilizing
these owerful matiematical tools in practical applications has
been &e non-availability of accurate and efficient algorithms
to carry through the precise error-free computations required
b these algebraic methods. In this paper we develop highly
ekcient, error-free a1 orithms, for most of the important com-
putations needed in %near systems over fields or rings. We
show that the structure of the underlying rings and modules is
critical in designing such algorithms.

1. Introduction
The theory of polynomial matrices [9,22,24] plays a key role
in the frequency-domain approach to the synthesis of multi-
ple input multiple output control and communication systems
[14,25,26]. Examples include coprime factorizations of trans-
fer function matrices, canonical realizations obtained from ma-
trix fraction descriptions, design of feedback compensators and
convolutional coders, and the analysis of quantization effects
in linear systems. Tjpically, such problems abstract in a nat-
ural way to the nee to solve systems of generalized Diophan-
tine equations, e.g., the so-called Bezout equation [7,16,20,23].
These and other problems involving pol nomial matrices re-
quire efficient polynomial matrix trianguyarization procedures
[17], a result which is not surprising given the importance of
matrix triangularization techniques in numerical linear alge-
bra. There, matrices with entries from a field can be tri-
angularized using some form of Gaussian elimination. How-
ever polynomial matrices have entries from a polynomial ring,
an algebraic object for which Gaussian elimination is not de-
fined. For matrices with entries from a polynomial ring which
is Euclidean-the kind encountered most often in control the-
or applications-triangularization is accomplished instead by
wiat is naturally referred to as Euclidean elimination. Un-
fortunately, the numerical stability and sensitivity issues of
Euclidean elimination are not well understood and in practice
floatin point arithmetic has yielded poor results. At present,
a reliafie numerical algorithm for the triangularization of poly-
nomial matrices does not exist.

This paper presents a1 orithms for pol nomial matrix tri-
angularization which entiriy circumvent t i e numerical sensi-
tivity issues of floating-point methods through the use of exact,
symbolic methods from computer algebra [6,15,21]. Often one
encounters the comment that since in practical problems the
numerical coefficients are rare1 known very precisely, error-
free methods are an unecessary rorm of computational overkill.
This is a misconception. The accuracy to which we know the
coefficients is not the issue. The real issue .is t.0 what extent
we can perform the required computations within the accuracy
of the model. data. Existing floating-point methods are poor,
highly sensitive and often lead to large errors, essentially since
they suffer from the same problems as computing zeroes of

olynomials. The use of exact, error-free algorithms guaran-
fees that all calculations are accurate to within the precision of
the model data-the best that can be achieved. Furthermore,
one can calculate with such algorithms the exact sensitivities
involved and therefore judge appropriately the confidence one
should lace on the results.. Previous computer. algebra algo-
rithms for polynomial matrix problems appearing in control
systems have been reported in [12]. Their performance was
very slow even on small size problems.

We place emphasis on efficient algorithms to compute ez-
act Hermite forms of polynomial matrices. The triangular, or
more correctly, trapezoidal Hermite form is defined for any ma-
trix with entries from a principal ideal r ing [22,24]. Such ma-
trices arise in many practical problems in communications and
control. Here we shall focus on matrices having entries which
are polynomials with rational coefficients, although our results
easily abstract to more general settings [l]. An important as-
pect of the exact triangularization of such matrices involves the
choice of arithmetic, We consider the tradeoffs between ratio-
nal and integer arithmetic and choose the latter. This choice
leads us to consider algorithms for the division of polynomials
over a unique factorization domain (UFD). The standard al-
gorithm for this task is well-known [4,5,8,19] and defined more
generally for polynomials with coefficients from any commu-
tative ring with identity. This algorithm is well-suited to the
scalar problem of GCD computation of polynomials over UFDs
since it avoids the computation of GCDs of the coefficients. In
the context of polynomial matrix trian ularization however, it
becomes unavoidable to exploit the ricfer structure of the co-
efficient ring: the fact that GCDs are defined on a UFD. As
a result we present an alternative to the standard algorithm
specialized to polynomials over UFDs but enjoying a certain
optimality property which is crucial to the efficiency of matrix
triangularization procedures.

We have implemented algorithms to compute exact Her-
mite forms of polynomial matrices in the MACSYMA and
Mathematica computer algebra languages. We have also writ-
ten a suite of auxiliary pro rams which call on these triangu-
larization procedures in orfer to perform the more high-level
tasks arising in the frequency-domain approach to control sys-
tem synthesis. We conducted simulations with MACSYMA
code running on Texas Instruments Explorer I1 and give per-
formance results for the triangularization of polynomial matri-
ces.

2. Facts And Terminolo y of Polynomials
and Polynomia f Matrices

In this section we use some standard terminology from
modern algebra [11,13]; see also [l]. Denote by &[SI the ring
of polynomials in the indeterminate ‘s’ with coefficients drawn
from the field of rational numbers, &. The subring Z[s of &[SI results when the polynomial coefficients are restricted to
lie in 2, the rin of integers. A polynomial U(.) in Z[s is
called primitive ifits coefficients axe relatively p r i m e in 2. Lor
any a(.) in Z[s], there exists a non-zero scalar c, in

content of a(s and p , (s) its primitive (with respect to c,).
A collection o polynomials in Z[s] having contents which are

up to its sign, and a primitive polynomial p , (s) in
that u(s) = ca . p , (s) . With slight imprecision c, is

CH2917-3/90/0000-0941$1 .OO 0 1990 IEEE 941

the respective rows of A(s). By analogy with the scalar case,
content-primitive factorization is obviously unique only up to
the choice of the signs of the row contents.

For every m x n polynomial matrix A(s in M[Q[s]] there
exists a unimodular matrix U (s) such that 3 (s) A(s) = H A (s)
with H A (s) an upper triangular (trapezoidal) matrix satisfying
the following conditions:

1. Each entry below the diagonal is identically zero;
2. Each nonzero diagonal entry has degree greater than

3. Each dia onal entry is monic.
We say that HA($ is a column monic-Hermi te f o r m of A(s).
A column integTd-HeTmite f o r m can be defined in terms of the
column monic-Hermite form. Letting H A (s) denote a column
monic-Hermite form for A(s) in M[Q[s]] , multiply each row of
HA(s) with the respectively smallest positive integer such that
the matrix Hj4(3) so obtained is in M[Z[s]] . Clearly, Hj4(s) is
row primitive and row equivalent to A(s). Conversely, suppose
that one is given Hj4(s) Satisfying conditions (1) and (2) above
which is row primitive and row equivalent to A(s). Divide
each row of H i (s) by the leading coefficient of the polynomial
on the diagonal of the respective row and call the matrix so
obtained H A (s) . Then clearly there exists U (s) unimodular
such that U(s)A(s) = H A (s) and H A (s) is a monic-Hermite
form of A(s) . This concept of column integral-Hermite form
gives a triangular form in M[Z[s]] for each matrix in M [& [f]] .
If A(s) is nonsingular then it can be shown that its monic-
Hermite form is unique and therefore its integral-Hermite form
is also unique.

3. Triangularizing Polynomial Matrices

the entries above it;

The upper triangularization of matrices with entries from

zeroes into polynomial matrices we call Euclidean elimination
by analogy with Gaussian elimination.

4. Integer vs Rational Arithmetic
In a Euclidean elimination polynomials of the form d (s) -
pis) c(s with c, d, q in &[SI arise. To calculate the coeffi-

(Y t /37 with a , p , y in &. If these rationals are expressed as

lowest terms, then

cients o 1 these forms one encounters the generic computation

ratios of integers CY = g, ,B = F, N@ 7 = $$, all reduced to

N” Da D r + N P NY D”
DO DP DY . . (u+76=

the need for GCD calculations. On the other hand, if it can be
arranged so that cy, p and y are all integers, then the same com-
putation obviously requires only two integer multiplications,
one integer addition and no GCD calculation. Thus, our goal
is to carry out matrix triangularization on M[Q[s]] using only
integer arithmetic. Clearly, by multiplying each row of any
A(s) in M[Q[s]] by a large enough integer, the denominators
of every coefficient of every entry of A(s) can be cancelled and
such a diagonal operation is certainly unimodular in M[&[s]] .
Again, this computation can be arranged more efficiently but
because it involves a fixed overhead, assume for convenience
that A (s) is given in M [Z [s]] .

Unfortunately, this creates new difficulties because Eu-
clidean elimination is not defined for M[Z[s]] since Z[s] is not
a Euclidean ring. For instance, it is easy to see that the re-
mainder of two polynomials in Q[s] with integer coefficients
has, in general, rational coefficients; consider the remainder of
2s after division by 3s - 1. In other words, Euclidean divi-
sion is not defined for Z SI. However, Z[s] is an instance of a
polynomial ring with coe iLi cients from a commutative ring with
identity and for such a ring one has the pseudo-division lemma,
a natural generalization of the Euclidean division lemma. Let
C denote a commutative ring with identity. Given a(s) and
b(s) in C[s] with dega(s) 5 degb(s) there exist two polynomi-
als, the pseudo-quotient q s and the pseudo-remainder r (s) ,
such that L b (s) = q (s) a [s] + r (s) and degr(s) < dega(s)
where the premultiplier L = ateg b-deg a+1 with a,, denoting the
leading coefficient of U(.). The pseudo-quotient and pseudo-
remainder are unique if C is also an integral domain. The
proof of the pseudo-division lemma yields a division procedure
called pseudo-division which like Euclidean division en’oys the
all-important strict degree reduction property; see [IS! for the
standard pseudo-division algorithm.

Let’s consider an example in which we wish to pseudo-
divide b(s) by a(.) where,

b(s) = s8 f s6 - 3s4 - 3s3 f 8s2 + 2s - 5

U(.) = 3 2 + 5s4 - 4 2 - 9s + 21. and

Applying the standard pseudo-division algorithm one obtains,

2 7 b (s) = (9 s 2 - 6) a (s) + (- 1 5 s 4 + 3 s 2 - 9) ,

i.e., L = 38-6+’ = 2 7 , q J s) = 9s2-6 and r (s) = -15s4+3s2-9.
This example appears in [18] as one step in the task of com.-
puting the GCD of b(s) and a(s) . The next step is to divide
out the content of r(s) and then compute the GCD of a(s) and
pr(s) exploiting the fact that gcd(b(s),.a(s)) = gcd(a(s),p,(s)).
The purpose of this content removal is to keep the size of the
coefficients small for purposes of efficiency in succeeding cal-
culations. However, consider the above computation in the
context of a matrix triangularization-a 2 x 2 example will
suffice:

In this situation we see that we are not at liberty to blindly di-
vide the entire second row by the content of r (s) (or any integer
for that matter) because it may introduce rational coefficients
in the (2 , 2 entry and thereby ruin our attempt to maintain

above pseudo-division example is,
integer arit h metic. However, note that another solution to the

9 b (s) = (3 2 - 2) a (s) + (-5s4 + s2 - 3),

i.e., L = 27 is not necessarily the smallest premultiplier for
which a “pseudo-quotient” and “pseudo-remainder” exist. Ob-
viously, in the matrix case, “L = 9” yields better results than
L = 27 since it yields smaller coefficients in the second row. Of
course in this example the difference is negligible, however, if
the size of the leading coefficient of U(.) is large, the difference
in computational burden can be quite substantial. Moreover,
as we shall see below, keeping the size of all coefficients as small
as possible is a primary goal.

942

I I

, 5. Pseudo-division for Polynomials over a UFD
It is ap arent that there are smaller (and larger) premulti-
pliers, 5 than the one defined in the pseudo-division lemma.
Now the pseudo-division lemma is the best that one can do in
general for polynomials over a commutative ring with identity.
But be aware that the concept of 'smaller' referred to in the
pseudo-division example is inherited from the fact that 2 is
also a unique factorization domain (UFD). Recall, a UFD is
an integral domain which admits prime factorixationJ. Let U
denote a UFD. One can think .of U in U as being "smaller"
than U' in U if U is a divisor of U'. For the problem of pseudo-
division of polynomials a(s), b(s) in U[s] , what we seek is the
smallest premultiplier L, in U such that if there exist L in U
and q, r in U[s] satisfying,

Lb(s) =q(s)a(s)+r(s) anddegr(s) < dega(s),

then L, divides L and q + (s) , r.(s) in U [s] exist such that,
L, b(s) = q , (s) a (s) + r.(s) anddegr.(s) < dega(s).

The algorithm given next computes this L., q.Jf).and r,(s)
and is a distinct improvement over the pseudo-division lemma
given in [18] for our purposes in that it computes with smaller
numbers. It does so by exploiting the richer structure of poly-
nomial rings with coefficients from a UFD but at the cost of
both generality and GCD calculations. However, in the matrix
problems we consider this cost is unavoidable.

Algorithm M - Pseudo-diviuion of Polynomials over a UFD
Given two nonzero polynomials b(s) = bas" + bls"-' + . . . + b,
and a(s) = aOsm+alsm--l+. . .+a, in U(s] with m 5 n, this al-
gorithm computes the smallest L,, pseudo-quotient q,(s) , and
pseudo-remainder r,(s) as discussed above. It computes L,,

and r. s) directly by computing GCD's on the j2 . This
&%es "smr!Uer" numbers than first using the pseudo-ivision
algorithm [18] and then computin GCDs. Bigger numbers
cost more in GCD calculations an8 given the size of the in-
tegers encountered in polynomial matrix computations, e. .,
easily reater than 1000 di 'ts, this algorithm can save a su%-
s t a n d amount of time. $or simpler notation we drop the
'asterisk' subscript in the algorithm's definition.
BEGIN:

mnm t min (m,n - m)
g + GCD(bo,ao)
1 + a019
L t l
bo t bo/g
For I = 1 thru n - m Do

For j = i thru n - m Do

EndDo
For j = 1 thru min(mnm,n - m - i + 1) Do

EndDo

1 + a019
L c L * l
bi bilg

b j t bj * 1

bj+i-l t bj+i-1 - a j * bi

+- GCD(bi,ao)

EndDo
END
The algorithm terminates with the first n - m + 1 coeffi-
cients of b(s) overwritten according to &! b l , . . . , b,-m} +
{ q o , q l ? . . . , q n - m } and the remaining CO cients over wntten
according to bn-m+l,. . . , b,J +- {Po,. . . ,rm-l}.

Algorithm M - roof of Correctness
The informal lan
implements the forowing recursion for k = 0,1,, . . , n - m,

age description of Algorithm M basically

b(-')(s) = 4 s) ;
gk = gCd(cl0, br-'));

Observe that deg b(')(s) < deg b(k-l)(s) for k = 0 , 1 , . . . , n -n

because 1k bf-') = pk a0 (where b r) of course denotes the
leading coefficient of b (k)) . Hence, degb("-m)(s) < dega(s).
n o m the algorithm's definition we see that r,(s) = b(n-m)(s)
and L, = lk. Solving the recursion above we obtain

The algorithm therefore yields,

with L, in U and q,(s), r,(s) in U(s] . Thus the algorithm
indeed computes a &d solution; next we show that it is opti-
mal. Suppose there exist another L in U and q (s) , r(s) in V(s]
such that,

Lb(s) = q(s)a(s) + r(s) and degr(s) < dega(s).

Then by commutativity L, L b(s) = L L, b(s) implies,

(Lq,(s)- L,q(s))a(s) = L,r(s)- Lr,(s).

Since there are no divisors of zero in a UFD this gives,

Since deg(L. r(s) - Lr.(s)) 5 max{degr(s),degr,(s)} <
dega(s) it must be true that,

deg(Lq,(s) - L. q (s)) = -00,

and therefore L, q (s) = L q,(s) . By equating coefficients we
obtain,

For k = 0 we get loqo = Lpo and therefore lOJLp0. However,
from the defimtion of the algorithm lo and po are relatively
prime in U, or coprime, and 80 in fact lo(L. For k = 1 we get
lo l iq l = Lpi and therefore liI(@pl. Again, by construction
11 and pi are coprime and 80 11 I &. In general we have and
pk Coprime and lkqk = (&)pk 80 that for k = n - m we
obtain, L

lo * - - l , - m - l . 1,-ml

As a result l 0 . . . l n -,(L and therefore L.(L. QED
6. Pseudo-Euclidean Elimination

The introducton of a zero below the diagonal of a matrix A(s)
in M [Z [s]] can now be performed using Algorithm M. This
procedure we shall call pseudo-Euclidean elimination (PSEE)
for obvious reasons. Consider triangulsrizing the matrix:

9

-10s- 10 3s2 + s + 1 0
7.- 58 6s'- 1 4d2 -10

Pseudo-Euclidean elimination ields a matrix with first column
[7577325 0 O]', second column TO 89145 01' and last column,

- 4 3 6 0 5 ~ ~ + 771035' - 2341899 - 35190
P33(9)

-1351755~~ + 1373940~~ - 51025509 - 7152750

where p33(s) is given by,

3706425s' - 5 2 0 2 0 0 0 ~ ~ + 185321258' + 15671025s + 7152750.

This illustrates the main disadvantage of triangularization on
M Q[s]] performed over M[Z[s] -the coefficient growth of the

trix increases, this codcient growth continues unabated and
begins to erode the advantage of using integer arithmetic. Onc
approach to handle this new source of coefficient growth is
to remove the content of the current row after each pseudo-
Euclidean division step. It is better to remove the row con-
tent as soon as possible in this way rather than waiting due
to the cost of computing GCDs of large integers, neverthe-
less, we illustrate row content removal for the current example.
Factoring the above matrix into a left content-primitive form
CA HL(s) yields,

C A = (O 765 9 0 0") ,

PO I ynomials. As the number o tl rows and columns in the ma-

0 0 65025

and Hjq(s) equal to,

0 9905 - 4 8 4 5 ~ ~ + 8567s' - 26021s - 3910
9905 0 - 1 7 6 7 ~ ~ + 1796s' - 6670s - 9350

57s' - 80s3 + 2859' + 241s + 110 0 0

The superfluous left content of the matrix can therefore be dis-
carded since this is equivalent to multiplying it by c-' thereby
keeping the codcient size to a minimum. We empiasize that
CA is unimodular with respect to M [Q [s] but not with re-
spect to M [Z [s]] . We stress that up to t h e signs of the en-
tries across the rows I?: s) is the same matrix which would
have resulted had we emp I oyed row content removal after each
pseudo-Euclidean division step and that this is the more effi-
cient strate Note that the above polynomial matrix H' (s)
is nonsingug and in column integral-Hermite form and k a t
therefore the unique column monic-Hermite form of A (s) is
obtained directly from H:(s) as,

1 0 1767.' 17961' 1334a 1870
9901 9901 1981 1881

I 5 , +5s' + y + * Lo O s4-80rl

We see that PSEE provides an efficient tr im larization
procedure for M [Z [s]] but, strictly s eaking, PS& modified
with content factorization is not a v$d triangularization pro-
cedure for M [Z [s]] because content removal is not a unimod-
ular operation in M Z [s]] . On the other hand, augmenting

for M Q s and yields an efficient triangularization procedure
for Mi&\ by avoidin rational arithmetic while maintain-
ing integers of the smdes t possible magnitude throughout an
elimination.
7. Algorithms to Triangularize Polynomial Matrices

PSEE with content 5 actorization is a unimodular operation

Algorithm T - Column-Oriented !#iangularization of Polyno-
mial Matrices
Given an N x N nonsingular matrix A E M [Z [s]] , this al-
gorithm overwrites A with a triangular form obtruned by a
sequence of unimodular, elementary row operations. It avoids

rational arithmetic by using pseudo-division as defined in Algo-
rithm M in order to achieve maximum com utational efficiency
with minimum coac ien t growth. In adit ion, it further in-
hibits coefficient growth by factoring out the row content after
each pseudo-Euclidean division step. This algorithm operates
in a column oriented fashion by successively zeroin out the
entries in each column below the diagonal. This is sif,n pic-
torially below.

x x x x x x 1 x 5

(I I I)+(: I +(0" ; I).
Assume there exists a pre-defined function,

MinDegIndex(A, k) := argmin{degAI,k,. . . ,degAN,k},

which returns the index of the row of A whose kth entry is a
non-zero polynomial of lowest de ee among the rows t, k +
1 ,..., N } . If Ak,a(s) = A k + l , k r) = A N , k (s) 0, t en it
returns -00, the degree of the zero polynomial.
BEGIN:
For k = 1 thru N-1 Do
index t MinDegIndex(A, 1)
If index # -cm Then
Ak,. i-+ Ainde+,.
For n = k + l thru N Do

L ndlessLoop

(exchange rows k and index)

zero out all entries in column k below Ak,k)

denom + pseudo - remainder An,k, Ak,k)
A,,. t denom * A,,. - num * l k , .
An + A , /GCD{content(An,1) , . . . , c o n t e n t (A , , ~) }
If d'then exit EndlessLoop

num + pseudo - qUOtient(A,,k,Ak,k)

A n * A k
End 'Endles'sLoop

EndDo
EndIf

EndDo
End
Algorithm P - Principal Minor-Oriented Wangularization of
Polynomial Matrices
This algorithm is similar to the one above except it performs
the zeroing process in a leading principal minor oriented fash-
ion so that the algorithm consists of N - 1 stages where the
k x k leading principal submatrix is in a triangular form by the
end of the k'* stage. Furthermore, the algorithm employs an
additional substage which reduces the degrees of the polyno-
mial entries above the diagonal on the fly using pseudo-division
as in Algorithm 116. The order in which the degrees are reduced
is important and is based upon notions from [17] for trian-
gularizing matrices in M [Z] . The order is shown pictorially
below.

5 2 x 1 x l x x
5 2 x 1 0 1 2 1 (," I I IN ," ," J

J
4 5 6

2 2 x 5 0 0 0 5

The output matrix is in column inte ral Hermite form, not sim-
ply triangularized as in Algorithm !(but with the entries above
the diagonal of de ree less than the diagonal entry. Clearly,
the column monic-hermite form is easily obtained by left mul-
tiplication with the appropriate diagonal matrix of rational
numbers, a unimodular matrix with respect to M [Q [s]] .

944

BEGIN:
For k = 2 thru N Do
For n = 1 thru k - 1 Do

triangularize the k x k t h leading principal minor)
ff deg An,n > degAk,n Then Ak,. cf An,.
EndlessLoop
num t pseudoquotient(&,,, An,n)
denom e pseudoremainder(Ak,n, An,n)
Ak,. +- denom * Ak,. - num * A,,.
Ak. t Ak ,/GCD{content(Ak I) , . . . ,content(Ak,N)}
If h k

EndDo
For i = -1 thru -k + 1 step -1 Do

6 then Ak,. ++ A,,,. else Exit EndlessLoop
End E!ndlessLoop

p d u c e degs of abv diag polys in k x I C t h minor)
or j = i + 1 thru 0 Do
If degAk+i,k+j 2 degAk+j,k+j Then
num c pseudoquotient(Ak+i,k+j, Akk+j,kk+j)
denom t pseudoremainder(Ak+i,k+j, Akk+j,kk+j)
Ak+i,. +- denom * Akti,. - num * Ak+j,.
Ak+i,. + Ak+i,./

GCD{content(Ak+i,l), . . . , content(Ak+i,jv)}
EndIf

EndDo
EndDo

EndDo
End

We close this section by noting that in both Algorithm T
and Algorithm P each pseudo-Euclidean division step affects
the entire row and the row content is removed after each divi-
sion step. Alternatively, one could solve a scalar Bezout iden-
tity for each zero to be introduced using pseudo-division tech-
ni ues and then perform a single elementary row operation
fojowed by a single row content removal. However, the single
row content of the latter method will be much larger than any

, of the “elementary” row contents computed by Algorithm T
or Algorithm P. This makes the alternative method much less
attractive than at first glance in light of the fact that com-
puting the many “small” row contents is more efficient than
computing the single “large” row content.

8. Simulation Results
Simulations were performed to determine the average time re-

matrix, which ranged from 2 to 16 and the maximum degree
of its polynomial entries, chosen uniformly on [0, degreemax],
as de reemax ranged from 1 to 6.

‘fhese simulations were conducted on a Texas Intruments
Explorer I1 with 16 mb of physical memory and 128 mb of
virtual memory running at 40 MHz using the MACSYMA ver-
sion of our algorithms. The graphs represent the results of the
simulations averaged over 5 runs. The results indicate that
Algorithm T was moderately faster than Algorithm P in tri-
angularizing matrices up to 9 x 9. At that point Algorithm
T was still faster for triangularizing matrices with lower de-

polynomials, but slower in the higher degree polynomials.
his can be attributed to the fact that Algorithm P requires

leas memory during computations due to its substage which
reduces the de rees of the polynomials above the diagonal on
the fly. Therefore costly garbage collections, a technique of
freeing dynamically allocated memory, are reduced.

It appears that both of these algorithms run close to ex-
ponential time. The slopes of the semi-log plots of the tim-
ings increase slightly with increasing polynomial degree. The
maximum coefficient length was approximately the same for

each algorithm and the coefficient growth appears to be sub-
exponential with increasing matrix dimension. A 16 x 16 ma-
trix with degree 6 polynomials is the largest that has been
attempted with Algorithm P. It required 40 hours to triangu-
larize with the resulting matrix having a maximum coefficient
length of 2115 digits.

Although Algorithm T was faster than Algorithm P on
the smaller matrices, it did not have the overhead of putting ,

the matrix into a canonic form in the process; Algorithm P
transforms the input matrix into the canonic integral-Hermite
form as described earlier. The output matrix of Algorithm T
therefore requires the application of an auxilliary algorithm to
reduce the degree of the polynomial entries above the diagonal
in order to put it in strict integral-Hermite form. Of course this
is not necessary if one is only interested in rank information.

If one keeps in mind the fact that our simulation results
were run on full, random matrices, which tend to yield worst-
case performance, then these simulations indicate that our al-
gorithms in their current state are ideally suited for problems in
which max{m, a} 5 9. Such problems include many practical
control system designs, textbook problems in a classroom/lab
environment, and empirical error analyses involved in research
for alternative approaches to the machine computation of tri-
angular forms of polynomial matrices based on other arith-
metics such as floating-point or residue arithmetic [lo]. For
larger problems, our code can be modified in various ways to
yield approximate results in much less time while providing
some degree of error control. For instance, after the integer
coefficients have reached a certain prespecified maximum size,
the triangularization can be interrupted momentarily and the
matrix A(s) in M[Z[s]J at its current state of triangularization
can be converted to an associated matrix A’(s) in M[Q[s]] by
premultiplication with a diagonal matrix in M[Q]. The matrix
A’(s) can then be “floated” to any desired decimal precision
and then re-expressed as a matrix in M[Q[s]] and finally con-
verted back to M [Z [s]] to continue the triangularization. An
ad hoc technique such as this is certainly approximate but if
done properly can yield better results than the ad hoc floating-
point techniques currently used. Refinements of this idea for
Algorithm P with error bounds and simulation results will be
appear elsewhere. We also compared our Hermite algorithm to
the built-in Hermite algorithm included with the Scratchpad
I1 and Maple computer algebra packages. On a 5 x 5 exam-
ple generated randomly as above our code ran over 100 times
fast er.

9. Summary of Functions
The following is a summary of the high-level auxiliary pro-

grams which we have to date implemented in MACSYMA and
Mathematicu. They perform most of the common, high-level
tasks arising in the frequency-domain approach to control sys-
tem synthesis.

RightMatriiFraction(H(s)) - Computes a right ma-
trix fraction description of the transfer function matrix
H (s) , i.e., computes the matrices N (s) , D (s) such that
H(s) . = N (s) D(s)-’. The LeftMatrixFraction descrip-
tion is analogously computed.
Bezout(N(s),D(s)) - Finds the homogenous and par-
ticular solutions to the Bezout equation, i.e., finds
polynomial matrices x h (s) , Yh(s) , X p (s) , q (s) such that
XA(S) D (s) + Yi(s) N (s) = 0 and X p (s) D(s) f
Yp(s) N(s1 = I. Used for designing feedback compen-
sators in t e frequency domain.
ColumnReduce(D(s) - Column reduces the polynomial
matrix D(s) , i.e., mu 1 tiplies D(s) by an a propriate uni-
modular matrix such that the matrix of leaing Coefficients
of its entries is nonsingular. Rowbduce is analogously
computed.
Controller(H(s)) - Finds a controller form realization
of the transfer function matrix H (s) . Controllability, Ob-
server and Observability realizations are analogously com-
puted.
Hermite(N(s)) - Finds the canonic column Hermite
form of the polynomial matrix N (s) .

945

0 RightCoprime(N(s), D(s)) - Determines the greatest
common right divisor of the polynomial matrices N (s) and
D(s) . If it is not unimodular, it is factored out of both ma-
trices making them ri ht coprime. Used for finding mini-
mal realizations. Left toprime is analogously computed.
Smith(N s) - Finds the Smith form of the polynomial
matrix NISI. This is a canonic, diagonal form of a poly-
nomial matrix.

0 SmithMcMilZan(H(s)) - Finds the Smith-McMillan
form of the rational transfer function matrix H (s) . This
is a canonic, rational, diagonal form of a matrix whose
entries are ratios of polynomials.

Acknowledgements: This research was supported in part by
NSF grant NSF CDR-8803012 under the Engineering Research
Centers Program, and AFOSR University Research Initiative
grant 87-0073. David MacEnany was partially supported by
an IBM Fellowship.

10 .References
[l] Baras, J.S., D.C. MacEnany and R.L. Munach “Fast

Error-Free Algorithms for Polynomial Matrix Computa-
tions” Report SRC TR 90-14, Systems Research Center,
University of Maryland, College Park, MD

[2] Bareiss, E.H. “Computational Solutions of Matrix Prob-
lems over an Integral Domain” J. Inst. Maths Applics ._
V10, 69-104, 1972-

[3] Bareiss, E.H. “Sylvester’s Identity and Multistep Integer-
Preserving Gaussian Elimination” Math. Comp. V22,
565-578, 1968

[4] Brown, ’W.S. “On Euclid’s Algorithm and the Computa-
tion of Polynomial Greatest Common Divisors” J. ACM

[5] Brown, W.S. and J.F. Traub “On Euclid’s Algorithm and
the Theory of Subresultants” J. ACM V18 (4) 505-514
Oct 71

[6] Buchberger, B. & G.E. Collins et a1 (eds.) Computer
Algebra: Symbolic and Algebraic Computation Wein:
Springer ,1982

[7] Chou, T.J. and G.E. Collins “Algorithms for the Solution
of Systems of Linear Diophantine Equations” Siam. J.

181 Collins, G.E. “Subresultants and Reduced Polynomial Re-
mainder Sequences” J. ACM V14 (1) 128-142 Jan 67

[9] Gantmakher, F.R. Theory ofMatrices New York: Chelsea,
1959

[lo] Gregory, R.T. and E.V. Krishnamurthy Methods and Ap-
plications of Error-Free Computation Berlin: Springer,
1984

[11] Hartley, B. and T.O. Hawkes Rings, Modules and Linear
Algebra London: Chapman and Hall, 1970

(121 Holmberg, U. “Some MACSYMA Functions for Anal-
ysis of Multivariable Linear Systems” Technical Re-
port CODEN:LUTFD2/(TFRT-7333)/1-040/(1986), De-
partment of Automatic Control, Lund Institute of Tech-

13 Hungerford, T.W. Algebra Berlin: Springer, 1974
14 Kailath, T. Linear Systems Englewood Cliffs: Prentice-

Hall, 1980
[15] Kaltofen, E. & S.M. Watt (eds.) Computers and Mathe-

matics Berlin: Springer, 1989
[16] Kannan, R. “Solving Systems of Linear Equations over

Polynomials” Report CMU-CS-83-165, Dept. of Comp.
Sci., Carnegie-Mellon University, Pittsburgh, 1983

[17] Kannan, R. and A. Bachem “Polynomial Algorithms for
Computing the Smith and Hermite Normal Forms of an
Integer Matrix” Siam. J. Comp. V8 (4) 499-507 Nov 79

[18] Keng, H.L. Introduction to Number Theory Berlin:
Springer, 1982

[19] Knuth, D.E. The Art of Computer Programming, V2
Reading, Mass: Addison Wesley,l981

[20] Krishnamurthy, E.V. Error-nee Polynomial Matrix Com-
putations Berlin: Springer, 1985

V18 (4) 478-504 Oct 71

COWZP. V11 (4) 687-708 NOV 82

~ nology, October 1986

Lipson, J.D., Elements of Algebra and Algebraic Comput-
ing Reading: Addison-Wesley, 1981
MacDuffee, C.C. The Theory of Matrices New York:
Chelsea, 1950
McClellan, M.T. “The Exact Solution of Systems of Linear
Equations with Polynomial Coefficients” J. ACM V20 (4)

Newman, M. Integral Matrices New York: Academic
Press, 1972

563-588 Oct 73

Vidyasagar, M., Controi System Synthesis Cambridge:
MIT Press, 1985
Wolovich, W.A., Linear Multiva.riabJe Systems Berlin:
Springer, 1974

Maximum Coefficient Length (# or digils) - Minor oriented
Algorithm

Polynomial Degrees 1 lhru 6

Time to Triangulnrirt (sec) . Minor Orienlrd Algorilhna
Polvnominl Dterrer 1 lhru 6

946

