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Abstract

Matrices of polynomials over rings and fields provide a unify-
ing framework {%r many control system design problems. These
include dynamic compensator design, infinite dimensional sys-
tems, controllers for nonlinear systems, and even controllers
for discrete event systems. An important obstacle for utilizing
these powerful matﬁematical tools in practical applications has
been the non-availability of accurate and efficient algorithms
to carry through the precise error-free computations required
by these algebraic methods. In this paper we develop highly
eéﬁcient, error-free algorithms, for most of the important com-
putations needed in linear systems over fields or rings. We
show that the structure of the underlying rings and modules is
critical in designing such algorithms.
1. Introduction

The theory of polynomial matrices [9,22,24] plays a key role
in the frequency-domain approach to the synthesis of multi-
ple input multiple output control and communication systems
[14,25,26]). Examples include coprime factorizations of trans-
fer function matrices, canonical realizations obtained from ma-
trix fraction descriptions, design of feedback compensators and
convolutional coders, and the analysis of quantization effects
in linear systems. Typically, such problems abstract in a nat-
ural way to the need to solve systems of generalized Diophan-
tine equations, e.g., the so-called Bezout equation {7,16,20,23].
These and other problems involving polynomial matrices re-
quire efficient polynomial matrix triangularization procedures
[17], a result which is not surprising given the importance of
matrix_triangularization techniques in numerical linear alge-
bra. There, matrices with entries from a field can be_tri-
angularized using some form of Gaussian elimination, How-
ever, polynomial matrices have entries from a polynomial ring,
an algebraic object for which Gaussian elimination is not de-
fined. For matrices with entries from a polynomial ring which
is Euclidean—the kind encountered most often in control the-
orﬁ' applications—triangularization is accomplished instead by
what is naturally referred to as Euclidean elimination. Un-
fortunately, the numerical stability and sensitivity issues of
Euclidean elimination are not well understood and in practice
floating-point arithmetic has yielded poor results. At present,
a reliable numerical algorithm for the triangularization of poly-
nomial matrices does not exist.

This paper presents algorithms for polynomial matrix tri-
angularization which entirely circumvent the numerical sensi-
tivity issues of floating-point methods through the use of exact,
symbolic methods from computer algebra [6,15,21]. Often one
encounters the comment that since in practical problems the
numerical coefficients are rarely known very precisely, error-
free methods are an unecessary ¥orm of computational overkill.
This is a misconception. The accuracy to which we know the
coeflicients is not the issue. The real issue is to what extent
we can perform the required computations within the accuracy
of the model data. Existing floating-point methods are poor,
highly sensitive and often lead to large errors, essentially since
they suffer from the same problems as computing zeroes of
t)olynom.ia.ls. The use of exact, error-free algorithms guaran-

ees that all calculations are accurate to within the precision of

the model data—the best that can be achieved. Furthermore,
one can calculate with such algorithms the exact sensitivities
involved and therefore judge appropriately the confidence one
should place on the results. Previous computer algebra algo-
rithms for polynomial matrix problems appearing in control
systems have been reported in [12]. Their performance was
very slow even on small size problems.
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We place emphasis on efficient algorithms to compute ez-
act Hermite forms of polynomial matrices. The triangular, or
more correctly, trapezoidal Hermite form is defined for any ma-
trix with entries from a principal ideal ring [22,24]. Such ma-
trices arise in many practical problems in communications and
control. Here we shall focus on matrices having entries which
are polynomials with rational coefficients, although our results
easily abstract to more general settings [1]. An important as-
pect of the exact triangularization of such matrices involves the
choice of arithmetic. We consider the tradeoffs between ratio-
nal and integer arithmetic and choose the latter. This choice
leads us to consider algorithms for the division of polynomials
over a unique factorization domain (UFD). The standard al-
gorithm for this task is well-known é,5,8,19] and defined more
generally for polynomials with coefficients from any commu-
tative ring with identity. This algorithm is well-suited to the
scalar problem of GCD computation of polynomials over UFDs
since it avoids the computation of GCDs of the coefficients. In
the context of polynomial matrix triangularization however, it
becomes unavoidable to exploit the richer structure of the co-

* efficient ring: the fact that GCDs are defined on a UFD. As

a result we present an alternative to the standard algorithm
specialized to polynomials over UFDs but enjoying a certain
optimality property which is crucial to the efficiency of matrix
triangularization procedures.

We have implemented algorithms to compute exact Her-
mite forms of polynomial matrices in the MACSYMA and
Mathematica computer algebra languages. We have also writ-
ten a suite of auxiliary programs which call on these triangu-
larization procedures in order to perform the more high-level
tasks arising in the frequency-domain approach to control sys-
tem synthesis. We conducted simulations with MACSYMA
code running on Texas Instruments Explorer II and give per-
formance results for the triangularization of polynomial matri-
ces.

2. Facts And Terminology of Polynomials
and Polynomial Matrices

In this section we use some standard terminology from
modern algebra [11,13]; see also [1]. Denote by @Q[s] the ring
of polynomials in the sndeterminate ‘s’ with coefficients drawn
from the field of rational numbers, . The subring Z[s] of
Q[s] results when the polynomial coefficients are restricted to
lie in Z, the ring of integers. A polynomial a(s) in Z[.sl:‘is
called primitive if its coefficients are relatively prime in Z. For
any a(s) in Z[s], there exists a non-zero scalar ¢, in Z, unique
up to its sign, and a primitive polynomial pe(s) in er}, such
that a(s) = ¢, - pa(s). With slight imprecision ¢, is called the
content of a(s) and p,(s) its primitive (with respect to ¢;).
A collection of polynomials in Z{s] having contents which are
relatively prime we call relatively primitive.

Denote by M[Q[s]] the collection of m x n matrices with
entties from Qés]' we call A(s) in M[Q/s]] a polynomial matriz.
Similarly, M| [sj] will denote the subset of M &?[s]] when the
entries are restricted to lie in Z[s]. We say that a row of a
polynomial matrix A(s) in M(Z[s]] is primative if its polyno-
mial entries are relatively primitive. We call A(s) row geft
primitive, if every row is primitive. For any A(s) in M{Z[s]],
there exists a diagonal matrix C4 in M[Z] and a row primi-
tive matrix PAés) in M[Z[s]] such that A(s) = Cy - Pa(s); we
call the pair ( A,PAaSs) a left content-primitive factorization
of A(s). The diagonal elements of C4 are the row contents of



the respective rows of A(s). By analogy with the scalar case,
content-primitive factorization is obviously unique only up to
the choice of the signs of the row contents.

For every m x n polynomial matrix A(ls} in M[Q[s]] there
exists a unimodular matrix U(s) such that U(s) A(s) = Ha(s)
with H4(s) an upper triangular (trapezoidal) matrix satisfying
the following conditions:

1. Each entry below the diagonal is identically zero;

2. Each nonzero diagonal entry has degree greater than

the entries above i1t;

3. Each diagonal entry is monic.
We say that H4(s) is a column monic-Hermite form of A(s).
A column integral-Hermite form can be defined in terms of the
column monic-Hermite form. Letting H4(s) denote a column
monic-Hermite form for A(s) in M{Q[s]], multiply each row of
H 4(s) with the respectively smallest positive integer such that
the matrix H!;(s) so obtained is in M[Z[s]]. Clearly, H',(s) is
row primitive and row equivalent to A(s). Conversely, suppose
that one is given H)j(s) satisfying conditions (1) and (2) above
which is row primitive and row equivalent to A(s). Divide
each row of H'(s) by the leading coefficient of the polynomial
on the diagonal of the respective row and call the matrix so
obtained H4(s). Then clearly there exists U(s) unimodular
such that U(s)A(s) = Ha(s) and H4(s) is a monic-Hermite
form of A(s). This concept of column integral-Hermite form
%ives a triangular form in M(Z([s]] for each matrix in M[Q]s]].
f A(s) is nonsingular then it can be shown that its monic-
Hermite form is unique and therefore its integral-Hermite form
is also unique.

3. Triangularizing Polynomial Matrices

The upper triangularization of matrices with entries from
a field using a sequence of non-singular (invertible) elemen-
tary row operations plays a key role in the application of the
theory of vector spaces. Likewise, the upper triangularization
of matrices with entries from a ring using a sequence of uni-
modular elementary row operations plays a key role in the
application of the theory of vector modules. Computing tri-
angular (trapezoidal) forms of matrices can be accomplished
on any matrix modulé of the form M(R] where R is an in-
tegral domain, i.e., a commutative ring with identity having
no zero divisors [2,3,18]. However, this cannot in general be
accomplished using only unimodular (i.e., invertib%e) opera-
tions. Nevertheless, the transformation to an upper triangu-
lar form using unimodular elementary row operations can be
performed quite straightforwardly—in theory at least—on any
matrix with entries from the type of integral domain called
a Buclidean ring, for instance on a matrix from M[Q[s]]. The
key feature that Euclidean rings enjoy is the Euclidean division
property which we state for Qs]. Given polynomials a(s), bgs)
1 5[3 with dega(s) < degb(s) there exist two unique poly-
nomials, the quotient ¢(s) and the remainder r(s), such that
b(s) = gq(s) a(s) + r(s) and degr(s) < dega(s). The fact
that the inequality on the degrees of a(s) and r(s) is strict
allows one to introduce a zero into a polynomial matrix using
elementary operations. The use of this process to introduce
zeroes into polynomial matrices we call Fuclidean elimination
by analogy with Gaussian elimination.

4. Integer vs Rational Arithmetic

In a Euclidean elimination polynomials of the form d(s) —
4(s) ¢(s) with ¢, d, q in Q[s] arise. To calculate the coefi-

cients ot these forms one encounters the generic computation
a+ By with a,8,7 in Q. If these rationals are expressed as

ratios of integers o = %;, B = %’;, ¥ = -g—;'-, all reduced to
lowest terms, then
N« DP D74+ NP NY D>

D« D8 D

at+yé=

This computation requires six integer multiplications, one in-
teger addition and the calculation of a GCD. Although there
are more efficient methods [18], it remains a fact that rational
arithmetic is computationally expensive, due in large part to
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the need for GCD calculations. On the other hand, if it can be
arranged so that «, # and 7 are all integers, then the same com-
putation obviously requires only two integer multiplications,
one integer addition and no GCD calculation. Thus, our goal
is to carry out matrix triangularization on M[Q[s]] using only
integer arithmetic. Clearly, by multiplying each row of any
A(s) in M[Q]s]] by a large enough integer, the denominators
of every coefficient of every entry of A(s) can be cancelled and
such a diagonal operation is certainly unimodular in M[Q]s]].
Again, this computation can be arranged more efficiently but
because it involves a fixed overhead, assume for convenience
that A(s) is given in M[Z[s]].

Unfortunately, this creates new difficulties because Eu-
clidean elimination is not defined for M[Z[s]] since Z[s] is not
a BEuclidean ring. For instance, it is easy to see that the re-
mainder of two polynomials in Q[s] with integer coefficients
has, in general, rational coefficients; consider the remainder of
2s after division by 3s — 1. In other words, Euclidean divi-
sion is not defined for Z[s]. However, Z[s] is an instance of a
polynomial ring with coefficients from a commutative ring with
identity and for such a ring one has the pseudo-division lemma,
a natural generalization of the Euclidean division lemma. Let
C denote a commutative ring with identity. Given a(s) and
b(s) in C[s] with deg a(s) < deg b(s) there exist two polynomi-
als, the pseudo-quotient g(s) and the pseudo-remainder r(s),
such that Lb(s) = g¢(s)a(s) + r(s) and degr(s) < dega(s)
where the premultiplier L = ages bodegatl with aq denoting the
leading coefficient of a(s). The pseudo-quotient and pseudo-
remainder are unique if C is also an integral domain. The
proof of the pseudo-division lemma yields a division procedure
called pseudo-division which like Euclidean division enjoys the
all-important strict degree reduction property; see [18f for the
standard pseudo-division algorithm.

Let’s consider an example in which we wish to pseudo-

divide b(s) by a(s) where,
b(s) =% 4% -3s*-324+824+25—5

and a(s) = 3s% + B5st — 452 — 9s + 21.

Applying the standard pseudo-division algorithm one obtains,
27b(s) = (9s% — 6) a(s) + (~15s* + 3s% — 9),

e, L =385 =27 ¢(s) = 9s—6 and r(s) = —15s*+3s2-9.
This example appears in [18] as one step in the task of com-
puting the GCD of b(s) and a(s). The next step is to divide
out the content of r(s) and then compute the GCD of a(s) and
pr(s) exploiting the fact that ged((s), a(s)) = ged(a(s), pr(s)).
The purpose of this content removal s to keep the size of the
coefficients small for purposes of efficiency in succeeding cal-
culations. However, consider the above computation in the
context of a matrix triangularization—a 2 X 2 example will
suffice:

( 1 0) (a(s) o(s)\ _ (a(s) () )
—q(s) L) \b(s) d(s) r(s) Ld(s)—g(s)e(s) )
In this situation we see that we are not at liberty to blindly di-
vide the entire second row by the content of r(s) (or any integer
for that matter) because it may introduce rational coefficients
in the (2’221 entry and thereby ruin our attempt to maintain

integer arithmetic. However, note that another solution to the
above pseudo-division example is,

9(s) = (3s* —2)a(s) + (=5s* + s* - 3),

i.e., L = 27 is not necessarily the smallest premultiplier for
which a “pseudo-quotient” and “pseudo-remainder” exist. Ob-
viously, in the matrix case, “L = 9” yields better results than
L = 27 since it yields smaller coefficients in the second row. Of
course in this example the difference is negligible, however, if
the size of the leading coefficient of a(s) is large, the difference
in computational burden can be quite substantial. Moreover,
as we shall see below, keeping the size of all coefficients as small
as possible is a primary goal.
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5. Pseudo-division for Polynomials over a UFD

It is apparent that there are smaller (and larger) premulti-
pliers, L, than the one defined in the pseudo-division lemma.
Now the pseudo-division lemma is the best that one can do in
general for polynomials over a commutative ring with identity.
But be aware that the concept of ‘smaller’ referred to in the
pseudo-division example is inherited from the fact that Z is
also a unique factorization domain (UFD). Recall, a UFD is
an integral domain which its prime factorizations. Let U
denote a UFD. One can think of u in U as being “smaller”
than u’ in U if v is a divisor of u’. For the problem of pseudo-
division of polynomials a(s), b(s) in U[s], what we seek is the
smallest premultiplier L, in U such that if there exist L in U
and ¢, r in U[s] satisfying,

Lb(s) = g(s) a(s) + r(s) and degr(s) < dega(s),

then L, divides L and g,.(s), r.(s) in U[s] exist such that,
L. b(s) = g.(3) a(s) + re(s) and degr.(s) < dega(s).

The algorithm given next computes this L,, ¢,(s) and r.(s)
and is a distinct improvement over the pseudo-division lemma
given in [18] for our purposes in that it computes with smaller
numbers. It does so by exploiting the richer structure of poly-
nomial rings with coefficients from a UFD but at the cost of
both generality and GCD calculations. However, in the matrix
problems we consider this cost is unavoidable.

Algorithm M - Pseudo-division of Polynomials over a UFD
Given two nonzero polynomials b(s) = bys™ + bys" 1 +--- +b,
and a(s) = ags™+a; 3™~ +...+am in U(s] with m < n, this al-
gorithm computes the smallest L., pseudo-quotient ¢.(s), and
pseudo-remainder r,(s) as discussed above. It computes L,,
q.(s}, and r,(s) directly by computing GCD’s on the fly. This
involves “smaller” numbers than first using the pseudo—tfivision
algorithm [18] and then computing GCDs. Bigger numbers
cost more in GCD calculations ang given the size of the in-
tegers encountered in polynomial matrix computations, e.g.,
easily aﬁreater than 1000 digits, this algorithm can save a sub-
stantial amount of time. ¥For simpler notation we drop the
‘asterisk’ subscript in the algorithm’s definition.

BEGIN:
mnm — min (m,n — m)
g — GCD(by,a0)
l—ap/g
—
bo — bo/g
For i =1 thru n — m Do
For j =1 thru n —m Do
EndDo
For j =1 thru min (mnm,n —m —i+ 1) Do
bitio1 +— bjpi-1 —a;*b;

EndDo
g — GCD(b;,ay)
le—ag/g
et
i — bifg
EndDo
END
The algorithm terminates with the first n — m + 1 coeffi-
cients of b(s) overwritten according to {bo,b1,...,dn-m}
{90591, 19n—m} and the remaining coefficients over written
according to {ba—m41,... ,b,.} — {roy...,rm-1}.
lgorithm M - Proof of Correciness

The informal la.nﬂmge description of Algorithm M basically
o

implements the following recursion for k = 0,1,...,n —m,

KD(s) = b

g = ged(ao, b V);
k= a?!_gﬂ;
Pk = bo /gk;
b(“)(s) = U ¥ 1(s) — py als).

Observe that deg 5(*)(s) < degb*~V(s) for k = 0,1,...,n—m

because Ii bf,k_l) = pi ap (where bgk) of course denotes the

leading coefficient of b(*)). Hence, deg b ™)(s) < dega(s).
From the algorithm’s definition we see that r,(s) = 5("~™)(s)
and L, = [J;_;" k. Solving the recursion above we obtain

b*=™)(g) = L,b(s) — gu(s)a(s)
where
q.(s) = (Poll cdpems" ™ Pn—ru—lln—vm9 +Pn—m)-
The algorithm therefore yields,
n—m L- o
0(s) = k}; (_Lo t.~> pes™ ™k,
whence,
L, 5(s) = gu(s) a(s) +14(5)
with L, in U and g,(s), re(s) in U[s]. Thus the algorithm
indeed computes a valid solution; next we show that it is opti-

mal. Suppose there exist another L in U and g(s), r(s) in Uls]
such that,

L¥(s) = q(s)a(s) +r(s)
Then by commutativity L. L b(s) = L L, b(s) implies,
(Lgu(s) — L. g(s)) a(s) = Lur(s) = Lru(s).

and  degr.(s) < dega(s),

and

degr(s) < dega(s).

Since there are no divisors of zero in a UFD this gives,
deg(L gu(s) — La q(s)) + deg a(s) = deg(L. r(s) — Lra(s))-

Since deg(L.r(s) — Lr.(s)) <
dega(s) it musi(; be true that,

deg(L gs(s) — L. g(8)) = —oo,

and therefore L, q(3) = L q.(s). By equating coefficients we
obtain,

L kL‘ pr=L.gi k=0,1,...,n—m,
ni=ol"

so that,

max{deg r(s),degr.(s)} <

k
qk Hl.-=mL k=0,1,...,n~m.

=0

For k = 0 we get logo = Lpp and therefore lp|Lp,. However,
from the defimition of the algorithm Iy and py are relatively
prime in U, or coprime, and so in fact ly|L. For k = 1 we get
lolyg1 = Lp, and therefore !; |(1%)P1~ Again, by construction
1, and p, are coprime and so l,l-,%. In general we have I, and
P& coprime and lyqx = (T;—%:')P" so that for k = n —m we
obtain, L

ln— .
" m|ID "'In—-m-]

As aresult ly:--ly_m|L and therefore L.|L.

6. Pseudo-Euclidean Elimination
The introducton of a zero below the diagonal of a matrix A(s)
in M[Z[s]] can now be performed using Algorithm M. This
procedure we shall call pseudo-EFuclidean elimination (PSEE)
for obvious reasons. Consider triangularizing the matrix:

QED

1 8 3
A(s) = 455 -10s—10 3s>+s+10 ).
7-5s 651 44 10



Pseudo-Euclidean elimination yields a matrix with first column
[7577325 0 0)', second column [0 89145 0]’ and last column,

~1351755s% + 137394052 — 51025505 — 7152750
—43605s> + 7710352 — 2341893 — 35190 ,
P33(s)

where p33(s) is given by,
3706425s* — 5202000s° + 1853212552 + 156710255 + 7152750.

This illustrates the main disadvantage of triangularization on
M [Q[s]] performed over M[Z [s]tJ~the coefficient growth of the
polynomials. As the number of rows and columns in the ma-
trix increases, this coefficient growth continues unabated and

begins to erode the advantage of using integer arithmetic. Onc -

approach to handle this new source of coefficient growth is
to remove the content of the current row after each pseudo-
Euclidean division step. It is better to remove the row con-
tent as soon as possible in this way rather than waiting due
to the cost of computing GCDs of large integers, neverthe-
less, we illustrate row content removal for the current example.
Factoring the above matrix into a left content-primitive form

Ca H)(s) yields,
75 0 0
Ca=| 0 9 0 )
0 0 65025

and H/,(s) equal to,

9905 0
0 9905
0 0

—1767s% 4+ 179652 — 6670s — 9350
—4845s® + 8567s% — 26021s — 3910 | .
57s% — 80s° + 28552 + 2415 + 110

The superfluous left content of the matrix can therefore be dis-
carded since this is equivalent to multiplying it by C3* thereby
keeping the coeffcient size to a minimum. We emphasize that
C4 is unimodular with respect to M[Q[s]] but not with re-
spect to M([Z[s]]. We stress that up to the signs of the en-
tries across the rows H,’iss) is the same matrix which would
have resulted had we employed row content removal after each
pseudo-Euclidean division step and that this is the more effi-
cient strategy. Note that the above polynomial matrix H',(s)
is nonsingular and in column integral-Hermite form and that
therefore the unique column monic-Hermite form of A(s) is
obtained directly from H',(s) as,

1 0 -i67s% | 1796e% 13345 _ 1870

9905 9905 1981 ~ 1¢81

— _ 969+ | 836752 _ 260218 782
Hu(s)=10 1 To81 T 9905 — 9905 — 195

00 34—%+532+%+%

We see that PSEE provides an efficient triangularization
procedure for M[Z]s]] but, strictly speaking, PSEE modified
with content factorization is not a valid triangularization pro-
cedure for M[Z[s]] because content removal is not a unimod-
ular operation in M}Z [s]l. On the other hand, augmenting
PSEE with content factorization is a unimodular operation
for M[Q[s]] and yields an eficient triangularization procedure
for M|Q]s|] by avoiding rational arithmetic while maintain-
ing integers of the smallest possible magnitude throughout an
elimination.

7. Algorithms to Triangularize Polynomial Matrices

Algorithm T - Column-Oriented Triangularization of Polyno-
mial Matrices

Given an N x N nonsingular matrix 4 € M [Z[s]), this al-
gorithm overwrites A with a triangular form obtained by a
sequence of unimodular, elementary row operations. It avoids

" rational arithmetic by using pseudo-division as defined in Algo-

rithm M in order to achieve maximum computational efficiency
with minimum coefficient growth. In addition, it further in-
hibits coefficient growth by factoring out the row content after
each pseudo-Euclidean division step. This algorithm operates
in a column oriented fashion by successively zeroing out the
entries in each column below the diagonal. This is sﬁown pic-

torially below.
x T x r T T
=10 2z z}—>1{0 z z}.
0 z =z 0 0 =«

Assume there exists a pre-defined function,
MinDeglIndez(A, k) := argmin{deg 4, 1, . .,deg AN},

8 8 8
8 8 8
8 8 8

which returns the index of the row of A whose k** entry is a
non-zero polynomial of lowest de, among the rows {k,k +
1,...,N}. K A p(s) = Ak+1,k s) = AN,k(3) = 0, then it
returns —oo, the degree of the zero polynomial.

BEGIN:
For k = 1 thru N-1 Do
indez — MinDegIndez(A, k)
If indez #£ —oo Then
Ay, & Ainges,, (exchange rows k and indez)
For n =k +1 thru N Do
gero out all entries in column k below Ag k)
ndlessLoop
num « pseudo — quotient(A, x, Ai i)
denom « pseudo ~ remainder Anky Ark)
Ay, —denom* A, — num * 5,
Ap, — Ap, /GCD{content(A,,),... ycontent(Aq n)}
HA,;,= 0 then exit EndlessLoop
An,. had Ah,.
End EndlessLoop
EndDo
EndIf
EndDo
End

Algorithm P - Principal Minor-Oriented Triangularization of
Polynomial Matrices

This algorithm is similar to the one above except it performs
the zeroing process in a leading principal minor oriented fash-
ion so that the algorithm consists of N — 1 stages where the
k x k leading l;.)rincipal submatrix is in a triangular form by the
end of the k** stage. Furthermore, the algorithm employs an
additional substage which reduces the degrees of the polyno-
mial entries above the diagonal on the fly using pseudo-division
as in Algorithm M. The order in which the degrees are reduced
is important and is based upon notions from [17] for trian-
gula.rizing matrices in M[Z]. The order is shown pictorially

elow.

r z z z x 1 z =z
Tz z z| | 0 =z z =z
x xr T T xr x x x
x T 4 T x x Tz T
v
z 2 3 = z 4 5 6
0 2 1 =z R 0z 2 3
0 0 z = 00 =z 1
T z T z 0 0 0 =

The output matrix is in column integral-Hermite form, not sim-
ply triangularized as in Algorithm T, but with the entries above
the diagonal of degree less than the diagonal entry. Clearly,
the column monic-%lermite form is easily obtained by left mul-
tiplication with the appropriate diagonal matrix of rational
numbers, a unimodular matrix with respect to M[Q[s]].
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BEGIN:

For k = 2 thru N Do

For n =1 thru £ — 1 Do
gtriimgularize the k x k** leading principal minor)
f deg An,n > deg Az,n Then Ay & A,

EndlessLoop

num « pseudoquotient(Ag,n, Ann)

denom « pseudoremainder(Agn, An,n)

Ay, — denom * Ay, —~ num A,

Ak, — Ag, [GCD{content(Ax,),. .. ,content(Ax,n)}
If Apn # 0 then Ax,. & An, else Exit EndlessLoop
End EndlessLoop

EndDo
For i = —1 thru —k + 1 step —1 Do
geduce degs of abv diag polys in k x k' minor)
or j =i+ 1 thru 0 Do
If deg Ak+i,k+j Z deg Ak+j,k+j Then
num « pseudoquotient(Axti ktj, Akk+jkksj)
denom — pseudoremainder(Axti ktj, Akk+jkkti)
Ag4i, — denom * Apyi —num * Agyj,.
Apti, & Axti,./
GCD{content(Arsi;),. . ., content(Ar+iv)}
EndIf
EndDo
EndDo
EndDo
End
We close this section by noting that in both Algorithm T
and Algorithm P each pseudo-Euclidean division step affects
the entire row and the row content is removed after each divi-
sion step. Alternatively, one could solve a scalar Bezout iden-
tity for each zero to be introduced using pseudo-division tech-
niques and then perform a single elementary row operation
followed by a single row content removal. However, the single
row content of the latter method will be much larger than any
_of the “elementary” row contents computed by Algorithm T
or Algorithm P. This makes the alternative method much less
-attractive than at first glance in light of the fact that com-
puting the many “small” row contents is more efficient than
computing the single “large” row content.

8. Simulation Results

Simulations were performed to determine the average time re-
quired to triangularize a square polynomial matrix and the
maximum coefficient length of the output matrix using both
Algorithm T and Algorithm P (see attached graphs). The max-
imum coefficient length is the number of digits of the largest
(in absolute value) coefficient appearing in any polynomial en-
try of the output matrix. Each matrix had polynomial en-

" tries with randomly generated integer coefficients uniform on
[—99,99). Runs were parameterized by the dimension of the
matrix, which ranged from 2 to 16 and the maximum degree
of its polynomial entries, chosen uniformly on [0, degreemax],
as degreemax ranged from 1 to 6.

’f“hese simulations were conducted on a Texas Intruments
Explorer IT with 16 mb of physical memory and 128 mb of
virtus] memory running at 40 MHz using the MACSYMA ver-
sion of our algorithms. The graphs represent the results of the
simulations averaged over 5 runs. The results indicate that
Algorithm T was moderately faster than Algorithm P in tri-
angularizing matrices up to 9 X 9. At that point Algorithm
T was still faster for triangularizing matrices with lower de-

ree polynomials, but slower in the higher degree polynomials.
&‘his can be attributed to the fact that Algorithm P requires
less memory during computations due to its substage which
reduces the degrees of the polynomials above the diagonal on
the fly. Therefore costly garbage collections, a technique of
freeing dynamically allocated memory, are reduced.

It appears that both of these algorithms run close to ex-
ponential time. The slopes of the semi-log plots of the tim-
ings increase slightly with increasing polynomial degree. The
maximum coefficient length was approximately the same for
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each algorithm and the coefficient growth appears to be sub-
exponential with increasing matrix dimension. A 16 x 16 ma-
trix with degree 6 polynomials is the largest that has been
attempted with Algorithm P. It required 40 hours to triangu-
larize with the resulting matrix having a maximum coefficient
length of 2115 digits.

Although Algorithm T was faster than Algorithm P on -
the smaller matrices, 1t did not have the overhead of putting :
the matrix into a canonic form in the process; Algorithm P
transforms the input matrix into the canonic integral-Hermite
form as described earlier. The output matrix of Algorithm T'
therefore requires the application of an auxilliary algorithm to
reduce the degree of the polynomial entries above the diagonal
in order to put it in strict integral-Hermite form. Of course this
is not necessary if one is only interested in rank information.

If one keeps in mind the fact that our simulation results
were run on full, random matrices, which tend to yield worst-
case performance, then these simulations indicate that our al-
gorithms in their current state are ideally suited for problems in
which max{m,n} < 9. Such problems include many practical
control system designs, textbook problems in a classroom/lab
environment, and empirical error analyses involved in research
for alternative approaches to the machine computation of tri-
angular forms of polynomial matrices based on other arith-
metics such as floating-point or residue arithmetic [10]. For
larger problems, our code can be modified in various ways to
yield approximate results in much less time while providing
some degree of error control. For instance, after the integer
coefficients have reached a certain prespecified maximum size,
the triangularization can be interrupted momentarily and the
matrix A(s) in M[Z[s]] at its current state of triangularization
can be converted to an associated matrix A'(s) in M[Q[s]} by
premultiplication with a diagonal matrix in M[Q)]. The matrix
A’(s) can then be “foated” to any desired decimal precision
and then re-expressed as a matrix in M[Q[s]] and finally con-
verted back to M[Z[s]] to continue the triangularization. An
ad hoc technique such as this is certainly approximate but if
done properly can yield better results than the ad hoc floating-
point techniques currently used. Refinements of this idea for
Algorithm P with error bounds and simulation results will be
appear elsewhere. We also compared our Hermite algorithm to
the built-in Hermite algorithm included with the Sgcratchpad
II and Maple computer algebra packages. On a § x 5 exam-
ple generated randomly as above our code ran over 100 times
faster.

9. Summary of Functions

The following is a summary of the high-level auxiliary pro-
grams which we have to date implemented in MACSYMA and
Mathematica. They perform most of the common, high-level
tasks arising in the frequency-domain approach to control sys-
tem synthesis.

e RightMatrizFraction(H(s)) — Computes a right ma-
trix fraction description of the transfer function matrix
H(s), i.e., computes the matrices N(s),D(s) such that
H(s) = N(s) D(s)™!. The LeftMatrixFraction descrip-
tion is analogously computed.

Bezout(N(s),D(s)) — Finds the homogenous and par-

ticular solutions to the Bezout equation, i.e., finds

polynomial matrices Xy(s),Ya(s), Xp(s), Yp(s) such that

Xu(s) D(s) + Ya(s) N(s) = 0 and Xp(s) D(s) +

Y,(s) N(s) = I. Used for designing feedback compen-

sators in the frequency domain.

. C'olumnReduce(D(s)} — Column reduces the polynomial
matrix D(s), i.e., multiplies D(s) by an appropriate uni-
modular matrix such that the matrix of leazi)ing coefficients
of its entries is nonsingular. RowReduce is analogously -
computed.

e Controller(H(s)) — Finds a controller form realization
of the transfer function matrix H(s). Controllability, Ob- -
server and Observability realizations are analogously com-
puted. .

e Hermite(N(s)) — Finds the canonic column Hermite
form of the polynomial matrix N(s).



¢ RightCoprime(N(s), D(s)) — Determines the greatest
common right divisor of the polynomial matrices N(s) and
D(s). Ifit is not unimodular, it is factored out of both ma-
trices making them right coprime. Used for finding mina-
mal realizations. LeftCoprime is analogously computed.

o Smith(N(s})) — Finds the Smith form of the polynomial
matrix N{s). This is a canonic, diagonal form of a poly-
nomial matrix.

o SmithMcMillan(H(s)) — Finds the Smith-McMillan
form of the rational transfer function matrix H(s). This
is a canonic, rational, diagonal form of a matrix whose
entries are ratios of polynomials.
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