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Abstract 
Matrices of pol nomials over rings and fields provide a unify- 
ing framework $r many control system design problems. These 
include dynamic compensator design, infinite dimensional sys- 
tems, controllers for nonlinear systems, and even controllers 
for discrete event s stems. An important obstacle for utilizing 
these owerful matiematical tools in practical applications has 
been &e non-availability of accurate and efficient algorithms 
to carry through the precise error-free computations required 
b these algebraic methods. In this paper we develop highly 
ekcient, error-free a1 orithms, for most of the important com- 
putations needed in %near systems over fields or rings. We 
show that the structure of the underlying rings and modules is 
critical in designing such algorithms. 

1. Introduction 
The theory of polynomial matrices [9,22,24] plays a key role 
in the frequency-domain approach to the synthesis of multi- 
ple input multiple output control and communication systems 
[14,25,26]. Examples include coprime factorizations of trans- 
fer function matrices, canonical realizations obtained from ma- 
trix fraction descriptions, design of feedback compensators and 
convolutional coders, and the analysis of quantization effects 
in linear systems. Tjpically, such problems abstract in a nat- 
ural way to the nee to solve systems of generalized Diophan- 
tine equations, e.g., the so-called Bezout equation [7,16,20,23]. 
These and other problems involving pol nomial matrices re- 
quire efficient polynomial matrix trianguyarization procedures 
[17], a result which is not surprising given the importance of 
matrix triangularization techniques in numerical linear alge- 
bra. There, matrices with entries from a field can be tri- 
angularized using some form of Gaussian elimination. How- 
ever polynomial matrices have entries from a polynomial ring, 
an algebraic object for which Gaussian elimination is not de- 
fined. For matrices with entries from a polynomial ring which 
is Euclidean-the kind encountered most often in control the- 
or applications-triangularization is accomplished instead by 
wiat is naturally referred to as Euclidean elimination. Un- 
fortunately, the numerical stability and sensitivity issues of 
Euclidean elimination are not well understood and in practice 
floatin point arithmetic has yielded poor results. At present, 
a reliafie numerical algorithm for the triangularization of poly- 
nomial matrices does not exist. 

This paper presents a1 orithms for pol nomial matrix tri- 
angularization which entiriy circumvent t i e  numerical sensi- 
tivity issues of floating-point methods through the use of exact, 
symbolic methods from computer algebra [6,15,21]. Often one 
encounters the comment that since in practical problems the 
numerical coefficients are rare1 known very precisely, error- 
free methods are an unecessary rorm of computational overkill. 
This is a misconception. The accuracy to which we know the 
coefficients is not the issue. The real issue .is t.0 what extent 
we can perform the required computations within the accuracy 
of the model. data. Existing floating-point methods are poor, 
highly sensitive and often lead to large errors, essentially since 
they suffer from the same problems as computing zeroes of 

olynomials. The use of exact, error-free algorithms guaran- 
fees that all calculations are accurate to within the precision of 
the model data-the best that can be achieved. Furthermore, 
one can calculate with such algorithms the exact sensitivities 
involved and therefore judge appropriately the confidence one 
should lace on the results.. Previous computer. algebra algo- 
rithms for polynomial matrix problems appearing in control 
systems have been reported in [12]. Their performance was 
very slow even on small size problems. 

We place emphasis on efficient algorithms to compute ez- 
act Hermite forms of polynomial matrices. The triangular, or 
more correctly, trapezoidal Hermite form is defined for any ma- 
trix with entries from a principal ideal r ing  [22,24]. Such ma- 
trices arise in many practical problems in communications and 
control. Here we shall focus on matrices having entries which 
are polynomials with rational coefficients, although our results 
easily abstract to more general settings [l]. An important as- 
pect of the exact triangularization of such matrices involves the 
choice of arithmetic, We consider the tradeoffs between ratio- 
nal and integer arithmetic and choose the latter. This choice 
leads us to consider algorithms for the division of polynomials 
over a unique factorization domain (UFD). The standard al- 
gorithm for this task is well-known [4,5,8,19] and defined more 
generally for polynomials with coefficients from any commu- 
tative ring with identity.  This algorithm is well-suited to the 
scalar problem of GCD computation of polynomials over UFDs 
since it avoids the computation of GCDs of the coefficients. In 
the context of polynomial matrix trian ularization however, it 
becomes unavoidable to exploit the ricfer structure of the co- 
efficient ring: the fact that GCDs are defined on a UFD. As 
a result we present an alternative to the standard algorithm 
specialized to polynomials over UFDs but enjoying a certain 
optimality property which is crucial to the efficiency of matrix 
triangularization procedures. 

We have implemented algorithms to compute exact Her- 
mite forms of polynomial matrices in the MACSYMA and 
Mathematica computer algebra languages. We have also writ- 
ten a suite of auxiliary pro rams which call on these triangu- 
larization procedures in orfer to perform the more high-level 
tasks arising in the frequency-domain approach to control sys- 
tem synthesis. We conducted simulations with MACSYMA 
code running on Texas Instruments Explorer I1 and give per- 
formance results for the triangularization of polynomial matri- 
ces. 

2. Facts And Terminolo y of Polynomials 
and Polynomia f Matrices 

In this section we use some standard terminology from 
modern algebra [11,13]; see also [l]. Denote by &[SI the ring 
of polynomials in the indeterminate  ‘s’ with coefficients drawn 
from the field of rational numbers, &. The subring Z[s of &[SI results when the polynomial coefficients are restricted to 
lie in 2,  the rin of integers. A polynomial U(.) in Z[s is 
called primitive ifits coefficients axe relatively p r i m e  in 2. Lor 
any a(.) in Z[s], there exists a non-zero scalar c, in 

content of a(s and p , ( s )  its primitive (with respect to c,). 
A collection o polynomials in Z[s] having contents which are 

up to its sign, and a primitive polynomial p , ( s )  in 
that u(s )  = ca . p , ( s ) .  With slight imprecision c, is 
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the respective rows of A(s). By analogy with the scalar case, 
content-primitive factorization is obviously unique only up to 
the choice of the signs of the row contents. 

For every m x n polynomial matrix A(s in M[Q[s]]  there 
exists a unimodular matrix U ( s )  such that 3 (s) A(s)  = H A ( s )  
with H A ( s )  an upper triangular (trapezoidal) matrix satisfying 
the following conditions: 

1. Each entry below the diagonal is identically zero; 
2. Each nonzero diagonal entry has degree greater than 

3. Each dia onal entry is monic. 
We say that HA($ is a column monic-Hermi te  f o r m  of A(s). 
A column integTd-HeTmite f o r m  can be defined in terms of the 
column monic-Hermite form. Letting H A ( s )  denote a column 
monic-Hermite form for A(s) in M[Q[s]] ,  multiply each row of 
HA(s )  with the respectively smallest positive integer such that 
the matrix Hj4(3) so obtained is in M[Z[s]] .  Clearly, Hj4(s) is 
row primitive and row equivalent to A(s). Conversely, suppose 
that one is given Hj4(s) Satisfying conditions (1) and ( 2 )  above 
which is row primitive and row equivalent to A(s). Divide 
each row of H i ( s )  by the leading coefficient of the polynomial 
on the diagonal of the respective row and call the matrix so 
obtained H A ( s ) .  Then clearly there exists U ( s )  unimodular 
such that U(s )A(s )  = H A ( s )  and H A ( s )  is a monic-Hermite 
form of A(s) .  This concept of column integral-Hermite form 
gives a triangular form in M[Z[s]]  for each matrix in M [ & [ f ] ] .  
If A(s) is nonsingular then it can be shown that its monic- 
Hermite form is unique and therefore its integral-Hermite form 
is also unique. 

3. Triangularizing Polynomial Matrices 

the entries above it; 

The upper triangularization of matrices with entries from 

zeroes into polynomial matrices we call Euclidean elimination 
by analogy with Gaussian elimination. 

4. Integer vs Rational Arithmetic 
In a Euclidean elimination polynomials of the form d ( s )  - 
pis) c(s with c, d,  q in &[SI arise. To calculate the coeffi- 

(Y t /37 with a , p , y  in &. If these rationals are expressed as 

lowest terms, then 

cients o 1 these forms one encounters the generic computation 

ratios of integers CY = g, ,B = F, N@ 7 = $$, all reduced to 

N” Da D r + N P  NY D” 
DO DP DY . .  (u+76= 

the need for GCD calculations. On the other hand, if it can be 
arranged so that cy, p and y are all integers, then the same com- 
putation obviously requires only two integer multiplications, 
one integer addition and no GCD calculation. Thus, our goal 
is to carry out matrix triangularization on M[Q[s]]  using only 
integer arithmetic. Clearly, by multiplying each row of any 
A(s)  in M[Q[s]]  by a large enough integer, the denominators 
of every coefficient of every entry of A(s)  can be cancelled and 
such a diagonal operation is certainly unimodular in M[&[s]] .  
Again, this computation can be arranged more efficiently but 
because it involves a fixed overhead, assume for convenience 
that A ( s )  is given in M [ Z [ s ] ] .  

Unfortunately, this creates new difficulties because Eu- 
clidean elimination is not defined for M[Z[s]]  since Z[s] is not 
a Euclidean ring. For instance, it is easy to see that the re- 
mainder of two polynomials in Q[s ]  with integer coefficients 
has, in general, rational coefficients; consider the remainder of 
2s after division by 3s - 1. In other words, Euclidean divi- 
sion is not defined for Z SI. However, Z[s] is an instance of a 
polynomial ring with coe iLi cients from a commutative ring with 
identity and for such a ring one has the pseudo-division lemma,  
a natural generalization of the Euclidean division lemma. Let 
C denote a commutative ring with identity. Given a(s)  and 
b(s)  in C[s] with dega(s) 5 degb(s) there exist two polynomi- 
als, the pseudo-quotient q s and the pseudo-remainder r ( s ) ,  
such that L b ( s )  = q ( s ) a [ s ]  + r ( s )  and degr(s) < dega(s) 
where the premultiplier L = ateg b-deg a+1 with a,, denoting the 
leading coefficient of U(.). The pseudo-quotient and pseudo- 
remainder are unique if C is also an integral domain. The 
proof of the pseudo-division lemma yields a division procedure 
called pseudo-division which like Euclidean division en’oys the 
all-important strict degree reduction property; see [IS! for the 
standard pseudo-division algorithm. 

Let’s consider an example in which we wish to pseudo- 
divide b(s )  by a(.) where, 

b(s)  = s8 f s6 - 3s4 - 3s3 f 8s2 + 2s - 5 

U(.) = 3 2  + 5s4 - 4 2  - 9s + 21. and 

Applying the standard pseudo-division algorithm one obtains, 

2 7 b ( s )  = ( 9 s 2 - 6 ) a ( s ) + ( - 1 5 s 4 + 3 s 2 - 9 ) ,  

i.e., L = 38-6+’ = 2 7 , q J s )  = 9s2-6 and r ( s )  = -15s4+3s2-9. 
This example appears in [18] as one step in the task of com.- 
puting the GCD of b(s)  and a(s) .  The next step is to divide 
out the content of r(s) and then compute the GCD of a(s )  and 
pr(s) exploiting the fact that gcd(b(s),.a(s)) = gcd(a(s),p,(s)). 
The purpose of this content removal is to keep the size of the 
coefficients small for purposes of efficiency in succeeding cal- 
culations. However, consider the above computation in the 
context of a matrix triangularization-a 2 x 2 example will 
suffice: 

In this situation we see that we are not at liberty to blindly di- 
vide the entire second row by the content of r ( s )  (or any integer 
for that matter) because it may introduce rational coefficients 
in the ( 2 , 2  entry and thereby ruin our attempt to maintain 

above pseudo-division example is, 
integer arit h metic. However, note that another solution to the 

9 b ( s )  = ( 3 2  - 2 ) a ( s )  + (-5s4 + s2 - 3), 

i.e., L = 27 is not necessarily the smallest premultiplier for 
which a “pseudo-quotient” and “pseudo-remainder” exist. Ob- 
viously, in the matrix case, “L = 9” yields better results than 
L = 27 since it yields smaller coefficients in the second row. Of 
course in this example the difference is negligible, however, if 
the size of the leading coefficient of U(.) is large, the difference 
in computational burden can be quite substantial. Moreover, 
as we shall see below, keeping the size of all coefficients as small 
as possible is a primary goal. 
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, 5. Pseudo-division for Polynomials over a UFD 
It is ap arent that there are smaller (and larger) premulti- 
pliers, 5 than the one defined in the pseudo-division lemma. 
Now the pseudo-division lemma is the best that one can do in 
general for polynomials over a commutative ring with identity. 
But be aware that the concept of 'smaller' referred to in the 
pseudo-division example is inherited from the fact that 2 is 
also a unique factorization domain (UFD). Recall, a UFD is 
an integral domain which admits prime factorixationJ. Let U 
denote a UFD. One can think .of U in U as being "smaller" 
than U' in U if U is a divisor of U'.  For the problem of pseudo- 
division of polynomials a(s), b(s) in U[s ] ,  what we seek is the 
smallest premultiplier L, in U such that if there exist L in U 
and q,  r in U[s]  satisfying, 

Lb(s) =q(s)a(s)+r(s)  anddegr(s) < dega(s), 

then L, divides L and q + ( s ) ,  r.(s) in U [ s ]  exist such that, 
L, b(s) = q , ( s ) a ( s )  + r.(s) anddegr.(s) < dega(s). 

The algorithm given next computes this L., q.Jf).and r,(s) 
and is a distinct improvement over the pseudo-division lemma 
given in [18] for our purposes in that it computes with smaller 
numbers. It does so by exploiting the richer structure of poly- 
nomial rings with coefficients from a UFD but at the cost of 
both generality and GCD calculations. However, in the matrix 
problems we consider this cost is unavoidable. 

Algorithm M - Pseudo-diviuion of Polynomials over a UFD 
Given two nonzero polynomials b(s)  = bas" + bls"-' + . . . + b,  
and a(s) = aOsm+alsm--l+. . .+a, in U(s]  with m 5 n, this al- 
gorithm computes the smallest L,, pseudo-quotient q,(s) ,  and 
pseudo-remainder r,(s) as discussed above. It computes L,, 

and r. s) directly by computing GCD's on the j2 . This 
&%es "smr!Uer" numbers than first using the pseudo-ivision 
algorithm [18] and then computin GCDs. Bigger numbers 
cost more in GCD calculations an8 given the size of the in- 
tegers encountered in polynomial matrix computations, e. ., 
easily reater than 1000 di 'ts, this algorithm can save a su%- 
s t a n d  amount of time. $or simpler notation we drop the 
'asterisk' subscript in the algorithm's definition. 
BEGIN: 

mnm t min (m,n - m) 
g + GCD(bo,ao) 
1 + a019 
L t l  
bo t bo/g  
For I = 1 thru n - m Do 

For j = i thru n - m  Do 

EndDo 
For j = 1 thru min(mnm,n - m - i + 1) Do 

EndDo 

1 + a019 
L c L * l  
bi bilg 

b j  t bj * 1 

bj+i-l t bj+i-1 - a j  * bi 

+- GCD(bi,ao) 

EndDo 
END 
The algorithm terminates with the first n - m + 1 coeffi- 
cients of b(s) overwritten according to &! b l ,  . . . , b,-m} + 
{ q o , q l ? . . . , q n - m }  and the remaining CO cients over wntten 
according to bn-m+l,. . . , b,J +- {Po,. . . ,rm-l}. 

Algorithm M - roof of Correctness 
The informal lan 
implements the forowing recursion for k = 0,1,, . . , n - m, 

age description of Algorithm M basically 

b(-')(s) = 4 s ) ;  
gk = gCd(cl0, br-')); 

Observe that deg b(')(s) < deg b(k-l)(s) for k = 0 , 1 , .  . . , n -n 

because 1k bf-') = pk a0 (where b r )  of course denotes the 
leading coefficient of b ( k ) ) .  Hence, degb("-m)(s) < dega(s). 
n o m  the algorithm's definition we see that r,(s) = b(n-m)(s) 
and L, = lk. Solving the recursion above we obtain 

The algorithm therefore yields, 

with L, in U and q,(s),  r,(s) in U(s] .  Thus the algorithm 
indeed computes a &d solution; next we show that it is opti- 
mal. Suppose there exist another L in U and q ( s ) ,  r(s) in V(s]  
such that, 

Lb(s) = q(s)a(s) + r(s) and degr(s) < dega(s). 

Then by commutativity L, L b(s)  = L L, b(s)  implies, 

(Lq,(s)- L,q(s))a(s) = L,r(s)-  Lr,(s). 

Since there are no divisors of zero in a UFD this gives, 

Since deg(L. r(s) - Lr.(s)) 5 max{degr(s),degr,(s)} < 
dega(s) it must be true that, 

deg(Lq,(s) - L. q ( s ) )  = -00, 

and therefore L, q ( s )  = L q,(s) .  By equating coefficients we 
obtain, 

For k = 0 we get loqo = Lpo and therefore lOJLp0. However, 
from the defimtion of the algorithm lo and po are relatively 
prime in U, or coprime, and 80 in fact lo(L. For k = 1 we get 
lo l iq l  = Lpi and therefore liI(@pl. Again, by construction 
11 and pi are coprime and 80 11 I &. In general we have and 
pk Coprime and lkqk = (&)pk 80 that for k = n - m we 
obtain, L 

lo * - - l , - m - l .  1,-ml 

As a result l 0 . . . l n  -,(L and therefore L.(L. QED 
6. Pseudo-Euclidean Elimination 

The introducton of a zero below the diagonal of a matrix A(s) 
in M [ Z [ s ] ]  can now be performed using Algorithm M. This 
procedure we shall call pseudo-Euclidean elimination (PSEE) 
for obvious reasons. Consider triangulsrizing the matrix: 

9 

-10s- 10 3s2 + s + 1 0  
7.- 58 6s'- 1 4d2 -10 



Pseudo-Euclidean elimination ields a matrix with first column 
[7577325 0 O]', second column TO 89145 01' and last column, 

- 4 3 6 0 5 ~ ~  + 771035' - 2341899 - 35190 
P33(9) 

-1351755~~ + 1373940~~ - 51025509 - 7152750 

where p33(s) is given by, 

3706425s' - 5 2 0 2 0 0 0 ~ ~  + 185321258' + 15671025s + 7152750. 

This illustrates the main disadvantage of triangularization on 
M Q[s ] ]  performed over M[Z[s ]  -the coefficient growth of the 

trix increases, this codcient growth continues unabated and 
begins to erode the advantage of using integer arithmetic. Onc 
approach to handle this new source of coefficient growth is 
to remove the content of the current row after each pseudo- 
Euclidean division step. It is better to remove the row con- 
tent as soon as possible in this way rather than waiting due 
to the cost of computing GCDs of large integers, neverthe- 
less, we illustrate row content removal for the current example. 
Factoring the above matrix into a left content-primitive form 
CA HL(s)  yields, 

C A = ( O  765 9 0 0" ) ,  

PO I ynomials. As the number o tl rows and columns in the ma- 

0 0 65025 

and Hjq(s) equal to, 

0 9905 - 4 8 4 5 ~ ~  + 8567s' - 26021s - 3910 
9905 0 - 1 7 6 7 ~ ~  + 1796s' - 6670s - 9350 

57s' - 80s3 + 2859' + 241s + 110 0 0 

The superfluous left content of the matrix can therefore be dis- 
carded since this is equivalent to multiplying it by c-' thereby 
keeping the codcient size to a minimum. We empiasize that 
CA is unimodular with respect to M [ Q [ s ]  but not with re- 
spect to M [ Z [ s ] ] .  We stress that up to t h e signs of the en- 
tries across the rows I?: s) is the same matrix which would 
have resulted had we emp I oyed row content removal after each 
pseudo-Euclidean division step and that this is the more effi- 
cient strate Note that the above polynomial matrix H' (s) 
is nonsingug and in column integral-Hermite form and k a t  
therefore the unique column monic-Hermite form of A ( s )  is 
obtained directly from H:(s) as, 

1 0 1767.' 17961' 1334a 1870 
9901 9901 1981 1881 

I 5 ,  +5s' + y + * Lo O s4-80rl 

We see that PSEE provides an efficient tr im larization 
procedure for M [ Z [ s ] ]  but, strictly s eaking, PS& modified 
with content factorization is not a v$d triangularization pro- 
cedure for M [ Z [ s ] ]  because content removal is not a unimod- 
ular operation in M Z [ s ] ] .  On the other hand, augmenting 

for M Q s and yields an efficient triangularization procedure 
for Mi&\ by avoidin rational arithmetic while maintain- 
ing integers of the smdes t  possible magnitude throughout an 
elimination. 
7. Algorithms to Triangularize Polynomial Matrices 

PSEE with content 5 actorization is a unimodular operation 

Algorithm T - Column-Oriented !#iangularization of Polyno- 
mial Matrices 
Given an N x N nonsingular matrix A E M [ Z [ s ] ] ,  this al- 
gorithm overwrites A with a triangular form obtruned by a 
sequence of unimodular, elementary row operations. It avoids 

rational arithmetic by using pseudo-division as defined in Algo- 
rithm M in order to achieve maximum com utational efficiency 
with minimum coac ien t  growth. In adit ion,  it further in- 
hibits coefficient growth by factoring out the row content after 
each pseudo-Euclidean division step. This algorithm operates 
in a column oriented fashion by successively zeroin out the 
entries in each column below the diagonal. This is sif,n pic- 
torially below. 

x x x  x x x  1 x 5  

(I I I)+(: I +(0" ; I). 
Assume there exists a pre-defined function, 

MinDegIndex(A,  k) := argmin{degAI,k,. . . ,degAN,k}, 

which returns the index of the row of A whose kth entry is a 
non-zero polynomial of lowest de ee among the rows t, k + 
1 ,..., N } .  If Ak,a(s) = A k + l , k r )  = A N , k ( s )  0, t en it 
returns -00, the degree of the zero polynomial. 
BEGIN: 
For k = 1 thru N-1 Do 
index t MinDegIndex(A, 1)  
If index # -cm Then 
Ak,. i-+ Ainde+,. 
For n = k + l  thru N Do 

L ndlessLoop 

(exchange rows k and index) 

zero out all entries in column k below Ak,k) 

denom + pseudo - remainder An,k, Ak,k) 
A,,. t denom * A,,. - num * l k , .  
An + A ,  /GCD{content(An,1) , .  . . , c o n t e n t ( A , , ~ ) }  
If d'then exit EndlessLoop 

num + pseudo - qUOtient(A,,k,Ak,k) 

A n  * A k  
End 'Endles'sLoop 

EndDo 
EndIf 

EndDo 
End 
Algorithm P - Principal Minor-Oriented Wangularization of 
Polynomial Matrices 
This algorithm is similar to the one above except it performs 
the zeroing process in a leading principal minor oriented fash- 
ion so that the algorithm consists of N - 1 stages where the 
k x k leading principal submatrix is in a triangular form by the 
end of the k'* stage. Furthermore, the algorithm employs an 
additional substage which reduces the degrees of the polyno- 
mial entries above the diagonal on the fly using pseudo-division 
as in Algorithm 116. The order in which the degrees are reduced 
is important and is based upon notions from [17] for trian- 
gularizing matrices in M [ Z ] .  The order is shown pictorially 
below. 

5 2 x 1  x l x x  
5 2 x 1  0 1 2 1  (," I I IN ," ," J 

J 
4 5 6  

2 2 x 5  0 0 0 5  

The output matrix is in column inte ral Hermite form, not sim- 
ply triangularized as in Algorithm !(but with the entries above 
the diagonal of de ree less than the diagonal entry. Clearly, 
the column monic-hermite form is easily obtained by left mul- 
tiplication with the appropriate diagonal matrix of rational 
numbers, a unimodular matrix with respect to M [ Q [ s ] ] .  
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BEGIN: 
For k = 2 thru N Do 
For n = 1 thru k - 1 Do 

triangularize the k x k t h  leading principal minor) 
ff deg An,n > degAk,n Then Ak,. cf An,. 
EndlessLoop 
num t pseudoquotient(&,,, An,n) 
denom e pseudoremainder(Ak,n, An,n) 
Ak,. +- denom * Ak,. - num * A,,. 
Ak. t Ak ,/GCD{content(Ak I ) ,  . . . ,content(Ak,N)} 
If h k  

EndDo 
For i = -1 thru -k + 1 step -1 Do 

# 6 then Ak,. ++ A,,,. else Exit EndlessLoop 
End E!ndlessLoop 

p d u c e  degs of abv diag polys in k x I C t h  minor) 
or j = i + 1 thru 0 Do 
If degAk+i,k+j 2 degAk+j,k+j Then 
num c pseudoquotient(Ak+i,k+j, Akk+j,kk+j) 
denom t pseudoremainder(Ak+i,k+j, Akk+j,kk+j) 
Ak+i,. +- denom * Akti,. - num * Ak+j,. 
Ak+i,. + Ak+i,./ 

GCD{content(Ak+i,l), . . . , content(Ak+i,jv)} 
EndIf 

EndDo 
EndDo 

EndDo 
End 

We close this section by noting that in both Algorithm T 
and Algorithm P each pseudo-Euclidean division step affects 
the entire row and the row content is removed after each divi- 
sion step. Alternatively, one could solve a scalar Bezout iden- 
tity for each zero to be introduced using pseudo-division tech- 
ni ues and then perform a single elementary row operation 
fojowed by a single row content removal. However, the single 
row content of the latter method will be much larger than any 

, of the “elementary” row contents computed by Algorithm T 
or Algorithm P. This makes the alternative method much less 
attractive than at first glance in light of the fact that com- 
puting the many “small” row contents is more efficient than 
computing the single “large” row content. 

8. Simulation Results 
Simulations were performed to determine the average time re- 

matrix, which ranged from 2 to 16 and the maximum degree 
of its polynomial entries, chosen uniformly on [0, degreemax], 
as de reemax ranged from 1 to 6. 

‘fhese simulations were conducted on a Texas Intruments 
Explorer I1 with 16 mb of physical memory and 128 mb of 
virtual memory running at 40 MHz using the MACSYMA ver- 
sion of our algorithms. The graphs represent the results of the 
simulations averaged over 5 runs. The results indicate that 
Algorithm T was moderately faster than Algorithm P in tri- 
angularizing matrices up to 9 x 9. At that point Algorithm 
T was still faster for triangularizing matrices with lower de- 

polynomials, but slower in the higher degree polynomials. 
his can be attributed to the fact that Algorithm P requires 

leas memory during computations due to its substage which 
reduces the de rees of the polynomials above the diagonal on 
the fly. Therefore costly garbage collections, a technique of 
freeing dynamically allocated memory, are reduced. 

It appears that both of these algorithms run close to ex- 
ponential time. The slopes of the semi-log plots of the tim- 
ings increase slightly with increasing polynomial degree. The 
maximum coefficient length was approximately the same for 

each algorithm and the coefficient growth appears to be sub- 
exponential with increasing matrix dimension. A 16 x 16 ma- 
trix with degree 6 polynomials is the largest that has been 
attempted with Algorithm P. It required 40 hours to triangu- 
larize with the resulting matrix having a maximum coefficient 
length of 2115 digits. 

Although Algorithm T was faster than Algorithm P on 
the smaller matrices, it did not have the overhead of putting , 

the matrix into a canonic form in the process; Algorithm P 
transforms the input matrix into the canonic integral-Hermite 
form as described earlier. The output matrix of Algorithm T 
therefore requires the application of an auxilliary algorithm to 
reduce the degree of the polynomial entries above the diagonal 
in order to put it in strict integral-Hermite form. Of course this 
is not necessary if one is only interested in rank information. 

If one keeps in mind the fact that our simulation results 
were run on full, random matrices, which tend to yield worst- 
case performance, then these simulations indicate that our al- 
gorithms in their current state are ideally suited for problems in 
which max{m, a} 5 9. Such problems include many practical 
control system designs, textbook problems in a classroom/lab 
environment, and empirical error analyses involved in research 
for alternative approaches to the machine computation of tri- 
angular forms of polynomial matrices based on other arith- 
metics such as floating-point or residue arithmetic [lo]. For 
larger problems, our code can be modified in various ways to 
yield approximate results in much less time while providing 
some degree of error control. For instance, after the integer 
coefficients have reached a certain prespecified maximum size, 
the triangularization can be interrupted momentarily and the 
matrix A(s) in M[Z[s]J at its current state of triangularization 
can be converted to an associated matrix A’(s) in M[Q[s]]  by 
premultiplication with a diagonal matrix in M[Q].  The matrix 
A’(s) can then be “floated” to any desired decimal precision 
and then re-expressed as a matrix in M[Q[s]]  and finally con- 
verted back to M [ Z [ s ] ]  to continue the triangularization. An 
ad hoc technique such as this is certainly approximate but if 
done properly can yield better results than the ad hoc floating- 
point techniques currently used. Refinements of this idea for 
Algorithm P with error bounds and simulation results will be 
appear elsewhere. We also compared our Hermite algorithm to 
the built-in Hermite algorithm included with the Scratchpad 
I1 and Maple computer algebra packages. On a 5 x 5 exam- 
ple generated randomly as above our code ran over 100 times 
fast er. 

9. Summary of Functions 
The following is a summary of the high-level auxiliary pro- 

grams which we have to date implemented in MACSYMA and 
Mathematicu. They perform most of the common, high-level 
tasks arising in the frequency-domain approach to control sys- 
tem synthesis. 

RightMatriiFraction(H(s)) - Computes a right ma- 
trix fraction description of the transfer function matrix 
H ( s ) ,  i.e., computes the matrices N ( s ) , D ( s )  such that 
H(s) .  = N ( s )  D(s)-’. The LeftMatrixFraction descrip- 
tion is analogously computed. 
Bezout(N(s),D(s)) - Finds the homogenous and par- 
ticular solutions to the Bezout equation, i.e., finds 
polynomial matrices x h ( s ) ,  Yh(s) ,  X p ( s ) ,  q ( s )  such that 
XA(S) D ( s )  + Yi(s )  N ( s )  = 0 and X p ( s )  D(s )  f 
Yp(s)  N(s1 = I. Used for designing feedback compen- 
sators in t e frequency domain. 
ColumnReduce(D(s) - Column reduces the polynomial 
matrix D(s) ,  i.e., mu 1 tiplies D(s )  by an a propriate uni- 
modular matrix such that the matrix of leaing Coefficients 
of its entries is nonsingular. Rowbduce is analogously 
computed. 
Controller(H(s)) - Finds a controller form realization 
of the transfer function matrix H ( s ) .  Controllability, Ob- 
server and Observability realizations are analogously com- 
puted. 
Hermite(N(s)) - Finds the canonic column Hermite 
form of the polynomial matrix N ( s ) .  
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0 RightCoprime(N(s), D(s ) )  - Determines the greatest 
common right divisor of the polynomial matrices N (  s) and 
D(s) .  If it is not unimodular, it is factored out of both ma- 
trices making them ri ht coprime. Used for finding mini- 
mal realizations. Left toprime is analogously computed. 
Smith(N s ) - Finds the Smith form of the polynomial 
matrix NISI.  This is a canonic, diagonal form of a poly- 
nomial matrix. 

0 SmithMcMilZan(H(s)) - Finds the Smith-McMillan 
form of the rational transfer function matrix H ( s ) .  This 
is a canonic, rational, diagonal form of a matrix whose 
entries are ratios of polynomials. 
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