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Abstract

We introduce axiomatically, new non-commutative proba-
bility models for the data in distributed detection asynchronous
schemes. We completely characterize mathematically these mod-
els and their representation. They represent extensions of models
for communicating asynchronous processes. We provide a general
theorem characterizing the representation of data collected by a
distributed asynchronous detection scheme. We discuss how this

model can be used to obtain performance bounds.

Summary

In (1] we proposed new non-commutative probability models
for multi-agent stochastic control problems. Our interest stems
primarily from long range objectives to develop theories and algo-
rithms that can properly incorporate the following: asynchrony
between agents, anticipatory phenomena, interaction between in-
formation and control, local state models supported by locally
collectable data, sensor “domain”, controller “region of effective-
ness”, duality of information and control, sensor “fusion” or co-
ordination.

In the present paper we provide summary of our results on
the problem of Distributed M-array Detection with asynchronous
operation. Basically there are M hypothesis Hy, Ha, ..., Hnp
affecting the system and N agents Ay, ..., An. Agents collect
data, communicate and make inferences. Regarding communi-
cation we develop a framework that permits information con-
straints, such as capacities, etc, and not constraints in terms
of what each agent computes and communicates. The “fusion”
strategy or “communication” strategy emerges from the mathe-
matical framework. Due to space limitations we provide a sum-

mary only here. Detailed discussion and proofs can be found in

[2]-

Beginning from fundamental requirements on the data and

propositions that appear in distributed detection we first develop
some algebraic structures. First, a simple proposition or simple
event is a proposition that can admit a yes (usually assigned the
binary value 1) or no (assigned the value 0) answer only, regarding
their validity. Their validity can be verified (ascertained) by some
combination of the data (measurements, experiments) performed
by the various agents. We denote by E the set of simple events
(or propositions).

It is important to note that “ambiguous” events (i.e., re-
quiring probability assignments for their validity) are not simple
events. They are constructed later in our theory. There is a set

of natural axioms we impose on E, supported by databases op-
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erating in multi-sensor, distributed stochastic systems. We also
have two important operations of implication (denoted by <) and

orthocmplementation (denoted by ’). We then have:

Theorem 1: The set of simple propositions, in a distributed,
asynchromous stochastic system is an orthomodular o-orthoposet.

This however is not a complete characterization. The reason
is that the data ba.s’é's of such a system cannot just be character-
ized by the logic (or logical structure) of the simple events that
can be verified by the agents. The structure of the “logic” by
itself is not sufficient to determine the mathematical formalism
which should be employed. It is a fact that a mathematical theory
of distributed detection (or estimation) (and more generally, of
stochastic large scale systems) is used not so much to reproduce
the logical properties of simple yes-no experiments performed and
answerable by the agents, but rather to compute statistics of
“systemn state” transitions and of outcomes of more complicated
experiments (measurements). Therefore, we next unify the prob-
abilistic aspects with the logical aspects.

For the treatment of distributed detection and estimation
problems, it suffices to introduce two more elements in the pic-
ture. Thus we are led to consider event-state structures. We
think of states as the set of all possible (or just pertinent to the
problem) configurations. We emphasize that we do not assume a
memory interpretation for states.

We consider both global and local event-state structures.

Under certain natural anioms we show the following.

Theorem 2: Given an event-state structure (E, S, P) satisfy-
ing certain axioms, compatible with data bases in multi-agent
systems, one can construct (E, <,’) and S, s.t.

(a) (B,<,') is an orthomodular o~poset
(b) S is a strongly order-determining o—convex set of prob-
ability measures on (E, <,')

(c) @+ p, is a bijection of S onto §.

There is actually a converse, asserting that the above rep-
resentation is “faithful”, in the sense that it can generate the
statistics on which it was based.

In establishing this resuits a whole sequence of important
constructs and intermediate results are obtained. We list some
here: The states in S are basically probability assignments to
simple events; construction of “mixture” states; prior probabil-
ity about “states”; minimality of the state set supported by the
observations; local states.

* The work of this author was supported partially through
XSF Grant NSFD CDR-85-00108 and partially through ONR
Grant N00014-83-K-0731.



There are two generic examples of such event-state struc-
tures. In the first we consider P(¥), the set of all gonal projec-
tions on a separable complex Hilbert space ¥, and let < be the
usual order of projections. Let P’ be the orthogonal complement
of P. Then (P(X), <, ') is an orthomodular o—orthoposet. Let
S be the set of all positive, trace class, self-adjoint operators on
H, with trace one. Let § = {u,(),p S; 1 (P) = Tr[pP]}.
Then $, P(}) form an event-state structure as discussed here.

The second example, consists of a o—-algebra E of subsets of a set

X, and a o-convex, strongly order-determining set S of proba-
bility measures on X. This is the classical Kolmogorov model of
probability theory with several probability measures.

The next important issue deals with communication con-
straints, incompatible events and event-state-operation struc-
tures. On intuitive grounds, we expect that in a multi-agent sys-
tem incompatible events appear; that is, events such that their oc-
currence cannot be simultaneously verified by two or more agents.
This can be seen as a manifestation of communication constraints
in a distributed sensor network, for example.

Consider for a moment a distributed sensor network. It is
clear that a specific sensor will be able to verify the occurrence
or not of a restricted set of simple events. One may legitimately
define this subset as the domain of observation or sensor range
of the sensor. Similarly, an agent in a multi-agent stochastic con-
trol problem will be able to influence the occurrence of a subset
of simple events. One may define this subset as the domain of
influence or control range of the agent.

We need to develop new probabilistic models that incorpo-
rate such concepts in them. We do this by introducing a general-
ization of “conditioning”, which we call operation. We construct
an event-state operation structure: (E, S, P, T). Here (E, S, P)

is an event-state structure and

T: E — % = {set of all mapsfrom S to S}

We impose natural axioms on T. In particular we identify a
natural association of simple events with a subset of operations.
For a simple event p, let T, represent the corresponding operation.
If z is a state then T}, z is the new state conditioned on occurrence

of the event p and prior state z. Let

Lr={Tp,0Tp, 0 Tp,;p1 - pn € E}

be the set of operations. (27, o) is a multiplicative subsemigroup
of (I, 0). We introduce the * operation on L7, to mean reversal

of application; it is an involution. We can then show

Theorem 3: If (E, S, P, T) is an event- state-operation struc-
ture supported by the databases and conditioning of a distributed
asynchronous stochastic system, then (Zr, 0, *, ~) is a Baer*-
semigroup.

This is a major result since Baer*-semigroups and rings have
a rich mathematical structure [3], and representation theory ex-

ists. For example compatible events correspond to commutativity
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of associated operations, as it should be. Classical systems corre-
spond to commutative Baer* semigroups. Noncompatible events
are properly represented in terms of operations; a fact extremely
important for data fusion.

We then have

Theorem 4: Data bases and conditioning in a distributed asyn-
chronous stochastic system can be used to construct an event-
state-operation structure. This is a statistically faithful repre-

sentation.

Starting from here we can develop structure theory, classifi-
cation, and several very interesting connections with the theory
of Baer*-rings, Rickart*-rings, C* algebras. In particular we can

show

; .
Theorem 5: If (E, <) is atomic and the atoms £ are mapped
to pure states under T, then (E, S, P, T') can be represented as

the lattice of projections on a Hilbert space.

The assumption is typically valid in applications. Further-
more in applications the Hilber space is often finite dimensional.
Finally, we show how this structure can be embedded in a

convex structure. This is important for optimization.

Starting from an event-state structure (E, S, P) one embeds

S into the real vector space V of functions on E defined by

n
X(p) = Z ¢; P(pai),e; €8
isl

¢; real numbers, n arbitrary. We make V in a real Banach-space
and consider V*, its dual. Now one can identify E with a subset
of V*, and can introduce a partial order in V by a cone V*. The
states S are identified as the elements of. {u € V*: r(z) = 1},
where 7 is the norm functional. The states form a convex set.
We then have

Theorem 6: (E, S, P, T') can be mapped into a pair of Banach
spaces V,V* with positive cones and a trace functional 7. S is
identified with a convex subset of V. E is the set of extreme
points of a convex subset of V*. Operations correspond to linear
positive maps T : V — V such that 0 < 7(T'z) < 7(z).

A generalized sensor on (U, B) isamap M : B — L*(V)
such that

M (B) > M(¢)
M(]] B:) = £ M(B;)
T(M(V)p) = r(p) forallpe V.

That is M is an operator valued measure. The interpretation is
that a generalized sensor accepts a state, measures some prop-
erties and emits an output state conditioned on the value of the
measurement (observation). Families of generalized sensors be-
come important when we consider dynamic problems. For state
problems we need only the measurement associated with a gener-
alized sensor. Indeed for the problem of interest here, distributed

detection or estimation, there is no action or control. The mea-



surement Kps associated with the generalized sensor M is the

unique V* valued measure such that

Km(B)(p) = 7[M(B)p
VpeV,Be€B.

Note that the statistics of the observed (or collected) data,
when the system “state” is p, by a generalized sensor M are given
by the probability measure Kas(B)(p),¥ B € 8. We can consider
the composition of two generalized sensors in time for example.

We have been able to interpret agent coordination, as nec-
essary extension of certain constructs of the theory. Our theory
recovers the observed statistics faithfully but cannot recover the
actual measurements and communication strategies or histories
employed by each agent or sensor.

We are now ready to describe our major results for the dis-
tributed M-arry detection problem. Suppose that the N agents
(sensors) operate asynchronously over a time interval [0, T]. We
collect all the local observation times ti,{ = 1,..., N and glob-
ally order them. Each agent #,¢ = 1,...,N, at each local in-
stant ti, ¢ =1,...,N, k=1,... ,L(4), has data y*(t}) (his own)
plus data 27 (ti), j # 14,7 = 1,...,N, communicated to him
from other agents. 2z’ may be processed or unprocessed. We
want to ask the following fundamental question. Given arbitrary
communication, how can one represent the statistics of the col-
lected data (yvi(t}), 27 (tL)), i=1,..., N, j #4,5=1,..., N, % =
1,...,L(¢)? We have the following answer.

Theorem 6: In the distributed, M-ary detection problem
described above, any sequence of observations and communica-
tions between the agents can be represented by an appropriate

measurement Kar(-) on some measurable space (U, B).

The proof is nonconstructive. This we consider as an im-
portant conceptual tool, particularly with respect to obtaining

performance bounds. The latter is its greatest advantage. Its

disadvantage, is that it is not possible to recover from Kps the
actual observation process and the communication strategy.

In many situations, we have the Hilbert space model, and
indeed a finite dimensional one. In such cases, one can perform
numerical studies and obtain useful bounds with these methods.
Then the bounds can be utilized to evaluate the performance of
ad hoc communication strategies, for example.

Another important point that was made earlier is that in

this specific setting,
Naimark’s extension theorem provides a natural way of coordina-
tion between noncompatible observers. The fact that this comes
out of the mathematical model automatically is a measure of suc-
cess for the underlying models that we constructed.

To solve now the M-ary distributed detection problem in
view of the representation result presented in Theorem 6, one
proceeds as follows. Here, we concentrate on the Hilbert space
model, but it should be clear by now how to extend the compu-

tation to more general models.
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Given the M-hypotheses Hy,. .., Hr, one constructs risk op-
erators W; € J,(¥), i =1,..., M, based on assumed costs, states
corresponding to the M hypotheses and prior probabilities. We
allow, of course, randomized strategies, and we search for the op-

timal measurement Kaz(-), subject to some information pattern

constraint. Let
n,~=/ T (u) Kn(du), §= Lo, M
v

The problem becomes

M
minT, y_ Willi
i=1
over all positive operator valued measures (POM) I, ¢ =
1,...,M such that
LML, e 4
Here A is a convex set of POM’s corresponding to some infor-
mation theoretic constraint on information (communication) pat-
terns, such as capacity constraints, for example.

This problem is a convex linear programming problem and
its duality theory is well understood (see, for example, [4]). One
can then in this example begin to understand how the duality
between decisions and information patterns can be put in a firm
framework. Further work is needed along this promising direc-
tion, however. For example, for the unconstrained problem, we

have the following result.

Theorem 7: Suppose A above is the set of all POM’s.
Then a necessary and sufficient condition for the POM II7, 1=
1,..., M, to be optimal is that

M
@) YW <Wui=1,...,M

j=1
M
() Y MW SWii=1,...,M
i=t
Furthermore, under any of the above conditions the operator
M M
Y =Y Wil =) LW,
g=1 =1
is self-adjoint and is the unique solution of the dual problem.
It is easy to see that the above conditions are equivalent to
Y being self-adjoint and
W;>Y,i=1,....,.M.
Then these imply
(Wi =YY = I} (W — Y);i=1,2,...,.M

and that the minimum value is TrY.

We would like to close this section by mentioning that these
results can be extended to include estimation problems. The ma-
jor outstanding open problem is that of smplementation. That

is, if we find the optimal II}, how do we realize it by a commu-



nication pattern and a classical measurement process? It is also
possible to interpret the Lagrange multipliers (here the Y), as

sensitivities with respect to the information pattern constraints.
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