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Abstract 

We consider  the  nonlinear filtering problem dz = f(z)dt + 
f i d w ,  dy = h(z)dt + f i d u ,  and  obtain  linq-oElogq'(z,t) = 
-W (z, t )  for unnormalised  conditional  densities q'(z, t )  using 
PDE  methods. Here, W ( z , t )  is the value  function for a deter- 
ministic  optimal  control  problem  arising in Mortensen's  deter- 
ministic  estimation,  and is the  unique viscosity solution of a 
Hamilton-Jacobi-Bellman  equation. 

Introduction 

An important  problem in system  theory is the  construction of 
observers  for  nonlinear  control  systems.  Baras,  Bensoussan  and 
James [l] have studied  a  method for constructing  an  observer 
as a  limit of nonlinear filters  for a family of associated  filtering 
problems (2), parameterised by E > 0. It is of interest  then 
to  study  the  asymptotic  behaviour of the  corresponding  unnor- 
malised  conditional  densities q'(z,t) as E --+ 0, via  the Zakai 
equation (3) .  We obtain  the  asymptotic  formula 

q'(z, t )  = e-3(w(v)+o(li), (1) 

as E -+ 0, where W ( z , t )  is the value  function  corresponding to 
a  deterministic  optimal  control  problem, namely that arising  in 
deterministic  estimation. 

Our  method is inspired by the work of Fleming  and  Mitter 
[4],  and  Evans  and  Ishii [3]. A  logarithmic  transformation is 
applied to  the  robust  form of the Zakai equation, yielding a 
Hamilton-Jacobi  equation in the  limit. A related  Hamilton- 
Jacobi  equation is interpreted as the Bellman equation  for  the 
optimal  control  problem  arising in deterministic  estimation, of 
which W ( z , t )  is the  unique viscosity solution. In particular, 
W (z, t )  is not  assumed  to be smooth. 

This  problem  has  been  studied by Hijab (51 using differ- 
ent  methods.  Hijab also obtained  a  large  deviation  principle 
for conditional  measures on C((0, TI; R"). An extension of his 
result is presented in James  and  Baras [6], which  includes  com- 
plete  proofs of the results  discussed  in the  present  paper. 

Problem  Formulation 

We consider  a family of diffusion  processes  in R" with  real 
valued  observations: 

d z f ( t )  = f(z€(t))dt + f i d w ( t ) ,  zyo) = z;, (2) 

dy@(t)  = h(zf( t ) )dt  + J E d v ( t ) ,  y"0) = 0. 

Here tu, u are  independent Wiener  processes independent of 
the  initial  conditions zi, which have  (unnormalised)  densities 

smooth  and  bounded. As E -+ 0 the  trajectories of (2) converge 
in probability  to  the  trajectory of a  corresponding  deterministic 
system. We assume  throughout  the following: f, h are  bounded 
Cm functions  with  bounded  derivatives of orders 1 and 2. 

The Zakai equation for an  unnormalised  conditional  density 
q ' ( x , t )  is 

q ; b )  = Cfe-!Sa(") where lim,.+o E log C, = 0 and SO 2 0 is 

dq((z,t) = A:qe(z,t) + ;h(")Qyz,t)dYf(t), (3) 
1 

q'(z,O) = d k ) ,  

where A: is the  formal  adjoint of the diffusion operator, Defin- 
ing 

p'(z,t) = exp (--yl(t)h(z)) 1 Q,(Z , t ) ,  

E (4) 
the robust form of the Zakai equation is 

~pf(z,t)--Apf(~,t)+Dpf(s,t)gL(~,t)+-Vf(~,t)p'(z,O) E 1 = 0, 
2 € 

(5) 
P'(Z,t) = d ( z ) .  

Note  that ( 5 )  is a  linear  parabolic  PDE  and  the coefficient 
Vf depends  on  the  observation  path t ++ y ( t ) .  We shall  omit  the 
€-dependence  of y, and view ( 5 )  as a  functional of the observa- 
tion  path y E 00 = C([O,T],R"; y(0) = 0). This  transforma- 
tion  provides  a convenient  choice of a version of the  conditional 
density,  and  under  our  assumptions we can recover the  unnor- 
malised  density q'(z,t) from  the  solution of ( 5 ) .  

Following Fleming  and  Mitter [4], who  considered  filtering 
problems  with E = 1, we apply  the  logarithmic  transformation 

S,(z,t) = -Elogp'(z,t). (6) 

Then Sf(z, t )  satisfies 

iSf (z , t )  - iAS'(z,t) E + H'(z , t ,DS'(z , t ) )  = 0, (7) 

SC(z,0) = So(z), 

where 

Hf(z,t, X) = Xg,(z,t) + - I X ( 2  -IIL(z, t ) .  1 
2 (8) 

Equation (7) is a  nonlinear  parabolic PDE. Formally  letting 
t .--t 0 we obtain  a  Hamilton-Jacobi  equation 

&S(Z, t )  + H ( z , t , D S ( z , t ) )  = 0, (9) 

S(z,O) = SO(Z), 
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where 
Theorem For every  compact  subset Q c R" x [O,T], there 

H ( z , t , X )  = Xgo(z,t) +; 1 X 1' -v(z,t), 
1 (10) exists €0 > 0 and K > 0 such  that  for 0 < E < EO we have 
Y 

Note that g' + go, Vf -+ V ,  and Hf -+ H uniformly 
on  compact  subsets. We shall  interpret  solutions of (9) in the 
viscosity  sense. If we define 

W ( z , t )  = S ( z , t )  - y ( t ) h ( z ) ,  Y E 0 0 ,  (11) 

then, for y E Ron C', W ( z ,  t )  satisfies  a  Hamilton-Jacobi  equa- 
tion, which is presented as the Bellman  equation  for  the  deter- 
ministic  estimation  control  problem below. 

Deterministic  Estimation 

We begin by  reviewing  Mortensen's  method [5] of deterministic 
minimum  energy  estimation. Given an  observation  record yt = 
{ y ( s ) ,  0 5 s 5 t } ,  0 5 t 5 T, of the  deterministic  system 

? =  f (z )  + u,  z(0) = 20,  (12) 

y = h ( z )  + v ,   y ( 0 )  = 0, 

we wish to  estimate  the  state  at  time t ,  the  initial  condition zo 
being  unknown. Define 

J t ( z o ,  u) = SO(ZO) + i,' L(z(s) ,  ~ ( s ) ,  s ) d s ,  (13) 

where 

To prove (18), we use  a  comparison  theorem which depends 
on  the  maximum  principle  for  linear  parabolic  PDE.  The  gra- 
dient  estimate  (19)  uses  a  variant of the  techniques  presented 
in Evans  and  Ishii [3] ,  as suggested to us by L. C. Evans. 

Main  Result 

We are now in  a  position to state  and prove  our  main  result. 

Theorem Under  the above assumptions, we have 

lim E log $(x, t )  = -W(z, t )  

uniformly  on  compact  subsets of IR" X IO,T], where W ( z , t )  is 
defined b y  (11). 

Proof: From  the above estimates  and  the Arzela-Ascoli the- 
orem,  there is a subsequence Ek + 0 such  that S'k converges 
uniformly  on  compact  subsets  to  a  continuous  function 5. By 
the "vanishing viscosity" theorem  [3], 5 is a viscosity solution 
of (9). BY uniqueness, S = S. In  fact, S' 4 s as E + 0. 

S-0 (20) 

From  this we have 

lim E log q'(z, t )  = - (S(z, t )  - y ( t ) h ( z ) )  

uniformly  on  compact  subsets,  for y E Ro. Using the definition 
(11) of W ( z , t )  completes  the  proof. 

f -0 

We now minimise J1 over pairs (z0,u) .  The deterministic or 
minimum  energy estimate ?( t )  given yt is defined to  be  the 
endpoint of the  optimal  trajectory s ++ z'(s), 0 5 s 5 t ,  corre- 
sponding to a minimum  energy  pair ( z i , u - )  : ?( t )  = z ' ( t ) .  

We use  dynamic  programming  to  study  this  problem. Define 
a value function 

W ( z , t )  = inf { J t ( z 0 , u )  : z(0) = 20, z ( t )  = z}. (15) 

By using  standard  methods, we see that W ( z ,  t )  is continuous 
and  formally  satisfies  the Bellman  equation 

(.a,.) 

& W ( z , t )  + H ( z , t , D W ( z , t ) )  = 0, (16) 

W(z ,O)  = SO(Z), 

where 

i?(z,t,X) = max {X(f(z) + u )  - L(z ,u , t )} .  (17) 

To obtain i ( t ) ,  one  minimises W ( z , t )  over z. In  fact,  using 
the definition of viscosity  solutions in Crandall,  Evans  and  Lions 
121, we can  prove: 

Theorem The  value  function W ( z , t )  def ined b y  (15) i s  the 
unique  viscosity  solution of the  Hamilton-Jacobi-Bellman equa- 
t ion (16). In  addition,  the  function S(z , t )  defined b y  ( 6 )  is  the 
unique  viscosity  solution of the  Hamilton-Jacobi  equation (9). 

U E U  

Some  Estimates 
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