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Abstract

Given two "nonlinear filtering problems" described
by the processes

ax ()t = £t aergt ode) Yawie)

. . i=1,2,
day (1 = nlede) yarravice) ,

we define a notion of strong equivalence relating the
solutions to the corresponding Mortensen-Zakai equations

i i i
dui(t,x) ==£ui(t,x)dt +=Llui(t,x)dyt , i=1,2,

which allows solution of one problem to be obtained
easily from solutions of the other. We give a geometric
picture of this equivalence as a group of local trans-
formations acting on manifolds of solutions. We then
show that by knowing the full invariance group of the
time invariant equations

du (6,30 = £h (e,0de , 1=1,2,

we can analyze strong equivalence for the filtering
problems. 1In particular if the two time invariant
parabolic operators are in the same orbit of the invar-
iance group we can show strong equivalence for the
filtering problems. As a result filtering problems are
separated into equivalent classes which correspond to
orbits of invariance groups of parabolic operators. As
specific example we treat V. Benef's case establishing
from this point of view the necessity of the Riccati
equation.

1. Introduction

Very recently new ideas and techniques have been
applied to a long standing problem in stochastic systems
theory: "the nonlinear filtering problem". The approach
taken in these recent studies is markedly different
from previous efforts in that innovative and rather
unusual (from the point of view of classical probabil-
ity theory) mathematical tools are brought to bear on
this long standing problem. A large portion of this
new work is geometrical in nature. Thus Brockett [1]-
[2] and Mitter (3]-[4] have emphasized the significance
of a certain Lie-algebra of partial differential oper-
ators associated with each nonlinear filtering problem,
while Marcus et al {5] and Baras and Blankenship [6]
have provided explicit examples where these concepts
lead to significant developments in the solution of
nonlinear filtering problems. In a different direction
but one that influences at a fundamental level the
geometric constructions, Davis [7][8] and Clark [9]
emphasized pathwise solutions of the crucial stochastic
partial differential equation which governs the evolu-
tion of the conditional statistics. Finally Pardoux
[10], Baras and Blankenship [11] and Baras, Mitter and
Ocone [12] have analyzed evolution properties of such
stochastic p.d.e's and path integral representations
of solutions. A good reference to all these develop-
ments is the forthcoming proceedings volume of a recent
symposium on these topics [13].
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79-C~0808 at the University of Maryland, by AFOSR under
grant AFOSR-77-3961B at LIDS of MIT and by the Joint
Services Electronics Program under grant IN00014-75-C~
0648 at Harvard University.
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Our objective here is to describe a geometric way
of characterizing computationally equivalent nonlinear
filtering problems. This work is inspired by similar
ideas in the theory of ordinary differential equations
which go under the names "Similarity Methods" or "Group
Invariance Methods" [14]-[15],

We will only briefly discuss the focal points of
our current understanding of the nonlinear filtering
problem and we will refer the reader to [16], [17] or
the references [1]-[13] for details. Thus the "nonlinear
filtering problem for diffusion processes" consists of
a model for a "signal process" x(t) via a stochastic
differential equation

dx(t) = £(x(t))dt + g(x(t))dw(t) (1.1)
which is assumed to have unique solutions in an
appropriate sense (strong or weak, see {17]). In addi-

tion we are given "noisy"
x(t) described by

dy(t) = h(x(t))dt+dv(t). (1.2)
Here w(t), v(t) are independent standard Wiener pro-

cesses and h is such that y is a semimartingale. The
problem is to compute conditional statistics of func-
tions of the signal process (x(t)) at time t given the
data observed up to time t, i.e. the g-algebra

FZ = o{y(s),0ss<t}

observations of the process

(1.3)

Clearly the maximum information about conditional sta-
tistics is obtained once we find ways to compute the

condifional probability density of x(t) given FZ. Let

us denote this conditional density by p(t,x). Now one
of the main points of the new developments has been to
emphasize a different function, so called unnormalized
conditional density,u(t,x) which produces p after nor-
malization

_u(e,x)

p(t,x) Su(t,z)dz

(1.4)
The reason for the emphasis put on u is that it satisfies
a linear stochastic p.d.e. driven directly by the obser-
vations. This is the so called Mortemsen-Zakai stochastic
p.d.e., which in Ito's form is

du(t,x) =Lu(t,x)de+h’ (x)u(t,x)dy(t) 1.s)

Here # is the adjoint of the infinitesimal generator of
the diffusion process g(-) =

10 3 o3
2100~ (E e gy @001 E{fiu)?l(xz;

which is also called the Fokker-Planck operator associated
with x(.). In (1.6) the matrix o is given by

a(x) = g(x)g(x)T , .7

and we shall assume that ¢ is possitive definite, i.e.
the elliptic operator £ is nondegenerate. When applying
geometric ideas to (1.5) it is more convenient to con-
sider the Stratonovich version

BB o 2 he0ThEu(e, T (u (e,

(1.8)
We shall primarily work with (1.8) in the present paper.
Letting 1T
A:=£—5hh

%:= Mult. by hj(jth comp. of h)

(1.9)

we can rewrite (1.8) as an infinite dimensional bilinear
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equation

du(t) _ .

arrantiy (A+j£lBjyj(t))u(t). (1.10)
Throughout the paper we shall assume that every equation
of the form (1.8) considered has a complete existence
and uniqueness theory established on a spaceX. Further-
more we shall assume that continuous dependence of solu-
tions on y(-) has been established. TFor results of this
type we refer the reader to [¢ ][40][42].

The estimation Lie algebra introduced by Brockett
[2 ] and analyzed in [1 ]-[€ ] is the Lie algebra

A(E)=Lie algebra generated by

A and Bj’ j=1,...p. (1.11)

Again we shall assume that for problems considered the
operators A,B, have a common, dense invariant set of
analytic vectdrs in X [48] and that the mathematical re-~
lationship between A(E) and the existence-uniqueness
theory of (1.8) is well understood. For results of this
nature we refer to [6 ][12].

A central problem in the current developments of
nonlinear filtering theory is to develop a methodology
for recognizing mathematically "equivalent" problems.
Equivalence here carries the following meaning: two non-
linear filtering problems should be equivalent when
knowing the solution of one, the solution of the other
can be obtained by relatively simple additional compu-
tations. This problem is of course the reason for the
emphasis on geometric methods in recent efforts. Ex-
amples discovered by Benes [1], created certain excite-
ment for the possibility of a complete classification
theory. We shall see how transparent Benef's examples
become from the point of view proposed in this paper.

It will be apparent from the present paper that the
fundamental concept in this problem of 'equivalence" is
that of invariance groups of (1.8). To make things pre-
cise consider two nonlinear filtering problems (vector)

axi(e)=fi(x1(r)de+gl(xL(t))dwi(t)

dyi()=ntxi(e))derdvice) 5 1=1,2
and the corresponding Mortensen-Zakai equations in
Stratonovich form

(1.12)

du, (t,x) . .
= - 3 P, 0w w60y ©

i=1,2 (1.13)
Definition: The two nonlinear filtering problems above
are strongly equivalent if u, can be computed from uy,
and vice versa, via the following types of operations:

Type 1: (t,xz) = a(t,x1), where ais a diffeomorphism.
Type 2: uz(t,x)=w(t,x)u1(t,x), where ¢ (t,x)20 and

¥=1(e,%)20.
Solving a set of ordinary (finite dimension-

Type 3:
al) differential equations (i.e. quadrature).

Brockett [2 ], has analyzed the effects of diffeo-
morphisms in x-space and he and Mitter [4 ] the effects
of so called "g ge" transformations (a special case of
our type 2 operations) on (1.8). Type 3 operations are
introduced here for the first time, and will be seen to
be the key in linking this problem with mathematical
work on group invariance methods in o.d.e. and p.d.e.'s

Our approach starts from the abstract version of
(1.13) (i.e.(1.10)):

duy i, P o,
F= (A +j£13jyj(t))ui
where A", B} are given by (1.9). We are thus dealing
with two parabolic equations., We will first examine
whether the evolutions of the time invariant parts can
be computed from one another. This is a classical prob-
lem and the methods of section 3,4 apply. In section 5
we shall give an extension to.the full equation (1.14)
under certain conditions on B}. We shall then apply this
73

i=1,2 (1.14)

7/

result to the examples studied by Bene¥ and recover the
Riccati equations as a consequence of strong equivalence.
Further results and details can be found in [20] which
will appear elsewhere.

2. A Motivating Example from Parabolic Equations

The most common starting point in descriptions of
group invariance in partial differential equations is
the discussion of invariance properties of the heat
equation: 2
ou(t,x) _ 37u(t,x)

3t ax2

It is well known [#4]s[21] that (2.1) is invariant under
the variable transformation

(2.1)

xl—-)esx

t b—vezst .

That is to say if u(t,x) is a solution of (2.1), so is
u(ezst,esx). Clearly the initial data should be changed
appropriately. So if ¢ is the initial data for u, the
initial data for the transformed (under 2.2)) solution
are 4(eSx). This elementary invariance can be written
symbolically as

(2.2)

2 2s 2
etD eSXDé - eSXDee tD é . 2.3)
Here
_ 3
. 5 (2.4)
D2: = 3—2 '
X

Often in this paper we shall give double meaning to
exponentials of partial differential operators. Thus

while exp(tDZ) in (2.3) denotes the semigroups gener-

ated by D2 [28), exp(sxD) is viewed as an element of the

Lie group of transformations generated by xD. It is
easy to verify that
(%) = [exp(sxD)d] (x) , (2.5)

where we view exp(sxD) as such a transformation, with
parameter s, Now the association

tD2

(t,8) > e eSXD

(2.6)

defines a two parameter semigroup with product rule

(t,s)-(tl,sl): = (tlexp(—25) + t,s+sl) R z.7)

because of the invariance (2.3). A one parameter sub-

group is

t a(exp(2cr)~1)

-CIr

(2.8)

s

where a,c are positive constants and r»>0 is the group
parameter. To this subgroup (2.6) associates the one
parameter semigroup of operators

pa(exp(Zcr)-l)Dz—crxD

H(x): (2.9)

ex

_ e-crxDea(l—exp(-Zcr))Dz.

It is straightforward to compute the infinitesimal
generator of H
Mg: = lim H(r)é-¢ _ Zachd—ché. (2.10)
0 T

But in view of (2.9) and (2.10) we have the operator
identity

2
Mt _ e—crtDea(l—exp(—th))D (2.11)
To understand the meaning of (2.12) recall that for
appropriate functions 4, exp(Mt)4 is the solution to the
initial value problem

e



2ac§—2w(t x)-cxg—w(t X)

e - ) (x) =
ox

}(2 12)

w(0,x) = é(x)

Then .(2.11) suggests the following indirect procedure
for solving (2.12):

Step 1: Solve the simpler initial value problem
2
Buéi,x) u(t x)
ox’ (2.13)
u(0,%) = 4(x)
Step 2: Change independent variables in u to

obtain w via

(2.14)

Here we have interpreted the exponential in (2.11) as
a transformation of variables.

w(t,x)=u(a(l-exp(-2ct)),exp(-ct)x).

This simple example illustrates the main point of
the present paper: knowing that a certain partial
differential equation (such as (2.1)) is invariant
under a group of local transformations (such as (2.8))
can be used to solve a more difficult equation (such as
(2.12)) by first solving the simpler equation (such as
(2.1)) and then changing variables.

This idea has been developed by S.I. Rosencrans in [15]
[23]. It is appropriate to emphasize at this point that
this use of a group of invariance of a certain p.d.e.
is not quite traditional. The more traditional use of
group invariance is discussed at length in [4] [2]], and
is to reduce the number of independent variables in-
volved in the p.d.e. Thus the traditional use of group
invariance, is just a manifestation and mathematical
development of the classical similarity methods in
o.d.e.

The point of the simple example above is to
illustrate a different use of group invariance which
goes roughly as follows: given a parabolic p.d.e.

(2.15)

and a group of local transformations that leave the
solution set of (2.15) invariant, use this group to
solve a "perturbed" parabolic p.d.e.

= (L + P)w (2.16)

Ve
by a process of variable changes and the possible
solution of an ordinary (not partial) differential
equation. The operator P will be referred to as the
""perturbation”.

Our contribution in this paper can be viewed as an
extension of the results of Rosencrans to stochastic
partial differential equations of the type (1.5), that
play a fundamental role in nonlinear filtering theory.

3. The Invariance Group of a Linear Parabolic Operator .

Consider the general, linear, nondegenerate elliptic
partial differential operator

a2

n
Le =2 ox o

i,3

( y— Z b (x)—~—-+ c(x)id.
X3

a;
=17 i= (3.1)
and assume that the coefficients a, b., ¢ are smooth
enough, so that L generates an anai}tlc semigroup [22],
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denoted by exp(tL), for at least small t=0, on some
locally convex space of X of initial functions ¢ and
appropriate domain Dom(L).

Let V be the set of solutiomns to

du
ot

Lu
(3.2)

u(0,x) = #(x)

in X, as we vary 4. The aim is to find a local Lie
transformation group G which transforms every element
of V into another element of V. Such a group will be
called an invariance group of (3.2) or of L.

This of course is a classical topic of mathematical
research initiated by Sophus Lie [24]. Lie considered a
system of p.d.e.'s

S(u) = (3.3)

where the independent variables are Xq>XpseeesX while
n

the dependent variables are Upseeest e A solution of
(3.3) is an n-dimensional manifold u = A(x) in MxEP,
where M is typically R but in general is a manifold,

That is a solution is a hypersurface in MﬁRP. A local
group of transformations G of (3.3) consists of trans-
formations

(xl,xz.,,,.xn,ul,uz,...,u Y (x! ,xz,...,x ,ul ...,u;)

l’
(3.4)

where each of the primed variables can depend on all the
unprimed variables. The qualifier local means that the
group properties (i.e. multiplication and inversion)
hold only for a neighborhood of the identity element.

An invariance group acts on M and permutes the
solution manifolds
= AT

= A(X)H> u' (3.5)

g

Note that G induces a group T acting on the space of

functions onﬁﬁ with values in E?, denoted by F(MﬂRP).
The element g corresponding to a g specified by (3.4)
will map the function A into A', i.e.

A" = E(A) (3.6)

It is easy to show [23] that G and T are isomorphic
as groups. We are interested in groups G acting linear-
ly. For that we need:

Definition: © is linear if there exists a Lie group
of transformations I:MM such that for each geG there
exists a Oel, a pxp matrix "multiplier” v—v(x,g) and a
solution §y of (3.3) such that

A (x) = v(x,8) A(G(X)) + §(x). (3.7)

The meaning of (3.7) is rather obvious. The way (]
acts on functions is basically via the "coordinate
change" group £ of M. The main result of Rosencrans [23],
concerns the case of a single parabolic equation (3.2),
i.e, =1 in (3.3).

Theorem 3.1 [23]: Every transformation E in the
invariance group G of a linear parabolic equation is of
the form

u(t,x)v(p(t,x))ulp(t,x)) + y(x) (3.8)

where p is a transformation acting on the variables (t,x),
Yy a fixed solution of the parabolic equation.

Clearly for linear parabolic equations T is always



infinite dimensional since it always includes the
infinite dimensional subgroup & consisting of trans-
formations of the form

AvscA + 4, (3.9)
where A¢F(M;R), c a scalar #0, ¢ a fixqg solution of
(3.2). Because of (3.8) one says that G acts as a
multiplier representation of I upon the space of
solutions of (3.2).

We consider now one-parameter subgroups of the in-
variance group G of a given partial differential equa-
tion, i.e. p = 1 in (3.3). That is we consider sub-

groups of G of the form {XS} where s '"'parametrizes" the

elements. According to standard Lie theory the
infinitesimal generators of these one-parameter sub-
groups form the Lie algebra A(G) of the local Lie group
G [14]. We shall, using standard Lie theory notationm,
denote Xs by exp(sX) where X is the infinitesimal gen-

rator of the one parameter group {X_ }. Thus XeA(G).
Clearly the elements of A[G] can be considered as first

order partial differential operatoxs om EP+1

.

= y(x,u) g—u - g By <x,u)%— (3.10)
i=1 " xy

Indeed this follows from an expansion of exp(sX)(x,u)
for small s, Now {X } induces a one-parameter subgroup

[X ]in G acting on functions. Let ¥ be the infinites—
imal generator of {XS}. Given a function Aegxﬁp,EQ let

A(s,x): = YS(A)(x) . (3.11)

If x,,u are transformed to x;,u' by a specific one-para

i
meter subgroup exp(sX) of G we can expand

A(x) + sy(x,A(x) + 0(s2)
) (3.12)
xi-sBi(x,A(x)) + 0(s7)

Thus
A(x') = BA(X)

A(x)-s Z B; (x,A(x))
i i

i=1

+ O(S )

or

A(s,x) -~ A(0,x)
s

lim
s+0

X(A) (x)

A(s,x) - A(x)
s

lim
s+0
A(s,x') - A(x")
s
u' - A(x")
)

lim
s+0
lim
s+0

YGAG) + 2 B, (x,A(%) ——l“"‘ .
i=1
(3.13)

In view of (3.7) the condition for G to be linear is
that {23]

(3.14)

The best way to characterize G (or B is by com~
puting its Lie algebra A(G) (or AB). A dlrect _way of
doing this is the following. By definition Xea(T) iff

sX

8(A) = 0=>8(e”™A) = 0 for small s (3.15)
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When & is linear this reduces to

8(a) = 0=>8F@) =0 , (3.16)
since
g—s 8e5%a) = 8(e%*(a))

implies (3.16) if we set s 0. It is not difficult to
show that (3.16) leads to a system of partial differ-

ential equations for y and ﬂi.

The above method of determining G is different from
the Lie-Ovsjannikov method [24] [5]. The latter proceeds
along the following lines. For an o.d.e.

D(u) =

S - f(x,u) =0 (3.17)

we wish to find transformations of Eg into Eg that per-

mute solution curves. Suppose h:Egﬁﬁg is a diffeo-

morphism
(x,0) > (B(x,0) , ¥ (x,u)) . (3.18)

Observe that we can extend h to derivatives along the
following lines. If a curve passes through (x,u) with
slope du/dx, its image passes through (x,u) with slope
du'/dx' where x' = $(x,u), u' = y(x,u) and

¥, + ¥, du/dx

du' _*x ~ fuw "7
dx' ¢ + ¢ dufdx
x u
The map
h* '
x X
a u! (3.19)
du T/dx!
ax du'/dx
is an extension of h from EgAEg to E@*E?. In Eg the

given o.d.e. determines a surface. The fact is that h
permutes solution curves iff h#* leaves this surface
invariant. The Lie-Ovsjannikov method is then to find
all h* which have s f(x,u) as an invariant manifold.
Its great popularity is due to its simplicity. In the
case of p.d.e.'s one proceeds exactly the same way by
computing derivatives in the transformed variables. The
important (albeit simple) fact is that the transformed
derivative of order k involves only old derivatives up
to order k. A more geometric approach can be taken by
introducing jet bundles. One views a smooth function on
M as a cross-section of the vector bundle MxR. The
k-jet bundle has fiber (over peM) consisting of local
cross sections which agree up to order k at p. The
extension h* in (3.19) can be considered as a transfor-
mation of cross sections of the k-jet bundle. We shall
not consider the Lie-Ovsjannikov method any further in
the present paper; we refer the interested reader to (2]
for many interesting applicatioms.

Returning back to the determination of A via
(3.16) we shall consider only the case when € is linear,
since it is the only case of importance to our interests.
Then in view of (3.14)

8.(x,u) = B, (%)
1 b (3.20)

ud(x) + #(x)
, é.

y(x,u)

Let us denote by 8 the vector

Then if A is a solution of (3.3),

for some B s

[Bl,Bz,---,B 1"

another solution is

A(s,x) exp(sX) A,

which satisfies



n
L) - soa 8, A 4 g
1=1 i

(3.21)
A(0,x)= A(x)

in view of (3.13) and due to the linearity assumption
(3.20). The crucial point is that (3.21) is a first
order hyperbolic p.d.e. and thus it can be solved by
the method of characteristics. The latter, very brief-
ly, entails the following. Let ¢(t) be the flow of the

vector field % B
i=1

o , 1.e. the solution of the o.d.e.
i axi

E%-e(t,x) = B(e(t,x))

(3.22)
e(0,x) = x .
Then from (3.21)
So Als=t,e(£,10) = -8(e (£,x))Als=t,6 (t,x))
+ d(e(t,x)
and therefore
S
A(s,x) = exp(f 8(e(r,x))dr)Ale(3,x))
s (3.23)
+ f 3 (t,x)dt
0
where N
8(t,x) = exp(| 6(e(r,x))dr)d(e(t,x)), (3.24)

0
s
with (3.7) one can view exp([é(e(r,x))dr)

0
as the "multiplier" v, (3.23) clearly displays the
linearity of G near the identity.

By comparison

The most widely known example, for which A(T) has
been computed explicitly is the heat equation (2.1).
The infinitesimal generators in this case are six, as
below

9 9 -] 9

= 5 2t + ¥ , =—

ot ot ox ’ dx .} (3.25)
9 23 =) 2

1, Zt'é;'i'x, 4t 5_t+ 4txa—x+ X,

Let us apply these general results to a linear
parabolic equation, like (3.2). From Theorem 3.1, then
G is linear. The infinitesimal generators of G are
given in view of (3.13) (3.20) (note that ¥ =t here)
by

- 2 4z - -
Z = a(t,x)5r + §=1Bi(t’X)axi +y(t,x)id.  (3.26)

for some functions a,Bi,y of t and x. If u solves (3.2)

so does

v(s) = exp(sZ)u , for small s (3.27)
However v is also the solution of

n
v, v
o "%t §=lsiaxi * oy
(3.28)
v(0) =u

}
a first order hyperbolic p.d.e. (solvable by the method

of characteristics). Clearly since %E - L is linear
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(3.16) applies and therefore

ZueV if ueV (3.29)
The converse is also true: if (3.29) holds for some
first order partial differential operator, Z is a
generator of G.

Now (3.29) indicates how to compute a,B,y. Namely

&G -vu=0 (3.30)

implies
& Lyu 4% 82 4y =0 (3.31)
3t t” % Pigg TV : .
i=1 i
For ueV the second reads
n
u+Z B
t =1

+
t

o

t Biux

n
1,t% HYputau 4T .
1 i=1 i2
+ yu, = LZu ,
or

d
3¢ Zu = (LZ-ZL)u ,
or
4
dt
In (3.32)

o
of afat +

Z

[L,Z2] on V (3.32)

, ] denotes commutator and %? Z is symbolic

™M —

i=1Bi,t 55; + Ye id. Thus the elements of
A(®) in this case satisfy a Lax equation. It is
immediate from (3.32) that Z form a Lie algebra.
Furthermore it can be shown [¢3] that o is independent
of x, i.e. a(t,x) = a(t) and that every Z satisfies an

o.d.e.

L -1
a %, G S5tz =0 (3.33)
at dt

where {< dim G.

4. Using the Invariance Group of a Parabolic P.D.E. in

Solving New P.D.E.'s.

In this section we use the results of the previous
section, to generalize the ideas presented via the
example of section 2. We follow Rosencrans [15] - [23].

Thus we consider a linear parabolic equation like
(3.2) and we assume we know the infinitesimal generators
Z of the nontrivial part of T. Thus if u solves (3.2),
so does v(s) exp(sZ)u but with some new initial data,

say R(s)4. That is

5%l = ®LRr(s) on x. 4.1
Now R(-) has the following properties. First

lim R(s)d = ¢ (4.2)

s+0
Furthermore from (4.1)

etLR(r)R(s)d = erzetLR(s)é = erzeszetLé

= (THIZthy | e rhyd . (4.3)

Or

R(r)R(s) = R(r+s) for r,s=0 (4.4)

rom (4.3), (4.4), R(+) is a semigroup. Let M be its

generator:



Mé = lim , deDom(M) . (4.5)

R(s)d-4
0 S

It is straightforward to compute M, given Z as in (3.26).

Thus

oé

o,
i

n
Mé = a(0)Lé + Bi(O,x) + ¥(0,x)¢d . (4.8)
i=1

Note that M is uniquely determined by the Z used in
(4.1). The most important observation of Rosencrans
[ ] was that the limit as t+0 of the transformed solu-

tion v(s) = exp(sZ)u, call it w, solves the new initial
value problem
4.7
w(0) = ¢
That is
sZ tL tL sM
e e =e e on X
or (4.8)
ZetL = etLM on Dom(L) .
This leads immediately to the following generalization
of discussionsin section 2:
To solve the initial value problem
g§-= Mw
} (4.9)
w(0) = ¢
where
2 2
M=a(0)L +Z ai(o,x)a—X + y(0,x) id (4.10)

i=1 i

follow the steps given below.

Step 1: Solve u, = Lu, u(0) = 4.

Step 2: Find generator Z of T corresponding to M
and solve

v _ av 2 v

35 - X)) x T By(t,x) 5o+ y(e,x)v

=l i boan

v(0) =u 7
via the method of characteristics. Note
this step requires the solution of ordi-
nary differential equations only.

Step 3: Set t=0 to v(s,t,x).

This procedure allows easy computation of the solu-
tion to the "perturbed" problem (4.10) if we know the
solution to the "unperturbed" problem (3.2). The '"per-
turbation" which is of degree < lst, is given by the
part of M:

P= (4.12)

[l n =]

d .
B, (0,x) = + y(0,x). id.
1 1 axi

We shall denote by A(P) the set of all perturbations
like (4.12), that permit solutioms of u_ = (L+P)u to be
computed from solutions of u_ = Lu, by integrating only
an additional ordinary diffefential equation. We would
like to show that A(P) is a Lie algebra strongly related
to the Lie algebra A(G) of the invariance group of L.

Definition: The Lie algebra A(P) will be called
the perturbation algebra of the elliptic operator
L.
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To see the relation between A(G) and A(P), observe
first that each generator Z in A®) uniquely specifies
an M, via (3.26), (4.6). Conversely suppose M is given.
From the Lax equation (3.32) we find that

dz
dt

[L,2) = [L,M]

t=0 t=0

n
S
at(o)L+§=lBt,t(°’x)axi + yt(O,x)id .
(4.13)

Note that the right hand side of (4.13) is another
perturbed operator M'. Thus given an M, by repeated
bracketting with L all initial derivatives of Z can be
obtained. Since from (3.33) Z satisfies a linear
ordinary differential equation, Z can be determined
from M. So there exists a 1-1 correspondence between
A(G) and the set of perturbed operators M, which we
denote by A(M). It is easy to see that A(M) is a Lie
algebra isomorphic to A@). Indeed let Zi correspond

to Mi’ i=1,2. Then from (4.8) we have
tL _ .t t
e [Ml,leé =e LMluzd-e LMZMld
= t _ t - tL
= ze,4 - 2,0 LMlé 2,2,e"

- 2.2 = (z,,2,] ety . (4.14)

271

This establishes the claim. Since each perturbation P
is obtained from an M by omitting the component of M
that involves the unperturbed operator L, it is clear
that A(P) is a Lie subalgebra of A(M). Moreover the
dimension of A(P) is one less than that of A(M). In
view of the isomorphism of A(M) and A(@)we have
established [15]:

Theorem 4.1: The perturbation algebra A(P) of an
elliptic operator L, is isomorphic to a Lie subalgebra
of A(®)(i.e. of the Lie algebra of the invariance group
of L). Moreover dim(A(P)) = dim(A(T))-1.

One significant question is: can we find the
perturbation algebra A(P) without first computing INCP
the invariance Lie algebra? The answer is affirmative
and is given by the following result [i5].

Theorem 4.2: Assume L has analytic coefficients.
An operator PO of order one or less (i.e. of the form

(4.12)) is in the perturbation algebra A(P) of L iff
there exist a sequence of scalars A.,A,, . and a
sequence of operators Pl’PZ"" of ordér less than or

equal to one such that

(L] =AL+P . 00

1
and Elktk/k! N ZPktk/k! converge at least for small t.

It is an easy application of this result to compute
the perturbation algebra of the heat equation in one

It turns out that

dimension or equivalently of L = ) 9.
ox
A(P) is 5-dimensional and spanned by

- 2 3 9
A(P) = Span(l,x,x", ) xax). (4.15)

So the general perturbation for the heat equation looks
like

P = (ax+b) %; + (cx2 + dx + e)id (4.16)
Note that the
6-dimensional
the example

where a,b,c,d,e are arbitrary constants.
invariance group of the heat equation is
(3.25). 1t is straightforward to rework



of section 2, along the lines suggested here.

The implications of these results are rather
significant. Indeed consider the class of linear
parabolic equations u, = Lu, where L is of the form

(3.1).
this class by :

We can define an equivalence relationship on

"L is equivalent to L if L2—L1+P

where P is an element of the perturbation algebra

A (P) of L,". Thus elliptic operators of the form

(3.1), or equivalently linear parabolic equations are
divided into equivalent classes (orbits); within each
class (orbit) {L(k)} (k indexes elements in the class)
solutions to the initial value problem u(k)t=L(k)u(k)

with fixed data ¢ (independent of k) can be obtained
by quadrature (i.e. an o.d.e. integration) from any one
solution u(ko).

We close this section by a list of perturbation
algebras for certain L, from [{5].

Elliptic operator Generators of perturbation
L algebra A(P)
D2 l,x,xz,D,xD
xD2 1,x,xD
2.2 2
x°D xlogxD,xD,logx, (logx) ,1
xD 1,x'1,xD |
exD2 l,e_x,D
Table 4.1. Examples of perturbation algebras.

5. Sufficient Conditions for Strong Equivalence and

Applications.

We return now to the problem posed in section 1.
Namely to discover conditions that imply strong
equivalence of two nonlinear filtering problems.
main result is:

OQur

Theorem 5.1: Given two nonlinear filtering pro-
blems (see (1.12)), such that the corresponding
Mortensen-Zakai equations (see (1.13)) have unique
solutions, continuously dependent on y(-)., Assume that
using operations of type 1 and 2 (see definition in
section 1) these stochastic p.d.e. can be transformed
in bilinear form

Bui
+ =
3¢ (A Z~lBJ§J(t))u i=1,2
such that:
(1) Ai,i=1,2, are nondegenerate elliptic belonging
7

to the same equivalence class (see end of
section 4)

(ii) B%, j=1,...p, i=1,2 belong to the perturbation
J

algebra A(P) of (i).
Then the two filtering problems are strongly equivalent
Proof: Only a sketch will be given here. The

proof is rather lengthy and can be found in [20]. One
first establishes that is enough to show computability

of solutions for piecewise constant £, from one another,

by the additional computation of solutions of an o.d.e.
For piecewise constant § the solution to any one of the
p.d.e.'s in blllnear form is glven by

(Ai+B;' £ )(tm— V. (A +t gl

m = Jm—l In-1

i i
A™+B, )t
e( Jl) 14

) (t )

u;=e m—l-tm—Z

; 1=1,2 (5.1)

Since Al,A2 belong to the same equivalence dlass there
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2eA(G), (where A(G) is the Lie algebra of the

invariance group for the class) and PlzeA(P) (where A(P)

is the perturbation algebra of the class) such that
(see (4.8)):

exist Zl

21, .12
ACATEE (5.2)
12 1 1 2
esZ etA - etA esA , £,s20 .
That is consider AZ as a "'perturbation" of Al. We know

by now what (5.2) means: to compute the semigroup
generated by Az, we first compute the semigroup gener-

ated by Al, we then solve the o.d.e. associated with
the characteristics of the hyperbolic p.d.e.

ov

3 (5.3)
and we have:
sA i2 1
e 2 _ [esZ tA ] . (5.4)

More generally since Al + Bl, Az + Bi belong to the

same class there exist Z§§ eh(G), PlzeA(P) such that
A2 + B2 = Al + B% + P%Z
k 3ok (5.5)
sz} cqalesh t(Al+B],') s(a+82)
e Jk 3 a I e k7,

It is now apparent that if we know (5.1) explicitly for
i=1, we obtain Uy from (5.5) with the only additional

computations being the integration of the o.d.e.'s
associated with the characteristics of the hyperbolic
p.d.e.'s

v _ 12 .o

Y Jk » ki =1,...p . (5.6)
This completes the proof.

Let us apply this result to the Bene$ case. We

consider the linear filtering problem (scalar x,y)
dx(t) dw(t)

dy(t) = x(t)dtHdv(t) .}
and the nonlinear filtering problem (scalar x,y)

dx(t) = £(x(t))dt + dw(t)

dy(t) = x(t)dt + dv(t) j

The corresponding Mortensen-Zakai equations in
Stratonovich form are: for the linear

(5.7

(5.8)

2

du, (£,x) 1
—_- (—-— -X )u (t X)+xy(t)u (t,x) ;
X

ac

for the nonlinear

(5.9

2
1,9 2 3
7 (Copx Ju, (£,x)- Sk(fuz) +

ox (5.10)

+ xi(t)uz(t,x) .

We wish to show that (5.7)(5.8) are strongly equivalent
only if f (the drift) is a global solution of the
Riccati equation

£+ £2 2
X

ax” +bx +c

(5.11)

First let us apply to (5.8)(5.10) an operation of type
2. That is let (defines VZ)

X
uz(t,x) = vz(t,x)exp(l f(u)du) . (5.12)



Then the new function v, satisfies

2

v, (t,x) 2

+xy(e)v,(e,x) (5.13)

where

V(x) = £+ f2
f x

-(5.14)

Existence, uniqueness and continuous dependence on y(-)
for (5.9)(5.10) have been established in [{2] using
classical p.d.e. results. We apply the theorem to (5.9)

(5.13). So
2
A1=£(a_ _x2)
2 ax2
(5.15)
2
A2=l(-a—— -x2 -V)
2 2
ox
while
1 2
B™ = B” = Mult. by x . (5.16)
From the results of section 4, the only possible
equivalence class is that of the heat equation. Clear-

1y from (4.16) or the table 4.1 A,BY,B%A(P) for this

class. For AZeA(P) it is necessary that V be quadratic,
which is the same as f satisfying the Riccati equation
(5.11), in view of (5.14).

Recall that the solutiom of (5.9) is

2
- explo ZEBEN )

20(t) .17

ul(t,x)
where

dp(t)

a(t) (dy(t)-p(t)de) ;u(0) = §
2 (5.18)
do(t) = 1-07(t) ; o(0)=0
Bene$§ [19], using a path integral computation showed that
the solution of (5.13), when (5.11) is satisfied is
given by 2
vy (t,x) = exp[- (xpu(e)) ]

e (5.19)
where
dp() = ~(atDo(O)u(e)de - 2o ()bdt+o(£)dy(t)
do(t) = 1- (a+l)o>(t)

(5.20)

This result has since been established by more straight-
forward (and short) methods in [if]. As Benes [19]
remarks there were strong hints that his class was
essentially equivalent to a linear problem; compare
(5.17)(5.19). Indeed as Mitter and Ocone [t7] observed
the estimation Lie algebras for the two problems are
isomorphic; a fact that enabled Ocomne [&] to show using
a Wei-Norman type comstruction that the ways of solving
(5.9)(5.10) are identical. What we have shown here is
a converse, from the point of view that strong equiv-
alance of (5.7)(5.8) implies the Riccati equation. We
also maintain that knowledge of group invariance theory
makes the result immediate at the level of comparing
(5.9) with (5.13).

Other examples can be found in [0}, where a differ-
ent use of group invariance methods is also developed.
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