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Abstract. An extension of Rosenbrock's design method for linear multivariable
systems is presented, based on the concept of block diagonal dominance for rational

transfer function matrices.

The technique allows independent design of
compensators for low-interacting subsystems.

The flexibility of the method with

respect to partitioning and measured of gain leads to improved estimates for overall

system stability under decentralized compensator design.

Various new directions

and extensions suggested by our methods are discussed and examples illustrate

the theory.
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INTRODUCTION

The current literature on control of large
scale systems is dominated by techniques for
model simplification and order reduction [6]. A
naturdl trend in this area is the decentralized
control philosophy. Our approach here is to
study the natural partitioning of a system into

subsystems with "low'"interaction; and to develop

sufficient conditions for stability of the
closed loop system using decentralized control
for linear, time-invarinat systems. We describe
here the systems by matrix transfer functions.

During the present decade transfer function (or
frequency domain) design methods have been
developed [1]-[5], that offer to the designer
some substantial advantages over state space
methods. Primarily, these methods have been
developed for centralized compensator design.
The method proposed here is a frequency domain
method for decentralized compensator

design. As such (and primarily due to its
intrinsic flexibility) the method leads.to a
natural, frequency dependent, treatment of
interacting subsystems and.suggests natural
partitions (provided such exist) of large
systems.

The general multivariable control system is
shown in fig. 1 below.

u(s)_ e(s y(s)

K(s)—»—Q(s)r—>

< {F(s)% <+

The general closed-loop system.

L(s)

Fig. 1.

Here Q(s) is the plant transfer function
matrix and is assumed pxm, K(s) is the input

compensator mxn, L(s) the output compensator
nxp and F(s) the feedback compemsator nxn.
Letting,

G(s) = L(s)Q(s)K(s) (1.1)

for the forward loop transfer function, the
closed loop transfer function is

Hs) = [1, + G()F(9)] 7 5(s)
i (1.2)
= G(s) [T + F(s)G(s)]
Defining the inverse matrices
égc"l .
- (1.3)
‘ HAH

\

(provided they exist) we have the inverse
relationship -

H(s) = F(s) + G(s). (1.4)

For obvious practical reasons Rosenbrock in

[1,2] searched for ways to design feedback

compensators of the simple form F(s)=diagff }.
. U

In [1,2] Rosenbrock and his coworkers devel-
oped a practical technique for compensator
design called Inverse Nyquist Array method.
This well known method can be effectively
supported by interactive computer codes and
has been rather extensively used to design
compensators for industrial processes [2].

Of primary importance in this method is the
concept of a diagonally dominant matrix on a
contour D ot the complex plane. A rational
nxn matrix Z(s) is diagonally dominant on the

contour D if zii(s) has no poele on D,
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i=1,2, -, k and for each s on D Theorems" [7]-[81, to guarantee "low" subsys-
k ‘ tem interaction. The resulting design approack

[zii(s)l -z [zij(s)|>0,i=l,2,...,n is a three step process. First, a test is
j=1 : performed on the open loop plant transfer H
j#1 (1.5) function matrix. If the test is satisfied a°

o? k ) decogp;ed design approach is pursued where

IZ:-(S)I -7 IZ--(5)|>0,1y2s--~-“ the .dlagonaF subsystems are assum?d to ?e

ii =1 ji non-interacting. Complete freedom is avail-

341 able here as to design technique for the

The technique consists then in designing first
the input compensator K(s) (L(s) = In usually)

so that G(s) is diagonally dominant on a
relatively large part (with respect to the
‘poles and zeros of G(s) of the imagiﬁaty
(Ofpfwmax). This then allows by use of

axis

Gerschgorin estimates [2] for eigenvalues, the
design of feedbaqk gains fi for each loop

independently, guaranteeing stability of the

" overall system when all loops are closed.
Furthermore, after selecting the gains, using
the Ostrowski refinement of Gerschgorin's
theorem, "fuzzy" inverse Nyquist plots for
each loop. (in the sense of an approximation)
are derived and thus the stability of the
design evaluated. The ‘technique is extremely
useful since most of the work can be effectively
performed by interactive computer code and.
graphics. : .
Our method concerns decentralized compensator
design and is reminiscent of Rosenbrock's
Inverse Nyquist Array method. By decentralized
compensation we understand that the feedback
compensator transfer matrix has the partitioned
form,

F(s)=diag[F1(s),F2(s),...,Fm(s)] (1.6)
m
where F.(s) is k. xk,, I, k.= n. Thus the n
i 17717 {214

vectors e(s),&(s),&(s) are partitioned
- conformally into m subvectors each. Similarly,
the open loop-matrix transfer function G(s) is

partitioned in mz, kixk blocks Gij(s).. As a

3

result the inverse closed loop matrix transfer
function is also partitioned
G,. + F,(s is=
PR ACKERE
(s) = {.

Cy5(s), 1 4]

Hij (1.7)

We are thus lead to m separate ‘compensator
design problems and we want to develop condi-
tions that guarantee desired performance of
the overall system. The latter is equivalent
to assuring "low" subsystem interaction.

There are two main reasons that render decen-
tralized compensation desirable in large scale
systems: (a) the performance requirements on
each of the m subsystems may be of completely
different nature and, therefore, may require
different design approaches; (b) the reduction
in the dimension of the overall problem leads
to significant reduction in the computational
complexity of the design procedure.

We utilize here results on block diagonal
dominance and the related "block Gerschgorin

parallel decoupled subsystem designs.
Finally, a test similar to that performed in-
the first step is performed on a matrix
constructed of the plant and feedback matrices
in a familiar way. If this test is satisfied .
then the closed loop system stability
performance is satisfactory.

It is worth emphasizing that in this paper
we have utilized only the results of Feingold
and Varga [7]. The results in [81-[11] 1ead
to several alternative methods for decentral-
ized compensator design which will be
reported elsewhere. Finally, (as we shall
see) the flexibility of our method has not
been fully utilized here in order to provide
optimal estimates of overall system
performance. . Work is in progress on this
and related numerical aspects and will be
reported elsewhere.

BLOCK DIAGONAL DOMINANCE AND ITS
CONSEQUENCES

The work of Gerschgorin (which plays a
fundamental role in the Inverse Nyquist
Array method) on estimates for the eigen-
values of a square complex matrix has been
generalized by Feingold and Varga [7] and
in a slightly different way by Fiedler and
Ptak [8] to partitioned matrices. These
results not only provide a variety of
alternative estimates but actually can
lead to tighter estimates than the traditional
Gerschgorin circles [7]. Following [7] let
A be an nxn complex matrix partitioned into

2 . .
m  submatrices, so that A, is k_ xk_,
m 1] 1]

1<i, j<m, I ki = n. We introduce vector
i=1 . n
"norms on the subspaces Xi’ i=l,...,m of C

implied by this decomposition, where (and
this is very important) different subspaces
are allowed different norms. We denote all
vector norms by [-| for simplicity of
notation, letting the vector indicate which
one of the norms is applied (by the subspace
where thé vector belongs). We also consider
the induced matrix norms

Lé..x
sup L
X

a1 =
J
xeX, (2.1)
J .
x#0
and infimum or reciprocal norms
lA,_x
1a,.1 = ine
- 1] 1%
xeX, (2.2)
J
x#0




Clearly if Aii is nonsingular

} “1y,-1
-We then have as in [7]

Definition 2.1: The partitioned matrix A is
block diagonally dominant with respect to this
partition if ) .

(i) the diagonal submatrices, Aii’ are

nonsingular and (ii) either

o m .

lAiil>§=lHA1]HJ 1=1,2,-..,m
j#i

or .

ta b0 (1A 1], 11,2 )

C et >t ilagll =42, 0m.
j#i

. Clearly, when k, =1, 1 =1,...,m this

definition reduces to the.usual dominance
condition [1, p. 142]. Tt is not difficult
to show that if the partitioned matrix A is
block diagonally dominant it is nonsingular
[7, Th. 1], which then leads to the following
generalization of Gerschgorin's theorem
{7, Th. 2]: '

" Theorem 2.2: For a matrix A partitioned as
above, each eigenvalue X satisfies

m
(A,.- 21 )< & A,
' ii ki l j=l|| IJII
14 (2.5).
T lla ] ‘
<
(or < b A i )
i#j -

for at least one l<i<m.

Thus Theorem 2.2 describes inclusion regions
for the spectrum of A analogous to the well
known Gerschgorin circles. Further details
and examples on the regions provided by (2.5)
can be found in [7]. It is important. to
emphasize the flexibility provided by this
“Block Gerschgorin Theorem'": a) the inclusion
regions depend on the vector norms used on
the subspaces; b) the inclusion regions depend
on the partitioning of the matrix. Both facts
suggest considering various alternative
combinations in order to provide optimum
estimates .(i.e., tight regions).
characteristic of the "Block Gerschgorin
Theorem" (the classical Gerschgorin Theorem
does not provide such flexibility) has been
exploited successfully in [7]-[9].

(4
7 " . "
Let G%i (or (%i) be the ith "Gerschgorin set

of complex numbers X satisfying (2.5).
. 0
G =05 P Jet Haglh
o]
3

or

(2.4).-

This important
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Clearly these sets are closed and bounded and
thus compact. Then all eigenvalues of A are in .

LM A Dom ot
G%= U G& (or GB= U q& )
i=1 i=1
Furthermore, the eigenvalues of Aii are in

G%i' A useful result towards characterizing

how many eigenvalues of A are included in a
subset ofq is given by the following result
(7.
Theorem 2.3: If the union ;6: Y
3=1 Py

Igpjim, of 2 Gerschgorin sets is disjoint
from the remaining m - % Gerschgorin sets
for a partitioned matrix A, then # contains.

2
precisely I k

j=1 P

eigenvalues of A.

We proceed now to derive the main result of
this paper, on which several design proce-
dures can be based. First we need:

Definition 2.4:  Let A(s) be ann x n
rational matrix partitioned as above, and D
a closed elementary contour in C. Then A(s)
is said to be block diagonally dominant on D
if: (1) Aii(s) has no pole on D, i=1,...m

and (ii) A(s) #s block diagonally dominant
for all s on D (Definition 2.1).

We then have the following generalization
of Rosenbrock's result [l, Th. 1.9.4].

Theorem 2.5: Let A(s) be an n x n rational
matrix partitioned as above, which is block
diagonally dominant on a closed elementary
contour D in the complex plane. As s traces
D once clockwise, let det A(s) map D into
the curve FA which encircles the origin NA

times clockwise, det Aii(s) map D into Fi
which encircles the origin Ni times clock-

wise 1 = 1,2, ..., m. Then

(2.6)

Proof: The proof generalizes appropriately

the proof in [l]. Since by assumption
(pefinition 2.4 (1)) Aii(s) has no pole on

D, it is finite on D, and so is det Aii(s)'
By block diagonal dominance (Definition 2.1
(1)) det Aii(s) has no zero on D so
|[Aii_1(s)|!—l is finite on D. Therefore,
from (2.4) ||Aij(s)|]must be finite on D

1<i, j<m, 1 # j. So there are no poles of
Aij(s) on D, l<i, j<m. Moreover, by block
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diagonal dominance A(s) is nonsingular on D
so there is no zero of det A(s) on D. Let
A(a,s) be the partitioned matrix

]

Ay (8)

Ali(a,s)

A(a,s) = (2.7)

Alj(a,s) (xAij(s), i#j

where O<a<l.

Then every element of A(a,s) is finite on D -
and, therefore, det A(a,s) is also finite on
D. Let )

det A(a,s)

B(a,s) = (2.8)

m .
™
T det Aii(s)
and note that B(0,s) =1 Let B{(l,s) map

D into FB. For each s on D, B(a,s) defines

a continuous curve joining R(0,s) =1 and the
point of FB corresponding to s. We will be

done if we show that T does not encircle the

origin. Assume the contrary. Then there
exists some a, O<a<l, such that for some s
on D, 8(a,s) = 0. Then from (2.8)

det A(a,s) = 0. However, since A(s) is block
diagonally dominant on D and O<a< 1, A(a,s)
is also block diagonally dominant on D and
therefore, nonsingular, thus contradiction.
Then from (2.8) the number of encirclements
of the origin by FB is

and this concludes the proof.

Clearly, we can test graphically whether or
not a.given rational matrix is block
diagonally dominant on a curve D. From (2-5)
it follows that the graphical test consists
of plotting for every s on D the Gerschgorin
sets Gﬁi’ i=l,...,m (or Gﬁi’ i=1,...m) and

testing if the resulting generalized )
Gerschgorin bands include the origin. If the
origin is not included the given transfer
function matrix is block dominant on D. The
significant implications of our previous
remarks on the flexibility of trying various
partitions or various norms become apparent.
In particular, we single out the following
conclusions: a) tighter estimates on
dominance may be obtained; b) decompositions
"natural" to the frequency characteristics of
a given system may be achieved; c¢) improved
stability estimates may be given even for

the standard case [1]. Of course, the
computational complexity of the procedure

is also influenced by these choices.

Slnce the computation of the sets G% (s) (or

Ga (s)) for each s on D may be a cumbersome

computational task, simpler tests for block
diagonal dominance can be quite useful. To
test for dominance we only need to know for

Bennett and J. S.

" diagonal dominance is equivalent to A,

. A’D

"and, therefore,

Baras

each s the quantities

p, ,(s) = min

re @) (s) ) i

pyr.(s) = min

Xeﬁg

(2.9)

where obv1ously we use mln 1nstaad of inf.

since G,i(s), q (s), = ..., m are

compact. It is then-clear that block

11(5)’

i"=1, .,., m, having no poles on D and
being nonsingular on D and

o, ~=min{max[min P .(s), min (s)]}>0
seD ie[l,m] %% ie[1, m]

(2.10)
Thus, (2.10) is a proper generalization of
Rosenbrock's result {1, p.143, eg. (5.4)].
It is worth emphasizing here that the
generalized Gerschgorin bands resulting from
block diagonal dominance considerations are
not graphically as useful as the Gerschgorin
bands appearing in standard diagonal dominance
considerations (1], because they do not
convey directly usable information for the
choice of compensators: Consequently, the

importdnt quantities are P i(s), p'A i(s),
3 ’

I which allow (or not) (2.6) to be valid

and furthermore, as we shall see later,
provide some guidance for compensator
selection,

It is easy to see that for any square matrix
B

IB-AT 0+ B !]>[r> IBf - IB-AT (2,11

if we consider the tori in
the complex plane

~ _ . ];1 |
Fi@m0ectag -5 a1

m
<Hagg@ I+ 1 Jla e1h

(2.12)

’ m
= ; -7
Ti@=0eca -t Hag <)<l

m
aggolb+r dlay @1

for each s on D we have the inclusion (from -

(2.5))

G )= T (01 G =T (), o1,
(2.13

Clearly then A(s) is diagonally dominant on
D iff
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d, =min{max[min d, .(s), min d: . (s)]}>0,
4,0 seD e[l,m] AL ie [1,m] A.1
(2.14)
where
4,1 = @=L
. m
i (2.15)
. _ m
43,10 = 1 )l '§=1|*Aji(s)|[
j#m

Various considerations indicate that the quanti-

ties dA,D’ dA,i(s)’ dA,i(S) are rather tight
estimates of oA,D"k,i(S)’ pA,i(S)' In particular
if A..(s), i=1, m, are normal the two sets

of parameters measuring dominance c01nc1de
"since in this case each G% (s) (or G% (s)) is a

union of a finite number of disks.

APPLICATION TO DECENTRALIZED
FEEDBACK COMPENSATION

In this section we develop our design method
based primarily on the result of Theorem 2.5,
In discussing stability we follow the conven-
tions-of Rosenbrock [1, pp. 1-27]. Thus the
zeros (resp. poles) of a matrix tramsfer’
function G are the zeros of all numerator
(resp. denominator) polynomials in the McMillian
form of G. The poles of the system are the
zeros of det T(s) in any given polynomial
matrix representation of the system w1th
transfer function G(s).

T(s)x(s)
y(s)

U(s)a(s)
V(s)x(s) + W(s)u(s)

(3.1)

Lsyus) + ucs) .
= (sIn—A) the poles of the system

are the eigenvalues of A. The system (3.1)
is asymptotically stable if all poles of the
system are in the open left half plane (OLH).

G(s) =
When T(s)

V(s)T

':,Erom (1.2)

det[I +G(s)F(s)] = det[I +F(s)G(s)] =
_ det G(s) _ det ﬁ(s) (3.2)
det H(s) det G(s)

" a well known relationship which makes trans-
parent the role played by the determinant of

- the return difference matrix I + G(s)F(s) in
mltivariable stability considerations. We

: further assume that GF is strictly proper.

. Then {1,-p,-135], [12], if G is proper H is

>, also proper. In the sequel we assume that the
» glven factorizations of G, F are

N(s)D_l(s)

-1
= NF(S)DF (s)

G(s)
F(s)

(3.3)

+ vithout haking any explicit assumptions about

' Theorem 3.2:

Proof:

97

coprimeness [12] or least order [1]. Then
following [1l, p. l41] to test stability of
the closed loop system we choose a contour

D consisting of the part of imaginary axis
[-iR, iR] together with a semicircle of
radius R in the right.half plane. R is
chosen large enough to insure that D includes
all zeros of det (In + GF)-det D-det DF in

the closed right half plane (CRH), with the
familiar left-half plane indentations for
imaginary zeros. Suppose the open loop sys-
tem has Py poles in CRH (i.e., zeros of

det D « det DF there). Let det (I+GF),

det G, det H map D into curves FRD’ TG, FH
which encircle the origin clockwise NRD’
ﬁG’ ﬁH times. Then we have the well known
[1, p. 141, Th. 4.1, Coroll}:

Theorem 3.1: The closed loop system shown
in Fig. ! and described by (3.2) is

asymptotically stable if and only if

(@) Ngp =~ Po
or equivalently
() N - Ny = pg

We can now give a series of results (using
Theorems 2.5 and 3.1) which are generaliza-
tions of Rasenbrock's results in [1, 3.5, 3.6].
In the sequel the curve D and Py are as

above, the open loop system poles in CRH.

Suppose H and G are both block
diagonally dominant on D. Let det Gii’

det H,, map D into T ,, T. . which encircle
ii G,1 H,1

the origin NG,iJ NH,i tlmgs i=l, ..., m

.clockwise. Then the closed loop system is

asymptotically stable if and only if

m m

E=1 i, 1 b1 Ne,1 T Po
Proof: Let det G, det H map D into FG, FH
whlch encircle the origin N, N, times

G’ H
clockwise. Then the closed loop system is
asymptotically stable iff pO RD N N

from (3.2); The result follows from
Theorem 2.5.

Theorem 3.3: Suppose that F(s) represents an

asymptotically stable compensator (i.e.,

det DF has no zeros in CRH, and that

(F +G) is block diagonally dominant on D.
Let det(Fi li) map D into Ti which encircles

the origin N: times clockwise i=1, ..., m.

Then the closed loop system is asymptotlcally
stable if and only if
m

i=1 1 LS

-From (3.2) det[In+GF]= det[F_1+G] det F.



98 W. H.

The result follows‘from Theorems 3.1 and 2.5.

We note that computation of the closed loop
transfer function is not needed. To test
block dominance in Theorem 3.3, our remarks
in section 2 apply. A sufficient condition
is given by the following corollary. Work on
establishing more efficient methods is in
progress.

Corollary 3.4: If

-1
7 (0175 M6, (9)+.8 6, ()l or ARCWET
, il
or : (3.4)
I£ () 1< o <s>|-r Hc (s)||<or’r§ le. . (s)]]
] K 74110510570
i=1, ..., m ’

for all s on D them F-lfc is block diagonally
dominant on D.
Proof: Follows from IA+BI:jA|—]BIKn:1|B|—|h|b

This simple corollary leads to the following

useful graphical test. In fig. 2 below we
plot the curves
¢
lle,, )] !+-§’=}! 6451
j#i
. : o '
IGij(s) - Z=1||Glj(s)!|, for s = iw,
J#

me[O,wb], where w, is chosen according to our -

b
knowledge about the system and other practical
considerations [1, 6.2].

m

/}/ fto, i+ = HGUuﬂm
143

2

Region IIL

Rrzion ]

o

w

19

Fig. 2. Graphical interpretafion of a test

for block dominance of F-l+C.

Then equation (3 4) states thac iIF (iw)||”

must be in IIT or |F (1»)' in I. It is

noted, however, that the constraints on F
obtained by Corollary 3.4 may be conservative.

For reasons that are well explained in [1] it
is convenient to investigate.stability of the
decentralized controller using the inverse

Bennett and J. S.

{1, 3.6].

"for some 0<8 <1 (or 0<8?
st =1

Baras

relationship (1.3). We thus have the fol-

lowing results:

Theorem 3.5: Suppose ¢, i are block diag-
onally domlnant on D, Let det Gll, det ﬁii

map D into FG i T which encircle the

H,i

c.i° NH i times clockwise i=1,...,,m.
: ’

Then-the closed loop system is asymptoticall
stable if and only if

origin N

m - ! -
N - N, =

1 i " f=1 H,i  P0

Proof Follows from (3.2), Theorem 3.1 (b)

and Theorem 2.5.

=] G,1i

Corollary 3.6: If

A

m . m ~
Gli<.s>1+*3=lllcij<s>ll (or J;#iII(:Ji(s)ll)
j#i
or
. T .
ILFCYIRS O j=lIIG )| or §ﬁ|!cji(s>
j#i
i=1, ..., m,

for all s on D, then H is block diagonally

dominang on D.

Proof: From (1.7) and the fact that

§a + BI>4AL - |[B || . (or > 4BY - } AlD

This corollary leads to a graphical test
similar to that of corollary 3.4.

Recall that -in the standard application of
diagonal dominance techniques [1] in compen-
sator design, it is the inverse form that ic
more useful primarily because an applicatio
of Ostrowski's theorem [1, p. 27}, provides
a reduction on the size of the Gerschgorin
bands and thus improved estimates on gain
and phase margin of the conpensated svstem
‘We now give similar results in
our framework. The first two theorems belo:
are a generalization of Ostrowski's results.
to partitioned matrices. First, notice that
the block diagonal dominance condition (2.4°
can be written also as .

m

i
j#i

[}

i=l, ..., m

5, a4l

(3.
m

§=1|1Aji[|, i=1, ..., m
j#i

i

7 1A
(orei I'iil

<1).

Theorem 3.7: 1If the partitioned matrix A
satisfies (3.5), then A has an inverse

A= A_1 which satisfies



Block Diagonal Dominance , 99

ladl< o a1l
: , (3.6)
Sor 1A 1< o7y 1Ay 1D
for i=1, ..., m, 3=1,2, ..., 1i-1, i+1, ..., m.
Proof Since A is dominant it is nomsingular,

So A exists and

n . 4
Eal Mg -0 32 E
or
A+ aA = 0.
BE S k#J JkAki

Now taking norms we have

- m -1
M fa 7L T
if— k
N I i3 kT
‘ . 3.7)
= o, max||A ||
sl
due to (3.5). Since (3.7) holds for
i=1,2, eeey 151, 441, .., m and
8, < 1, max I[A ]| —I[A || and the result
follows.
Theovem 3.8: Let the partitioned matrix A
satisfy (3.5). Define
¢ =max € (or ¢ = max 6°)
Dok K o K
Then IA R IPTI lA l(< or9‘<b’lAll)
. ii ii i'i 841 i1 8 i
(3.8)
for each i=1, ..., m.
Proof: Again A is nonsingula;; so .
.? R
=1 AikAki =1, i=1, ..., m.
. or ~ _1 ~
(Ayg -Ag4y #i ikAki
Taking norms we have
~_1 R n - .
Tagi-a08,,1 :iﬁll Al 1hay Il (3.9)

However, it is easily seen that [IABILJ!B“ 1Al
and therefore (3.9) 1mplies

.IA 1A, '<1§ lIAklI lag N 711 Ay, I

m
<I

< iUAikH (hax &) = 8,0, 14, )
. k=1 .
by (3.5) and the definition of ¢i.

We now apply theorem 3.8 to the closed. loop
transfer function matrix H of the system

with the decentralized compensator .
F(s) = diag {Fi(s)}, as above. We work with

inverse relations and assume that H = F + G
is block diagonally dominant on a curve D.
Then the quantities 6_, 87, ¢., ¢~ become
: i i i i
functions of s. We can now give the very

useful.

Theorem 319: Let H(s) = F(s) + G(s) be block
diagonally dominant on D. Then for each s

. on D we have

1 ()~ (F, 946, , ()< 0, ()0 () Je,  (s)]

FION O] B

(or <8, ()9{ () I, ()] < é;<s~> 16, , (D)

" Here 9 (s) B (S)
@ (sL ¢1(s), are computed from (3 5), (3.8)
with A = H.

for each i=1, ..., m.

Proof: Apply theorem 3.8 to A = H.
We also have the immediate:

With the notation of

Corollary 3.10:

Theorem 3.9,

-1 . P "
1 )-F )b <”Gii(s) I]+61(S) b, (s) !Qii(S)l
. . ] . (3.11)
ESORNOI I BHCO! EINOINOY RSN
for each i=1, ..., m. )
Now Gii is the inverse of the opén loop

transfer function of the ith subsystem.

Suppose that the it" feedback compensator is
removed, i.e., consider the compensated
system with compensator

F(s) = diag {El (s), «.., F,

0
1—1(5)' s

F +l(s), vy Fm(s)}. Let us call the

transfer function between block input i and
block output i, under these circumstances,

H (s). Now clearly,

° -1

Hi(s) + Fi(s) = Hii(s) (3.12)
and, therefore, theorem 3.9 and corollary

‘3.10 provide via generalized Ostrowski bands

estimates on the deviation of the ith sub-
system inverse transfer function from G. i1’

due to the feedback compensators imposed on
the other subsystems. That is if we wish to
design a compensator for the ith subsystem
while the other compensators are fixed we
must design it for Hi(s) being the open loop

transfer function for that subsystem.
It is this type of considerations that render

our results most significant for decentrali-
zed compensator design. Space limitation
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does not allow further discussion on this.
Further results on these ideas will be
reported glsewhere.

AN EXAMPLE

Given the unstable plant

18 - -4.5. 0 S-T
s-6 s+ s+2
7 17.5 5 0

s+4 s=5 s+2
G(s) = (4.1)

0 5 18 -4.5
s+2 s-6 s+3
5 0 1 17.5
Lf+2 s+é s-5

it is desired to stabilize the plant with a
éingle feedback compensator. The standard
Gerschgorin bands are shown in Fig. 3 ‘for rows
1 and 2 of G(s). G is not diagonally dominant.

The design procedure of Rosenbrock would require

at this point the design of series compensators
L, K so that LGK is dominant. This step is
ad hoc at best. Here we have block diagonal
dominance, however. Indeed, in Fig. & we plot
the dominance ratio

6,11

61(5) = 92(5) = —iT;;I?;YI—

where we use % norms, and s = iw, welO, wB]

w, = 25 rad/s. The margin of dominance (recall
corollary 3.4 and Fig. 2) is
r = inf (AG, (N - |16 ,(s)|]) = 0.372.
seD 1 12

In Fig. 5 we plot the Gerschgorin bands for

Gll(s) and we see it is diagonally dominant.

A constant diagonal compensator for G11 and
hence for Gzé can be designed, where

-1 -1
F1 = FZ <l.6, fz

But in order to guarantee blgik diagonal domi-
nance of F-1 + G we ask lFll =|F2|_1 <z
(corollary 3.4). This results to '
min(fl,f2)32.688‘ Thus the choice of

F = diag{3.0,3.0,3.0,3.0} is guaranteed to
stabilize the plant (4.1) (theorem 3.3).

= diag{fl,f2§ with £, <1.8.

ACKNOWLEDGEMENT

The authors would like to thank

Professor G. W. Stewart of the Computer
Sciences Department of the University of
‘Maryland for bringing references [7-11] to
their attention.

H. Bennett and J. S.

Baras

REFERENCES

Rosenbrock, H.H., Computer-Aided Control
System Design, Academic Press, Inc.,
London, 1974. .

Rosenbrock, H.H., Design of multivariable
control systems using the Inverse
Nyquist Array. Proc. IEEE, Vol.
No. 11, Nov. 1969, pp. 1929-1936.

MacFarlane, A.G.J and J.J. Belletrutti,

The characteristic locus design method.
Automatica, Vol. 9, No. 5, September,
1973, pp. 575-588.

MacFarlane, A.G.J, A survey of some recent
results in linear multivariable feedback
theory. Automatica, Vol. 8, No. &4, July,
1972, pp. 455-492.

Sain, M.K., J.L. Peczkowski and J.L. Melsa,
(Edts.), Alternatives for Linear Multi-
variable Control, National Engineering
Consortium, Inc., Chicago, 1978.

Sandell, N.R., P. Varaiya, M. Athans and
M.G. Safonov, Survey of decentralized
control methods for large scale systems.
1EEE Trans. on Automatica Control, Vol.
AC-23, No. 2, pp. 108-128, 1978.

Feingold, D.G. and R.S. Varga, Block
diagonally dominant matrices and general-
izations of the Gerschgorin Circle
Theorems. Pac. J. Math., Vol. 12,
PP. 1241-1250.

Johnston, R.L., Gerschgorin theorems for
partitioned mattices. Linear Algebra. and
its Applications, Vol. 4, (1971),
ep. 205-220.

Johnston, R.L. and B.T. Smith, Calculation
of best isolated Gerschgorin disks,
Numer. Math. 16, (1970), pp. 22-31.

Fiedler, M. and V. Ptak, Generalized norms
of matrices and the location of the
spectrum, Czech. Math. J., 87, (1962),
pp. 558-570.

Brenner, J.L., Gerschgorin theorems
regularity theorems, and bounds for
determinants of partitioned matrices.
SIAM J. Appl. Math., Vol. 19, No. 2,
September, 1970, pp. 443-450.

Desoer, C.A. and M. Vidyasagar, Feedback
Systems: Input-Output Properties,
Academic Press, 1975.

116,

(1962).




Block Diagonal Dominance : 101
o
e_
< la
<
P
o
2.
~

o
e
¥ °
% =
) €4
w |
=
—
1 o ’
o~

Fig. 3. Direct Nyquist Array for G(s). Fig. 5. Direct Nyquist Array for
,-Gii(S), i=1,2,

S .
g MEEGIN = 0.372
2] \ '
gt \
[
@
14
0
W <
oF
z \\\-—‘—b‘q——.—
P —
z_
== T T T T 1
) E*:\., coi 10, Ol 15,02 PR iy 5.0
= FREQUENCY (R85O .

Fig. 4. Block Dominance Ratio for G(s).



