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Abstract o«
p(t.Z)-u(t,z)/[I u(t,§)dg] (1.5)

An analytical procedure is described for
treating a generic nonlinear filtering problem.
where the "unnormalized conditional density"
1. Problem Statement u(t,z) satisfies (formally) the linear
stochastic PDE

In this paper we examine the "nonlinear

2
filtering problem" for the apparently simple d“(trz)“lg—'U(t,Z)dti-ezu(:,z)dy(t)
. 2 2
system . 2,
1
dx(t) =3 x(t)dt + x(t)dw(t) (1.1a) U(O.Z)'po(z)-density of zO’(a normal density)
> <
dy(t) =x(t)dt + dv(e) . (1.1b) 0StsST.
0) = 0)y=0, 0 < ¢ ST . The existence and uniqueness of solutions to
x (@ Yo' 7(0) (1.6) along with possible structural forms for

where x_ is a log normal random variable in- the solutions are discussed in section 2.

dependent of the standard, real-valued Wiener
processes w and v which are in turn mutually
independent. The filtering problem is: Compute
the probability density of x(t), 05¢sT, con-
ditfoned on Y =o{y(s),s £t} the o-algebra

(411) Associated with (1.6) is the
"backwards" stochastic PDE

1 32 2z
dv(t,z)-+i —, v(t,z) +e“v(t,z)dy(t)=0
9z
generated by y. (1.7)
- < <

While this problem may appear overly spe- v(T,z) £, 0= t2T.
cific, we feel that it exhibits most of the
essential features (difficulties) of the cor-
responding filtering problem for the (vector)
system :

which is adjoint to (1.6) in the sense that
the trajeFtories of <u(t),v(t)> are constants.
The solutions of (1.7) may be represented by a
stochastic function space integral which gen-
eralizes the classical Feynman-Kac formula for
m deterministic, second order, parabolic PDE's.
dx(t) = Ax(t)dt + I B, x(t)dw, (t)
1=1 i i

(1.2) (iv) Using a parabolic interpolation for
dy(t) = Cx(t)dt + dv(t) Wiener paths and an appropriate quadrature
formula, the stochastic Feynman-Kac formula

involving state dependent noise and additive is simply and accurately approximated by an

observation noise. We shall highlight those n-fold integral. This provides a convenient

aspects of our analysis of (1.1) which are basis for numerical solution of (1.6), and so,

generic to the family (1.2). the filtering problem for (1.4) and (1.1).
This approximation is described in section 3.

Our analvsis of (1.1) involves the follow-

ing four steps: Remarks
(1) Introduce the new coordinates : (1) 1In the context of the filtering prob-
lem for
] z{(t) = Gux(t) (1.3) ) .
Then dx(t) = £(x(t))dt + g(x(t))dw(t) (1.8a)
dx(t) = dw(t) dy (t) = h(x(t))dt + dv(t) (1.8b)
1.4
dy () = ez(,t)dt +dv(t) ( ) our step (1) corresponds to a transformation
on (1.8a) which converts x(t) into a Wiener
z(0) = z_ = &nx y(0)=0, 0€¢t<T process (when this is possible). The trans-
o o’ ' -t

formation may be a simple coordinate change as
above, or one implied by a Girsanov-Cameron-
Martin transformation on the measure defined
by the x process. The purpose of the trans-

formation is to simplify the measure used in
(11) The conditional density p of z(t) the path integral expression, or equivalently
the infinitesimal generator.

We regard the estimation problem for (1.4) as
equivalent to that for (1.1).

(2) An evolution equation for the unnor-
under contract N00O14-79-C-0808. malized conditional density of x(t) given Yt

in (1.8) was derived under strong conditions
by Zakai [1] (and independently by Mortenson).
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Pardoux [2][3] has proved existence and
uniqueness of solutions of the Zakai equation
under comparatively weak conditions which,
however, require the function h(.) 1in (1.8b)
to be bounded. Thus, Pardoux's results do not
apply to (1.1) or (1.4). It is surprizingly
difficult to prove existence and uniqueness in
the latter case - see section 2.

(3) Since the infinitesimal generator of
the z process in (1.4) 1s the Laplacean, the
duality between (1.6) and (1.7) is very simple.
.The Zakai equation for the original system
(1.1) is

2
a¢ (c.x)-(%i—l[ 2o (e,1] -3 2 [x6(t,x0]) at
x .

+ x¢(t,x) dy(t)

and it is evidently not self-dual. The co-
ordinate change accomplishes this and trans-
fers the complexity in the Zakai equation from
the differential operator in the drift term
into the coefficient in the stochastic term.

(4) Since the differential operator in
(1.7) is the Laplacean, the measure in the
function space integral which provides its
solution (see equation (3.4)) is Wiener meas-
ure. This permits use of the simple inter-
polation and quadrature formulas refered to in
step (iv). Again we feel that this property
of the example is generic to the family of
nonlinear filtering problems for which steps
(i) - (i11) are possible.

(S5) The stochastic Feynman-Kac formula
for the solution of backwards stochastic PDE's
was stated formally by Kushner in [4? and
rigorously by Pardoux in [2]. 1In [4] Kushner
gives a numerical procedure for evaluating the
formula which is completely different from our
approach.
and Representations

2. Existence, Uniqueness,

Although (1.6) may appear innocent, a
satisfactory existence and uniqueness result
for its solutions is unavailable at present.

The unbounded function e? in the second term
causes Pardoux's approach to fail. That is,
1f one introduces a weighted L2 space, Lz(du),

where

du(z) = exp (lz])dz, (2.1)

(the type cannot be higher than 2 since po(z)
in (1.6) is Gaussian), and defines

v={f:fer?(aw), pfer?) (2.2)
where D is the distridbutional derivativé; then
it is easy to show that the operator B =

multiplication by e> satisfies Bes (V,H) with

He= L2. However, the coercivity property re-

quired by Pardoux does not hold. To date,
other choices of V and H have also failed.

A different approach seems more promising
It 15 clear that 1f a solution exists, then 1t

should be in L1 witherespect to z. It 15 also

clear that we can assume y to be a Wiener process,
since we can apply Girsanov's transformation and "
change measures to achieve this [2). Let us denote by P
the new measure. This will not affect existence and
uniqueness. Now 1if we let' A be the eprrata 32/3; , 1t
is well known that it generates the semigroup

—(2—3)2/2

(AtEy(z) = J 2. %(a) da (2.3)

/2nt

which has a smoothing action. Since the initial condi-
tion 18 in Ll(du)(1 Lz(du) we are looking for a weight

different from (2.1), let us ¢~1l it p(z), vith the
following propertities:

(a) If V = {f: £ ¢ Lz(dup), Df € L,}
where dup(z) = p(z)dz, then exp(At)Vc V.

(b) Gaussian densities belong to V.

(c) There exists a Hilbert space H with VC H S:LZ.
with V dense in H.
At
(d) e = 1s strongly continuous on H.

(e) The operator B = multiplication by e® is closed
on H and J(A) < §(B)c V.

(f) for each t > 0 there exists K(t) < = such that
A .
||Be tfHHi k@[l .+ £ eB®

with fol K(t)dt finite.

If such a weight exists, we can show that:

(1) (1.6) has a unique solution in LZ(Q;C(O,T;H))
for every finite T.

(11) The solution of (1.6) is adapted to Yt-o{y(s),s:t}.

Furthermore, we can show, via a generalized Ito rule
for (1.6) that this solution can be represented as the
"stochastic'" Feynman-Kac path integral

t

t
ex(s)dy(s) - % J ezx(s)ds]

u(t,z) = Ez{expllf
0

0
(2.4)

-p, (x(£)))
where x(s) i1s a standard Wiener process and E_ is the
function space Wiener integral over all pathszstarting

from z.

3. Numerical Evaluation of the Conditional Density.

From [2){3] the Zakal equation has a dual
backward stochastic PDE. In our case the duality between
(1.7) and (1.6) is particularly simple; it implies that
<u(t),v(t)> 1is constant where <<,+> is the L2(R) inner

product. The solution of the backward equation has the
form
N t t
V(€ 2)ZELE (2 (M) vy [Ty, 2(2) = 2] G.1

Here expectation is with respect to Wiener measure ?,

,7,; = ofy(s) - y(t), t <& < T}, and
T . T
ve - exp([ e* My (s) - %f 22 ()4q) (3.2)
t t



Tf u(t,z) is the solution to the forward equation (1.6)
then the duality implies that

<u(T),v(T)> = <u(0),v(0)>
(3.3)

- e P (DECEEMIYY [Fo, 2(0) = 2)

and from this that for any f € Ll

<u(m,e = MeEm) v 177 ) (3.4)
Since T is arbitrary, this provides a solution to the
filtering problem. Of course, one is left with the
problem of computing the function space integral in
(3.4). Note that (3.4) is the integrated version (with
respect to z) of (2.4), and that any computational
scheme applied to (3.4) can be equally well applied

to (2.4).

To make contact with the literature in mathematical
physics, we rewrite the integral (3.4) in the form

I = J F(z,y) dW(z) (3.5)
C

where C = C([0,T]), dW is Wiener measure on C, and

t t
F(z,y) = f(z(t))exp| J ez(s)dy(s) - %—[ ezz(s)ds ]
. 0 0

(3.6)

The Wiener integral I in (3.5) is defined as the limit

I= 1im J f??j dx, ++dx F(z »Y)
nax];J-tj_ll*O R R 1 no b 6.1
0<j<n :
‘gl exp[—(xj-xi_l)zli;;j—ti_l)]
J (20 (t5-ey 1))
where 0 < T < t2 < e < tn = T and zt,x is a poly-

gonal function of t on [0,T] that passes through xj at

tj' j= 1,2{'-""-'
Integrals of the form (3.5) with no y dependence
arise in physics as representations of the solutions of

the deterministic Schrodinger equation

%; ult,x) = %-i;z ult,x) + V)ult,x) (3.8)
u(0,x) = f(x)
That is,
rt
u(t,x) = E_[exp( J V(x(s))ds) £(x(t))] 3.9)

0

where x is a path of Brownian motion and E_ 1s the Wiener
(function space) integral over all paths starting at

x in R. There has been a substantial effort devoted to
computing Wiener integrals, both analytically and numer-
ically [6}-[8]}. For example, Chorin {8) has shown that

1f G:R+* R and V:R + R are smooth, then

T
f G| J V(x(s))ds] dW =
[ 0

/2 J 1/2
n

R

n
(eC v (x,_y w1/ @mM )

‘where x

. [9], among other sources.) The error en

2 2 _ ... I .es + o(n"2
sexp(-uy - u, - uo1 sv ) du1 dun_ldv +0(n %)

-

- (ul + e +'u1_1)T//E . The O(nnz) error

i-1
makes the approximation very accurate.

“In the case when dy(t) = m(t)dt + r(t)dw(t) is an

* Ito process with m,r square integrable, we have been

able to show that

T
J exp| I V(x(s))dy(s) ] dwW
C .

0
(3.11)
-n/2 n
- " f [exp( T V(x + vI/V/2n) &y )]
n -1 i-1

R i=1

2 2 2 2
* exp (u1 i S Ll )dul'--dun_ldv+en

where X1 is as above and Ayi_l = y(iT/n) - y((1-1)T/n).

(Accurate formulas for computing 4y, are available in
satisfies

[Ey(ei)]l/Z - o(n—3/2) ’

where Ey is expectation over the distribution of y. It

is larger than that in (3.10) since (EAy2)1/2 = n-ll2

rather than n-l.

Using the approximation (3.11) on (3.5) gives the
following result:

I« B v 70

t t
- j [exP(J ex(S)dy(s)-%J X&)y (x(e)) Jaw
C 0 0

n
- ﬂ—nlz [exp( I exp(x + vt/V/2n) by
R i1 i-1 i-1

1
N

exp(2(x,_; + vt//2n)) (t/n))

(-}

i=1
2

-f(xn_1 + vt//fg)]exp(—ui -’°'-un_l—v2)

-3/2

-dul°"du dv + 0f(n

n-1 )

Efforts to make this formula recursive in y(it/n) have
not yet been successful. The simplicity and accuracy
of the approximation are its chief advantages. An
expansion for the conditional density u(t,z) in (2.4)
similar to (3.12) may be obtained by substititing P,

for f and interpolating over paths x starting at x(0)=z.
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