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ABSTRACT

Continuous time quantum filtering problems are formulated based on ideas
from quantum stochastic processes. This formulation extends previous work in
that it allows modelling of the interaction between the measurement process and
the state of the quantum field, However, the abstract quantum measurements
are restricted to those that can be implemented by counting measurements. The
type and properties of the resulting point process are discussed. Following ideas
of Davieson Quantum stochastic processes the optimal filtering problem, including
optimal measurement selection (from the above type) is formulated. Methods of
solutions are discussed and examples illustrate the results. The operator
differential equation satisfied by the density operator is analyzed and relations -

with stochastic partial differential equations of a specific type are illustrated.

SUMMARY

In a series of papers we have recently analyzed problems of linear filtering
for signals carried by quantum fields [1-5]. The major thrust behind this work
is te Obtaiunecessary and sufficient conditions for optimality and performance
bounds for the correct model which incorporates quantum models and necessitates
nonclassical treatment., In previous [1-2] work the following simplifying assump-

tions were made to render the problem feasible: (1) The density operator repre-



senting the field does not depend explicitlyon time, (ii) time is discrete,

(iii) the measurement outcomes at different times are independent conditioned

on the signal sequence. These simplifications prevent us from incorporating
two fundamental issues in the mathematical formulation of the problem: (a) state
evolution with time and (b) state-measuremnt interaction. The above assumptions
were partially lifted in later work [5], but at the expense of restraining the field
states to Gaussian ones and the measurements to canonical ones. A complete
quantum treatment of filtering problems requires incorporating (2) and (b) in

the mathematical formulation. A general approach to achieve this is presented
here, based on the concept of quantum stochastic processes as developed by
Davies [6]. A further motivation for such an effort is provided by our desire

to understand precisely the implications of simplifying assumptions and formal
or ""quasi-classical' derivations of multicoincidence statistics of photon-counting
experiments [6] on problems of estimation and filtering.

We first discuss models for quantum mechanical measurements ordered by
their complexity. Let 3} be a complex Hilbert space. Then we denote by Z{¥)
({S(}C)) the space of all bounded (and selfadjoint) operators on X; by ﬂ:}C) (ﬂ’s(ﬁc))
the space of all trace class (and selfadjoint) operators on ¥; by Z;(:}C), G‘:(SC) the
nonnegative operators in £S(.’K‘) , 'J’S(.’KT) [7]. There is a hierarchy(in terms of
complexity) of quantum models for measurement. As usual the state of the
quantum field is represented by an operator p€ ’J':(’H‘), withTr[p] =1. In
classical quantum mechanics a measurement is represented by an operator
Ve £S(,’,FC) and the statistics of the measurement outcome are given by the
distribution function FV(§ )=Tr[p E_(-=, £]], where E, is the spectral measure
of V. This formulation (as is by now well known) is inadequate for detection
and estimation problems with quantum measurements. Holevo in [8], motivated

by approximate simultaneous measurement of non-compatible observables and



randomized decision strategies, and independently Davies [9] motivated by
repeated measurements on quantum fields, introduced a new formalism. A
measurement is represented by a positive operator valued measure % (p.o.m.)
on a measurable space (U, 8). A p.o.m. is a mapping 77{:03-»{,—;('(-(‘) such that

for a partition {B_l} of U, 12?7( (Bi) =I. The statistics of the measurement out-
come are given by the probability measure by, (A) =Tr[ pMm(A)] . The physical
realization of such a measurement is by adjoining an auxiliary system at a

pure state O and measuring compatible observables on the augmented system;
a procedure motivated by Naimark's theorem which asserts that given a p.o.m.
7 on X, there exist a pure state P OR Hilbert space ’,FCe and a spectral
measure E on ’}C®’§-Ce such that Tr[ o M(A)] =Tr[(p® Qe)E(A)] , for any p. To
incorporate the state-measurement interaction, a fundamental issue in filtering
problems, a further generalization was introduced by Davies and Lewis [10].
They utilized the mathematical model of a positive map valued measure

(p. m.v.m) on a measurable space (U, ), which is a map € on 8, such that £(B)
is a positive linear map ofG;(}C) into itself for every Be B, &(B)=2€(f) =0, and
for disjoint B.1 e’ 8(3_1 Bi) = 12 £ (Bi)' A measurement then is represented by an
instrument which is a p.m.v.m & such that Tr[€(U) p] =Tr[p] for all states p-
The physical interpretation is clear: &(A)p gives the new state given that the
initial state was p and that the observed measurement outcome was in the set A,
the statistics of the measurement outcome are given by the probability measure
PV(A) =Tr[€ (A)p] . One can easily establish the fact that for any instrument €
there exist a p.o.m. Msuch that Tr[g(A)p] = Tr[M(A)p] for all p. The p.o.m. 7

thus associated to £is called the measurement performed by the instrument.




Instruments can be composed. What is needed for the filtering problem is
a one parameter family of instruments, parametrized by time. This is what

we call a quantum measurement process (q.m.p.) [4]. This concept is based

on the work of Davies [ 7] on quantum stochastic processes. There are two

cases of interest. In the first, the outcomes form a marked point process [11]
and the model is due to Davies [7]. Briefly, let U be the mark space (in the

case of photon-counting experimet\ts this will be the position space for the
counters), 'yt be the sample space (i. e. sequences of occurence times and

marks (u,l, ti)’ 1<i<n, nfree, 0 <’c,1 <ina < tnS t) and 31: the usual 0-algebra
on'yt. Let ¢ map'ytx'ys onto'g;H_s via concatenation of sample paths. A quantum
measurement process with outcomes in ’yt (quantum stochastic process in
Davies's terminology) is a family of instruments St on’yt such that (i) lim (Yt) p=p

t -0

for all states p and (ii) ES(B) EZt(A)p=8 s(C(AXB))p for A €Z§t, B €3?s. Note that

t+
(ii) is the appropriate analog of the Chapman-Kolmogorov equation of classical
probability. In the second case the outcomes are allowed to form any classical
stochastic process. This slight generalization was introduced in [4] and is
similar to the first case except that U is now a complete separable metric

space, 8 the Borel og-algebra on U,'yt the set of all measurable functions from

[0, t] into U and 3 the usual 0-algebra on 'yt. ;I‘he physical interpretation is

clear and incorporates the state-measurement interaction. So 8t(A)p is the new
state given that the initial state was p and that sample path of the outcome process
was in A C 'yt. The one parameter family Tt = E',t(yt) forms a semigroup of

operators on 'JJS(C!-C) describing the evolution of the state as perturbed by measure-

ment. If we let z denote the empty sample path then St = {-l’t({z}) is also a

4



semigroup on GIS(}C) describing the evolution of the state unperturbed from
measurements. The basic problem is to characterize the differential version
of the effects of measurement. The concept of a quantum measurement process
is thus seen to be the most appropriate one for the formulation of the continuous
time quantum filtering problem, to which we now turn.

To formulate the general quantum filtering problem, we need to describe
in a precise way the ''modulation'' of the field by the signal. Leaving this
particular problem aside for the moment, let X, be a stochastic process rep-
resenting the ''signal'. If we let xlc denote the sample path of X, up to time t,

a quantum field '""modulated' by % will have a state P(t, xt). We are now given
a class of quantum measurement processes CM and a class of processing
schemes ¢ . A processing scheme is a family of functionals ft of the sample
path of the outcome process, denoted yt :{ys, s<tl. The general quantum

t

filtering problem is then: given a description of Xt’ p(t, x), C., cp find a

M

-~

A
quantum measurement process &’t in CM and a processing scheme ft inC so
P

that

Py A t
X :ft(Y ) (1)

is the minimum error variance estimate of X, .

It is instructive to see how the special aésumptions of [1], [2] relate to
this formulation. The linear processing schemes of [1}], [2] and discrete time
translate (1) to

0 =% ¢y () (2)

i

™M

0

[

so that the nxn matrices Ci(k) characterize fk. Furthermore the assumption

olt, Xt) = p(xt), employed in [1], [2] avoids the difficult problem of modeling



the dynamics of state evolution and modulation. This together with the con-
ditional independence assumption, discussed earlier, imply that CM consists

of quantum measurement processes of the type

n
e (", A)o(x(0)) =[ T TEML(A) plx(i) Jp (x(m) (3)

for A=A xXA_x...xA .
1 2 n

That is the quantum measurement process is characterized uniquely by the
measurements performed by the instruments at each instant of time. This is
as expected since state-measurement interaction is not included in [1], [2]. The
problem has been solved in [1}, [2] in this special case. Similarly the problem
treated in [5] can be better understood using the new general formulation, and
this particular case will be presented in this paper also.

We proceed now with the completion of the formulation in the case where
the classical outcome process is a marked point process.

The description of '"modulation'' leads to stochastic operator evolution
equations on ’J’s(}C) as is described in detail in [3], [4]. It is a consequence of
the Schrodinger equation that the state of a quantum system evolves according

to the evolution equation

20 irm), pt)] (4)

on ’J’s(f}C). We are obviously interested in cases where the Hamiltonian H depends
on a stochastic process X, the ''signal process'. To obtain a concrete model and
to render the problem feasible we make two assumptions: (i) H depends linearly

on Xt’ that is



Ht, Xt) = n (5)
H+% X.(t)Bi (vector signal)

{H + x(t)B (scalar signal)

i=1"
(which is the case for example for electro-optic amplitude or phase modulation

of lasers) (ii) Xt satisfies an It6 stochastic differential equation

dXt = a(xt)dt + b(xt)dwt.

Then (4) becomes a bilinear stochastic differential equation on TS(}C) with
multiplicative excitation and can be treated satisfactorily in two important
cases [3]: (a) when B, Bi in (5) are in ;AS(TFC) (which includes all fermion quantum
fields) (b) when B, Bi are polynomials in the photon creation and annihilation
operators (which includes most interesting cases with boson quantum fields).

So the evolution of the state of the quantum field, unperturbed by measurements

evolves according to

<28 i ae ), o) (7)

where H(t, xt) is given by (5). We want now to combine (7) with the concept of

a quantum measurement process in order to derive the complete state evolution
including state-measurement interaction. We are inspired again by the work of
Davies [7] . He analyzed quantum stochastic processes with bounded interaction
rate in the sense that

Tr[ 2 (%Y, - fz})p]l < KtTrp] , (8)

and established that the differential relationship between the semigroups Tt’ St

discussed in the previous section is given by

Z(p) =W(p) + J(U)p (9)



where Z, W are the infinitesimal generators of Tt’ St and J is a p.m.v.m. The
equation

oo
ot

=Z(p) (10)
can be considered as the analog of Kolmogorov's forward differential equation

of classical probability theory. We then have extending a result of Davies.

Theorem : Given an Ito stochastic process x, as in (6) and a quantum field

with unperturbed state evolution described by (7), there exists a family of
quantum measurement processes parametrized by the sample paths of the

signal process x, such that the state of the quantum field is given by

plt) =€, (x", y,) 0(0) (1)

and satisfies
o)

—— p(t) = -i[H, p(t)] - ix(t)[B,p(t)] -

5t (Rp(t) + p(t)R) + J(U)p(t) (12)

1
2
in ’J’S (). R s:ﬁ: (%) is the total interaction rate: Tr[pR] =Tr[J(U)p].

This result holds in particular for Boson fields with photon counting
measurements., The classical probability measure

t t

b (x', B) = Tr[e, (x, B)p(o) ] | (13)

is the relevant quantity for filtering. In the case of point process outcomes

with fermions or bosons and photon counting we then express in this paper the

rate of the observed point process

t
Nk (14)

t

)\t(Nt;wl, ey W

. t
in terms of Eit(x , B) and then the following program can be executed:



Step 1: Consider state evolution with measurement effects.
Step 2: Construct quantum measurement process model.
Step 3: Compute rate (14) of observed point process.

Step 4: Solve linear or nonlinear classical filtering problem
using (14) and (6), (12).

Step 5: Optimize with respect to R and J that characterize
the quantum measurement process.

In this paper we also present simple examples of successful application
of this methodology which include amplitude and phase modulated lasers, in
"classical'' and nonclassical states. In addition to the classical coherent states,
examples on two-photon coherent states [12] are presented.

Finally the results are related to a quantum derivation of multicoincidence
statistics and an investigation is presented on the significance of differences
from the classically derived multicoincidence statistics. In certain cases it
can be seen that the filtering results with the quantum formulation can be
approximated by the classical filtering results in the sense of a perturbation
series approximation with higher order correction terms. Implications of the
latter on filter performance versus complexity of implementation are briefly

indicated.
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