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Quantum Mechanical Linear Filtering of Vector Signal

Processes
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Abstract—The problem of estimating a member of a discrete-
time vector process from past and present quantum mechanical
measurements is considered; specifically, the minimum-variance
linear estimator based on optimal present measurements is studied.
Necessary and sufficient conditions that characterize the optimal
processing matrix coefficients and the optimal measurements are
discussed and interpreted. The optimal linear filter is compared
to the optimal quantum estimator without postprocessing of past
data. When the signal sequence is pairwise Gaussian and the opti-
mal quantum measurement without postprocessing has the prop-
erties that it is linear in a specific sense and that its outcome and
the corresponding element of the signal sequence are jointly
Gaussian, then the optimal linear filter separates. That is, the op-
timal measurement can be taken to be the same as the optimal
measurement without regard to past data, and the past and present
data are processed classically. The results are illustrated by con-
sidering the filtering of the in-phase and quadrature amplitudes
of a laser field received in a single-mode cavity along with thermal
noise. In this case, when the random signal sequence satisfies a
linear recursion, the estimate can be computed recursively in a very
efficient manner.

I. INTRODUCTION

ETECTION and estimation problems with
quantum statistics, such as arise in the theory of
optical communication systems, have been heavily studied
[1]-[4]. In previous work [5], we analyzed the problem of

linearly filtering a scalar signal sequence utilizing quantum .

mechanical measurements. In this paper, the problem of
estimating x(k), a member of the signal sequence {x(0),
x(1),+++,x(k), -} of vector random variables is consid-
ered; the parameter k is conveniently regarded as discrete
time. As is well-known [2], [6], [7] the multiparameter (or
vector) case is much more complex than the corresponding
scalar problem, and its treatment necessitates the use of
generalized quantum measurements in the sense of Ho-
levo [2]. This is solely due to the essential quantum me-
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chanical limitation on simultaneous measurements [8, p.
260], [9, p. 101].

Briefly, the problem is to choose the optimal measure-
ment at time k and the optimal linear processing of present
and past measurements at times{ = 0,1, - - - & — 1. Optimal
is understood here as minimum mean-square error, and
the implied average is over the classical distributions of
{x(k)} and the distributions due to quantum mechanical
measurements.

A convenient example for physical motivation is pro-
vided by the following optical communication setting
[3]-[5]): at time k, a laser field modulated in some fashion
by x (k) is received in a cavity containing otherwise only.
an electromagnetic field due to thermal noise. The total
field is in a state described by a density operator p(x (k))
that depends on x(k), but not otherwise on k. The filtering
problem consists of estimating x (k) from quantum me-
chanical measurements via the procedure described
above.

An ultimate objective of this work is to find interesting
practical cases that result in simplification -of the filter
structure or that make feasible the computations indicated
by the necessary and sufficient conditions for optimality.
In particular, suppose x (k) is generated by a linear rec-
ursive equation

x(k + 1) = d(R)x(k) + w(k), k=01,---, (1

where {®(k)) is a sequence of matrices, and {w(k)} is a se-
quence of independent Gaussian random vectors with zero
mean and covariance matrix Q(k). Recursive computation
of the optimal estimate and measurement at time & would
be highly desirable. This is achieved in a specific situation
stemming from an optical communication problem. Some
of the results of this paper have been announced in [10] and
[11]; the mathematical proofs of some of the results will
appear elsewhere [12].

II. THE FILTERING PROBLEM

The customary formulation of quantum mechanics (8,
p. 258] associates a self-adioint operator V on a Hilbert
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space H with a measurement, incorporates a priori sta-
tistical information with density operator p on H (p is a
self-adjoint positive definite operator with unit trace, and
represents the state of the quantum system [9, p. 94, p.
132]). The measurement represented by V produces a real
number v (the outcome) whose expectation is Efv} = Tr
[p V] (where Tr denotes the operation of taking the trace
of an operator on H [8, p. 374]). This formulation is ade-
quate for restricted estimation problems only, in particular
for the estimation of a scalar. When a vector is to be esti-
mated, the essentially quantum mechanical problem of
simultaneous measurements arises, and a more general
concept of measurement must be resorted to [2, p. 341].

To assist in motivating the concept of a generalized
quantum measurement, we first elaborate slightly on the
customary formulation. The spectral theorem [8, p. 249]
associates with each self-adjoint operator Von H a unique
spectral measure My (-), a mapping of the Borel sets of the
real line into projection operators on H. The distribution
function of the outcome v is then F,(£) = Tr [pMy(—=,¢]].
The spectral theorem yields the moments E{v™} = Tr
[pV™],m =1,2,-- .. The spectral measure My/(-) is fun-
damental, and is termed a simple measurement [2]. Fol-
lowing Holevo [2, p. 341], a generalized measurement is
a map M from the o-algebra of Borel sets B" of the n-
dimensional space IR " to the algebra B(H) of all bounded
linear operators on H such that i) M(B) = 0, for every B
€ Bn;ii) if {B;} ¢ B"is a partition of R, then ; M(B;)
= I, where the series converges weakly in B(H) [13, p. 53]
and where I'is the identity operator on H. That is, a mea-
surement is a positive operator-valued measure (POM)
(14, p. 6], or a generalized resolution of the identity [15,
p. 121]. It is worth noting that if M is an orthogonal reso-
lution of the identity, i.e., if in addition B N C = ¢, for B,
C € B", implies that M(B)M(C) = 0, then M is neces-
sarily a spectral measure [14, p. 12], and thus we have a
simple measurement. A POM M induces a probability
measure up 0n B" via up(B) = Tr [pM(B)], for B ¢ B",
as is readily verified; thus M is also sometimes termed a
probability operator measure. The interpretation of this
mathematical construct is that a generalized measurement
M represents a physical measurement process with out-
comes u € IR" with distribution function

Fu(§) = Fu(kr, -+ ,8) = Tr [pM(-=¢]], (2)

where (—®,£] = (=2 ,£1] X (—®,£] X -+« X (—2,£,].

Consider now the moment E{u;}, the expectation of the
ith component of the outcome u of the measurement
represented by the POM M

Efw) = f w;F, (duy, - - - duy,)
IR’I
= j]'R w Tr[pM du)], i=1,---n.

Assuming the interchange is permitted, this point is dis-
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cussed carefully in Holevo [2, sec. 6], we have

Efu;} = Tr [p fmnuiM(du)].

The integral is a well-defined self-adjoint operator on H
[2], [14] that we denote by U;. Then E{u;} = Tr [pU;], i =
1, n.

Consider next the second-order moment

Eluuj} = fw wi;F, (duydus, -+ duy)

=Tr[p fwu,-u,-M(du)],

where again the operator integral is a well-defined self-
adjoint operator on H [2], [14] which we denote by Uj;.
Clearly U;; = Uj;, but, unlike the special case when M is
a spectral measure, U;; # U; U,. Holevo termed the op-
erators

Uiy iy = f i, M (du)

the operator moments of the POM M. In particular, the
U; are the first operator moments and the Uj; are the
second operator moments. Observe that in the case of a
simple measurement, the POM is uniquely defined by its
first operator moment. A direct consequence here of U;;
# U; Uj is that the mean-square error (mse) will not be
expressible directly in terms of self-adjoint operators in
a quadratic form (as in the scalar filtering problem [5]), but
rather will remain expressed in terms of POM’s. Since the
set of self-adjoint operators on H is a linear space while the
set of POM'’s is only a convex set, the nature of the opti-
mization problem will be different.

As pointed out by Holevo [2, p. 343], this generalization
of the concept of a quantum measurement is well-justified
in view of Naimark’s theorem [15, p. 124] which asserts
that, given a generalized measurement M in H, there exists
an auxiliary Hilbert space H,, a (pure) density operator
pe on B(H,), and a simple measurement Ey in H ® H,
(the tensor product of Hilbert spaces H and H, [8, p. 144]
such that

Tr [pM(B)] = Tr [(p ® pc) Ep(B)], 3)

for every B € B" and every density operator p on H. That

is, the distribution functions of the measurement outcomes
induced by the generalized measurement M and the simple
measurement Eps are the same. The physical interpreta-
tion is [2], [7] that a generalized quantum measurement
is realized by the measurement of compatible observables
(i.e., a simple measurement) on a composite quantum
system produced by adjoining to the original system
characterized by (p,H) an auxiliary system characterized
by (pe,H.). Thus, justifiably, the triple (H.,,p., Enr) is called
a realization of the measurement represented by the POM
M. For simplicity, we shall refer hereafter to generalized
quantum measurements as quanium measurements unless
explicitly stated otherwise.

Let x be a vector random variable with distribution
function F, on which the density operator p depends; i.e.,
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p = p(x). Then the distribution function F, (£)(2) of the
vector outcome u of the generalized quantum measure-
ment M becomes a conditional distribution function
Fuz(&0). The first moments of u are

Elw;} = Ex{Elu;|x}}

) f[ fowt [p(x)M(du)]]Fx (dx).

Interchanging the order of M(du), integration and trace
yields

Blul= [ Trle®UiF: (@9

Similarly,

Eluuj} = fw Tr [p(8) Uy Fx (d9).

In this paper, the following sequence of measurements
is of interest. At each time ¢ = 0,1, -+, a measurement
represented by the POM M; is made with outcome v@i) e
IR". The state of the system prior to measurement is
characterized by the density operator p(x(i)), where x (i )
is a member of the sequence of random vectors x(j), j =
0,1,---. The outcomes {v(i)} (classical vector random
variables) are assumed to be independent when condi-
tioned upon the sequence {x()}. In the optical communi-
cation example cited in the introduction, this conditional
independence corresponds to “clearing” the receiver cavity
prior to each reception [5]. Therefore, the joint distribution
function of the measurement outcomes v(0), - -« ,v(k) is
given by

Fo(0) (k) (#(0), « - + ,w(R)) = EL{Tr [p(x(0)) Mo(—= »(0)]]
o Tr [p(x (R) M (—=,p(R)]]},  (4)

where E,{ - } denotes expectation with respect to the joint
distribution of x(0), - - - ,x (k).

The linear filtering problem is the following. Let v(2),
i=0,.--,k —1be the outcomes of measurements, repre-
sented by the POM’s M;, which were made at times ¢t =
0,:+,k — 1. A new measurement, represented by My, is
performed at t = k, and the present and past outcomes are
combined linearly to give the estimator

k
£(k) = ZO Ci(k)v(1), (5)
v i=
where C;(k),i =0, - - - ,k, are n X n matrices. The problem
then is to find a POM M,, and matrices C;(k), i =0,--- &
to minimize the mean-square error

mse = E{(x(k) — 2(R))(x(k) — £(k))}, (6)

where the expectation is with respect to the distributions
of {x (i)} and the measurement distributions, as in (4). Here,
the superscript ¢ denotes transpose.

One might think that a technique similar to the one used
in the corresponding scalar problem (cf. [5]) employing the
projection theorem in an appropriate space of operator
valued functions would work for the vector case as well.
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That is, it might seem that one should employ Naimark’s
theorem to construct auxiliary Hilbert spaces He;, | =
0,---,k, and simple measurements E;, i =0, ---,k, on H
® H,; (cf. [3]) statistically equivalent to M;, i = 0, --- k,
and then proceed as in the scalar case. However, a careful
review of Naimark’s theorem [15, p. 124] reveals that the
inner product of the space H ® H,; depends on M, ex-
plicitly, and therefore we cannot apply projection theorem
techniques since the inner product of the underlying Hil-
bert space depends on one of the variables over which we
are optimizing, namely M.

First, we observe that we can set Cy (k) = I, (the identity
matrix on IR ") without loss of generality. Indeed, consider
any pair of POM X and n X n matrix C,and letv € IR” be
the outcomes of the measurement represented by X. Let
¢(x) = Cx be a linear map from R" into IR " and define,
for every A € B, X'(A) = X(c~1(A)). It is easy to verify
that X’ is a POM which represents the measurement with
outcomes Cv. Thus, we shall hereafter take Cp(k) = Ip.

The calculation of the mse (6), using (4) and (5), is
straightforward, given that certain interchanges in the
order of trace and M, (du)-integration are permitted; the
calculation is rigorously justified in (2] and [12], generally
requiring that each x (i) and the past measurement out-
comes v(i) have finite second moments. We find

mse = Tr fw G(u, C(k)) My, (du)

k-1 L\t k=l .
+E [(zo ci(kw(t)) <,Zo C,-<k)uo))],
where C(k) = [Co(k),C1(k), - - - ,Cp_1(k),I1,] and where
G(u, C(k))

=E; [(x(k) —u)t(x(k) —u) — 2(x (k) —u)

. (k:jol C,-(k)E{v(i)|x(i)}>] -p(x(k))]

is an operator-valued function for each C(k). Toobtaina
more compact expression for G(u,C(k)), we introduce
several operators, namely,

20 = Elo@l = [ p@F:0de),

i=0y1"") (78)

which, under our assumptions, is a nonnegative self-adjoint
trace-class operator [8, p. 374} on H;

M) = Elx(0)tx (el ()} = fmn EEp(BF. ) (d8),
i=0,1,---, (7b)

which is a nonnegative self-adjoint trace-class operator on
H;

80) = Er@p) = [ £o®Fun(de),

i=01,---, (7c)
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which is an n-vector of self-adjoint trace-class operators
on H with component operators 8(i); = E{x(i);p(x (D))}, !
= 1, TN

v(k,i) = Elv(i)p(x(k))}
N fIRnf]Rn Efw@)[x () = Ep()F o,z (d§,dS),

1= 0)1)"'7 (7d)

which is an n-vector of self-adjoint trace-class operators
on H with component operators v;(k,i) = E{v;(i)p(x(k))},
=1,.-.,n; and finally

x(k,i) = Elx(k)v(i)tp(x(k))}

= [ [ ) = Bl (O, @D,

i=01,---, (7e)

which is an n X n matrix of self-adjoint trace-class oper-
ators on H with element operators x(k,i);; = E{x(k)v
(1)jp(x(k))}. We introduce also the following notation: a)
for a € IR™ and B an n-vector of operators, a‘g = B'a =
™, a;8: b) for A an n X n matrix and ¢ an n X n matrix
of operators, tr Ao = tr ¢4 = =%, 27, A;jo;;. Using these
definitions, we may write

Gu, C(k)) = k) — 2utd(k) + utun(ky
+ 95 ey (ki) — 2 S k) (k). (8)
=0 i1=0
Furthermore, the operator
((C(R))
k=1 Nt k=1 )
-E [(zO cl-(km)) (,Zo Gk (1)) -p(x(k»]

is a nonnegative self-adjoint trace-class operator on H. If
we define the new operator-valued function

F(u, C(k)) = G(u, C(R)) + {(C(k)),

we may write

9

mse = Tr fm F(u, Ck) M, (du).  (10a)
Therefore, following the terminology and notation of
Holevo [2], we have expressed the mse as the trace-integral
of the operator valued function F(- ,C(k)) with respect to
the POM M,, over R". We denote the trace-integral by

(F(-,C(k)), M) g~ = Tr fmn F(u, C(R)) M, (du).

(10b)

If we now let 1 be the convex set of POM’s on H, we see
that the linear filtering problem becomes: find a POM M,
and n X n matrices C;(k),i = 0, - - - ,k — 1, which minimize
(10) over the set M X (IR?*")* In [12], the following the-
orem, which establishes the existence of an optimal mea-
surement and linear filter, is proved.
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Theorem 1: Suppose that the signal sequence {x (i)} and
the measurement outcomes at time 0,1, - - - ,k — 1 have fi-
nite second moments. Then there exist POM M}, and n X
n matrices C;(k), i = 0,--+,k — 1, which minimize mse.
Moreover, the optimal measurement outcome also has fi-

.nite second moments.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
OPTIMALITY

In this section, we derive necessary and sufficient con-
ditions on the optimal measurement M and optimal
processing coefficient matrices C;(k), i = 0,1,---,k — L.
Our first result is given by the following theorem.

Theorem 2: Necessary and sufficient conditions for
Co(k),C1(R), - - - ,Cr—1(k) and M, to be optimal processing
coefficients and optimal measurement at time k are

i) (F(-,Ck), X)Rrn = (F(-,C(k)), My) R, for every
Xe M .

i) 25, EpG@o()YCik) =
.ok,

where Cx (k) = I, and v(k) = D(k).

Proof: We give only a sketch of the argument; the
mathematical details are in [12]. The necessity is clear.
Note that ii) are the normal equations for the minimum-
variance linear estimate of x(k) based on the random
variables v{0), - - - ,w(k — 1) and D (k), with the constraint
(' (k) = I,,. The sufficiency is more complicated. It is based
on the fact that mse is a quadratic function of C(k) and a
linear function of X. Given any fixed POM X, we define
matrices Dg(k), « - - ,Dg—1(k) which satisfy ii) (the normal
equations) when the densities arg those induced by X.
Then, for any set of matrices Co(k), - - - ,Cr—1(k), we clearly
have that

(F(-,C(R)), X)rn = (F(-,D(R)), X) R

Ef(@)x(k), 1 = 0,1,

(11)

Now it is proved in [12] that i) and ii) above imply that, for
any X e M,

(F(,Dk), X) e 2 (F(, CR)), My pe.  (12)

But then (11) and (12) prove the optimality of Co(k),

eeo ,Cy_1(k) and M.

We now concentrate on condition i) of Theorem 2 in our
effort to improve these necessary and sufficient conditions.
This condition represents an optimization problem with
respect to the POM X (while C(k) is held fixed) similar to
those studied extensively by Holevo in [2, pp. 368-372].
Note that, in our case, the operator-valued function
F(u,C(k)) is quadratic in u.

The following lemma, an application of the Lagrange
duality theorem [17, p. 94], has been announced by Holevo
in a more general setting [18]; a proof is also given in
(12]. ‘
Lemma 1: Let ¥ be a continuous operator-valued
function on IR" such that, for everyu ¢ IR?, F(u) is a
nonnegative self-adjoint operator with finite trace on a
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Hilbert space H. Consider the set of operators on H,Sg =
{r] 7 is self-adjoint with finite trace, 7 >0, and 7 £ F(u) for
allu € R". Then

inf (F,X)Rr~ = max Tr [7].
Xem re Sy

As a consequence, we have the following lemma.

Lemma 2: Necessary and sufficient conditions for the
POM M, to solve the optimization problem described in
i) of Theorem 2 are

1) F( ,Q(k)) is integrable with respect to M,,
i) Fu,CR) =%, forallu e R7,

where 7 2 [ grn F(u, C(k)) My (du) is well-defined in view
of 1).

Proof: (Necessity.) From the lemma above we have
that there exists 79 € Sg(.,¢)) such that

inf (F(-,C(k), X)rn = (F(-,C(k)), Mx) rn
XeM

Tr [7] = Tr [7o]. (13)

= max
re Sg(., CkY)

It remains only to show that 7o = #. Since F(-,C(k)) is a
quadratic polynomial in (uy, « - ,un), and hence locally
integrable with respect to M (du), we have that

L (F(u, C(k)) — 7o) My, (du) = 0,

for every bounded A € B".  (14)

Now if there exists bounded Ay € B" such that
., (@ Ck) = 70) My (du) >0,
0

we must have (F(-,C(k)), My )rn > Tr [7o], which is a
contradiction to (13). So (14) is in fact an equality for any
bounded A € B". Choosing now an increasing sequence
of bounded sets A; € B", A; — IR™, we have from (14) that
F(-,C(k)) is integrable with respect to M, over IR” (see
(2] or [12] for definitions). Therefore, from (14), 7o = f rn
F(u, C(k))M,, (du) 2 %. This completes the proof of ne-
cessity.

For the sufficiency, we observe that i) and ii) imply that
for any POM X, (#(-,C(k)),X)r~ = Tr 7] = (F(,
C'(k)),AMk ) R Then clearly Lemzna 1 implies that
(F(-,C(k)), M) r~ = infxe u{F(-,C(k)), X) rn, and the
proof is complete.

As a consequence, we have the following necessary and
sufficient conditions for the optimization problem of this
section.

Theorem 3: Necessary Aand sufficient conditions for
Co(k), -+ ,Cr—1(k) and M; to be optimal processing
coefficient matrices and an optimal measurement at time
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k are

) Ao Eb@u()ICHR) = Eo@)x (R}, i = 0,1,--- k,
where Cy (k) = I, and v(k) = 6(k),
ii) F(-,C(k)) is integrable with respect to M.,
iii) Fu, C(k)) = 7, for all u € R”, where # = [Rn
F(u, C(k)) My (du).

Some remarks are now in order. We observe that the
solution to the optimal linear filtering problem in the
multiparameter (or vector) case is not as explicit as the
solution in the scalar case (cf. [5, eq. (13)-16)]). This was
expected since the optimization problem here cannot be
formulated as a quadratic problem (cf. our previous re-
marks on operator moments of measurements). Observe
that in the scalar case the measurement (which in that case
is simple and represented by a projection-valued measure)
is uniquely defined by its first operator moments. That is
why the conditions of Theorem 3 can be transformed into
the convenient form of [5, corollary 1]. In the vector case,
however, the best that can be done generally is to derive
explicit necessary and sufficient conditions which char-
acterize the first and second operator moments of the op-
timal measurements. Since these moments do not deter-
mine uniquely the optimal measurement (see also (19, p.
536]), there exists freedom in further restricting the mea-
surement to belong to certain convenient classes. Such a
route has been followed by Holevo who used canonical
measurements for estimation problems concerning
Gaussian states [19].

We note that, although the results of this section do not
generally provide an explicit closed form solution for the
optimal measurement and optimal processing coefficients,
they can be used to establish optimality for suggested
processing and measurement schemes. This approach has
been successfully employed in similar problems by Holevo
(2], [23] and by Belavkin [24], [25] (including problems
with non-Gaussian states). The role played by the condi-
tions of Theorem 3 in linear quantum filtering theory is
central. It is therefore a natural task to analyze these
conditions in detail and to discover cases that permit ex-
plicit solution. This will be done for Gaussian statistics in
the next section. Other cases will be treated elsewhere.

We also note that the question of implementation is a
hard and mostly unanswered one, even for the scalar case.
There are very few cases where we know how to implement
(with devices) the optimal measurements which result
from the solution of the problem. In the vector case, we
have in addition the problem of finding the auxiliary
system and simple measurement necessary to implement
a POM. The only example of an explicit construction ap-
pears in [20] and with further generalizations in {19].

IV. GAUSSIAN STATISTICS: FILTER SEPARATION

A case which is of particular interest for applications and
which admits explicit computation of optimal measure-
ments and processing coefficients is that where the process
and measurement statistics are Gaussian. We assume in
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this section that the vector signal process {x (j)} is pairwise
Gaussian, and that the outcome 7 (j) of the optimal mea-
surement M}, and x(j) are jointly Gaussian for each j. For
some of the lemmas, we will need only the linearity in x ()
of the conditional expectation of #(j) given x(j), which is
a slightly weaker assumption. As in [5], we want to compare
the optimal measurements appearing in the optimal filter
with the optimal measurements that represent the mimi-
mum-variance estimator of x (k) without postprocessing
(i.e., where C;(k) = 0,1 =0, ...,k — 1). This isa natural
question to investigate since we would like to find in what
way the correlation between the {x (i)} affects the optimal
measurement; when {x ()} is an uncorrelated sequence, the
optimal measurement of the filter coincides with the op-
timal measurement selected independently for each x (7).
The following lemma establishes that this effect is to weigh
the estimanda (i.e., x(j)) with certain matrices that carry
information about the cross correlation of the {x (i)}.

Lemma 3: Suppose the vector random sequence {x (i)}
is pairwise Gaussian and that the POM’s M;, j = 0,1, - - - |k,
and the n X n matrices C;(j), i = 0,1, - - - J—-1,7=0,1,
- -+ ,k, are optimal measurements and optimal processing
matrix coefficients for the optimal linear filter for time J
=0,1,--- k. Suppose in addition that 6(j), the outcomes
of Mj, satisfy

Eo(D =} = A0)x()) (15)

for some n X n matrices A(j),j =0,1,---,k. Then NIJ is the
optimal measurement for the minimum-variance estima-
tion of B(j)x(j), j = 0,1, - - - k, without regard to past data.
The n X n matrices B(j) are defined by

B() =1, —’32; C:()ADAG,)),
B(O) =In:j= Oyly""k, (16)

where A(i,j) are n X n matrices such that E{x(i)|x(j)} =
A(i,7)x(j) and exist since {x (i)} is pairwise Gaussian.

3 Proof: Clearly the result is correct for j = 0. Since
M,Co(j), ¢.G),--- ,C'j_l(j) are optimal for the linear fil-
tering problem at time j > 0, they satisfy the conditions of

Theorem 3. Therefore, F(- ,C(j)) in (9) is integrable with *

respect to Mj, and

Fw,C() ~ f_ Fu,CONM, [du) 20,
forue R™ (17)

Utilizing (8) and (9) in (17) results in

70) [u‘u - flR"u‘uM'j (du)]

~2[80) - Gt |

-[u - fmnqu (du)] >0, (18)

foru € IR" From (7) and the assumptions of the lemma,
we have

vG.0) = EEW @) [x(Dip(xG)} = AGAG,))8()),
1=01,..-—-1. (19)
Because of (19) and the definition of B(j), (18) becomes

1) [utu - fmn utu M, (du)] — 2[B()8(j)]"

-[u—fmnuﬂj(du)]?_o, ue R~ (20)

Define the new random variable y{(j) = B(j)x(j). Con-
sider the problem of determining the optimal measure-
ment for the minimum-variance estimation of y(j) without
regard to past data. We have implicitly studied this
problem: it suffices to set C;(j) = 0(i # j) in the results of
the previous sections. So, from Theorem 3, necessary and
sufficient conditions for the POM M to be optimal for this
problem are that the operator-valued function (obtained
from (8) and (9) by setting C;(j) = 0)

27*(u;j)v = A*%(j) — 2uto*(j) + n*(utu (21a)
be integrable with respect to M}, and that

forue R~
(21b)

We can assume, without loss of generality, that B(j) is in-
vertible (cf. comments after (28) below). Therefore, in
(21),

() = Elp*(yG)} = E{p(B() 1y (j))}
=Elp(x()}=20), (22)

Frlwif) ~ [ Fw)M; (dw) 20,

and similarly
5*(J) = B()s(j). (23)

Utilizing (19) and the definition (9) of F(u, C(j)) and B(}),
we see that

Fu, () = A() — 2B + n(utu + ¢, (24)

where ¢ is a constant (independent of 1) operator. Since
F(u,C(j)) is integrable with respect to M; by assumption,
(21a), (22), (23), and (24) imply that F*(u;j) is integrable
with respect to M ; also. Finally, (20) implies that (21b) is
satisfied by M. This completes the proof of the lemma.

We note again that condition (15) in the statement of
Lemma 3 is clearly satisfied if 5(j) and x () are jointly
Gaussian, j = 0,1, .- k.

Lemma 3 provides a simplification in the structure of
the filter. Namely, it establishes the fact that the optimal
measurement in the filter at time j can be obtained as the
solution of the minimum-variance estimation problem for
B(7)x(j). This result cannot be used in the construction
of the filter, however, for the following reasons: a) to check
for the essentially joint Gaussian assumption on 6(}), x(j)
(cf. (15)), we must already know the optimal measurement,
b) to construct the matrices B(j), we must already know
the optimal matrices ;(j). What is needed is a converse
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Fig. 1. Illustrating relation between POM’s Z; and Z;.

to Lemma 3, namely, a procedure whereby one solves a
simpler estimation problem for each x (i) independently,
and then combines the results to construct the filter. We
proceed now to establish specific conditions sufficient for
such a converse.

We consider first the problem of finding the optimal
measurement for the minimum-variance estimator of x (J)
without regard to past data. Let Z; be an optimal POM for
this problem. Let us consider also the same problem for the
new vector random variable Dx(j), where D isann X n
invertible matrix. In general, there may be no relation
between the optimal POM’s for these two problems. The
following special case is of importance for the results of this
section: the minimum-variance quantum estimator
(MVQE) of x(j) without regard to past data will be called
linear with respect to the n X n invertible matrix D if the
POM defined by Zj (A) = Zj(d‘l(A)), for A € B", where
d is the linear map d(x) = Dx(d: R” — IR"), provides (via
its outcomes) a minimum-variance estimator for Dx(j).
This notion is illustrated in Fig. 1. It is important to realize
that a MVQE can be linear with respect to one matrix but
not linear with respect to another.

It is immediately seen, from (22), (23) and the operator
equation satisfied by the optimum observable in the scalar
case (cf. for example [5, eq. (10) with k£ = 0}), that the
minimum-variance quantum estimator of a scalar random
variable is linear in the above sense.

Let us now assume (in addition to the hypotheses of
Lemma 3) that the minimum-variance quantum estimator
of x(j) without regard to past data is linear with respect
to B(j). As a result of Lemma 3 then, the optimum mea-
surements that appear in the linear filter will be of the
form

M;j(A) = Z;(B7'(A), Jj=01,---k, (25

where 8;: R™* — R", 8;(x) = B(j)x, B(j) as given by (16),
and the outcome of Z; is a minimum-variance estimator
of x(j) without regard to past data. Then (15) implies

EZ(H]x()) = B~1()A()x() £ TUx(G).  (26)
Note that, if 9(j) and x(j) are jointly Gaussian, then £(j)
and x(;) are also, which allows us to pass the joint Gaussian
assumption on the estimation problem for x(j) directly.

Under these assumptions, the optimal linear (filter) esti-
mator takes the form

2(0) = BRI + T CBGREG.  (2)
2
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The normal equations for the C;(k) (Theorem 2) then
become

i BH)ER()2()1BG)C;(k)t = BU)E()x(k)t),

j=0

i=0,1,.--,k. (28)

We observe that, without loss of generality, one can as-
sume that the B(j), j = 0,1, « - - ,k are nonsingular. For, if
any B(j) is singular, it can be restricted to the complement
of its null space without affecting either £(k) or the normal
equations. Hence, the latter may be written

S EROGOUIC RBO = EE @)= (k)

j=0

i=01,---,k. (29)

We summarize these results in the following.

Lemma 4: Under the hypotheses of Lemma 3 and the
additional hypothesis that the minimum variance quan-
tum estimator of x(j) without regard to past data is linear
with respect to B(j), the optimal linear filtered estimate
of x(k) takes necessarily the form (27) and the normal
equations (29) hold. Moreover, (26) holds.

We now turn to a converse of Lemma 4. This is of par-
ticular importance for the synthesis of the filter.

Lemma 5: Let the vector signal process {x ()] be pairwise
Gaussian, Z; be the optimal POM (with outcome {£ (i)} such
that (i) and x (i) are jointly Gaussian) without regard to
past measurements, and {D;(i), j = 0,1, -- - ,i} solve the
normal equations (29) based on the {£(i)]. Assume that Z(k)
is linear with respect to Dy (k) and set the POM M;(4) =
Z;[d7(A)], forAe Bni=0,--- k,wheredy(x) = x, d;(x)
=D;(i)x,i=1,---,k, with outcomes {0(i), i = 0,1, .-k},
and let {C (1), ] = 0,1, - - - i} solve the normal equations (29)
based on the {#(i)}. Then, for eachi = 0,1, - - - ,k, the POM
M; and the matrices {C (1)} are optimal.

Proof: We need to show that conditions i), ii), and iii)
of Theorem 3 are satisfied by M; and C(@) for each i =
0,1,---,k. Now i) is satisfied by our construction of the
(C; )} .

By the optimality of Z; and Theorem 3, the operator-
valued function

F(u) =A@ — 2utd@) + p(Dutu (30)
is integrable with respect to Z; and
n(i) I:u‘u - f utuZ; (du)]
an
— 25(i)¢ [u - f uZ; (du)] > 0,
IR"
forue R (31)

On the other hand, the hypotheses imply that there exist
n X n matrices A(J,i) and I'(i) such that

Elx (D] (@)} = AGDx ()
ERO[x()} = T()x(),

(32)
(33)
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and therefore, similarly to (19), we obtain v(i,j) = D;(J)
I'()A(,i)8(). From (8) and (9),

F(u, CG)) = AQ) + n(utu
— out (1 -5 (z)D,o)ronl)) 5G) + ¢, (34)

Jj=1
where ¢ is an operator independent of u.
From the last block row of the normal equations for the
Cj(i), we have

;Z:i E6@oG)C6) + EB@60) = EloG)x 6 (35)
or
[Jzi 6D ()EG)2G)) + DiOEE)2GY
D) = Elx()2()DSG).

Now for similar reasons as those for the matrices B(j) (see
comments below (28) above), we can assume without loss
of generality that D; () is nonsingular. Then using (32) we
have
i-1
21 C;()D; (HTHAGL)Ex(D2(D)Y}
j=

+ D;()EZ )20 = Elx(1)2(1)Y
or

D;()E{(i)2 (i)Y}
- (h - ii C,-(i)Dj(i)l‘(i)A(j,i)> Elx()2()4.  (36)
-

It is easy to see that the assumptions imply that E{x (1) (1)}
= E{2(i)2()t}, i = 0,1, - - - ,k. So, trivial cases apart, (36)

implies
D) =L~ T GODTGAGH. (D
2
Using (37) in (34), we obtain
F(u, CG)) = A@) + n(Dutu — 2(D;()d(D))'u + ¢. (38)

From (30), (38), and the definition of 2;, M, it follows that
F(-,C(i)) is integrable with respect to M,. So condition ii)
of Theorem 3 is also satisfied.

Finally, since the minimum-variance quantum estimator
of x(i) without regard to past data is linear with respect to
D; (i), we have, using (22), (23) and Theorem 3, that

7(1) [u‘u - fmnufitM,- (du)]
— 2(D;()3)) [u - fw M (du)] >0

foru e R".

But then (38) and (39) imply

(39)

F(u, CG)) —fmnf}'(u, CG)M, (du) =0, forue R™,
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Fig. 2. Illustrating separation of optimal linear filter.

which is the condition iii) of Theorem 3. This completes
the proof of the lemma.

We note that Lemma 5 is required because of the
nonuniqueness of the optimal linear filter and of the op-
timal measurement without postprocessing.

From the recursions (16), (26), and (37), the matrices
D;(i),i=0,1,---,k, of Lemma 5 are identical to the ma-
trices B(i),i = 0,1, - - - ,k, in Lemma 4. So the filtered es-
timate of x (k) utilizing the POM’s and processing matrices
constructed in Lemma 5 is again given by (27), and the
normal equations (29) hold. So we have established the
following “separation” theorem.

Theorem 4: Under the hypothesis of Lemma 5, the
outcomes 2(j), j = 0,1, - - - ,k, of the measurements Zj, j=
0,1,---,k, are a sufficient statistic for the linear mini-
mum-variance estimate (LMVE) £ (k) of x(k).

This theorem establishes, under the hypotheses stated,
the following important “separation property” of the op-
timal linear quantum filter: the optimal quantum mea-
surements are chosen separately from the optimal
(classical) linear postprocessing of the measurement
outcomes. This is illustrated in Fig. 2.

Of obvious interest are conditions under which the
minimum-variance quantum estimator of x(j) without
regard to past data is linear with respect to the matrices
B(j). The following theorem provides a sufficient condi-
tion.

Lemma 6: If B(j) as constructed above is of the form
B(j) = b(j)U(j), where b(j) is a scalar %0 and U(j) ann
X n orthogonal matrix, then the minimum-variance
quantum estimator of x(j) without regard to past data is
linear with respect to B{j).

Proof: Let Z; be the optimal POM for the estimation
of x(j) without postprocessing. Then (30) and (31) hold.
Let M; be defined via (25). For M; to be the optimal POM
for the estimation of B(j)x(j) (w1thout postprocessmg)
we must show that the operator-valued function (21) is




BARAS AND HARGER: QUANTUM MECHANICAL LINEAR FILTERING
integrable with respect to M; and that
A2 () [utu - fmn utuM; (du)]

= 26%(j)¢ [u - fmnuM'}‘- (du)] >0, forue R,
(40)

where 7*(j) = 7(J) and 6*(j) = B(})é(j) from (22), (23). The
integrability of (21) with the respect to M] is immediate.
Utilizing the definition of M in (40), we have that

w= a0 [uu= w26 |
— 25¢(j)B*()) [u - f uzE0) du)]
= 70 [u‘u — b2(j) fwzrzzj (dz)]
—28t()) [B(j)tu —-b(y)? fmnzzj (dz)]

0(0)1,
v(0)v(1D)e(1,00M0) 1,

v(0)y(1)e(1,00M0)],
6(1)I,

YD)y (0)ali,00A0) ],

ey (O)y ()l 00N 0),,
ey (Vv al, DA,

81,
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Theorem 5: Let Z; be the optimal POM estimating z (i)
without regard to past data and suppose that

) EWD]|x0)] = 'y(i)x(i) v (i) a scalar,
i) E[2(0))2()t] = 6(i)1,, 6(i) a scalar, and
iii) the component Gaussian random processes {x; (i)},

J =1,---,n, are uncorrelated and identically dis-
tnbuted
Then B(i) = b(i)I,

Proof: Clearly B(i) = b(i)I,, for i = 0. The defining
equations for B(i), i > 0, are the normal equations (29) or
(30). We note that under the assumptions of the theorem,
fori >0, Efx()|x()] = a(,))x(i);j = 0,1,-++ i — 1, where
a(J,i) is ascalar, and that E{x (i)x (i)} = ()], A(¥) a scalar.
Therefore E{2(j)x (i)t} = vy(ali, ) )NGM, j= 0,1, - -+ i —
L, and E{£()20)} = vy G a@ )N, ] = 0,1, -+ i =
1, Therefore, (29) yields

[Co(i)B(O)]‘
[Ci-1()B(i — )]
BG)

Y(OA0)a(i,0)],
y(OAD)ali, DI,

v(i = DAG = 1)alii = DI,

YA,
Therefore, the vectors of off-diagonal elements of the matrices [Coti)B(0)]?, -+, [Ci—1())B( — 1)]4, B(:)* satisfy
the equation
6(0) Y(0)y(1)a(1,00A(0) -« - ¥(0)y(i)A(0)a(,0) [Co(i)B(O |im
¥(0)y(Da(1,0)A(0) (1) -y (L)y(E)A1)al,1)
: : : [Cio1()BG = D]im
v(£)v(0) (i, 0)A(0) 6(z) B(i)im
0
= O , for] # m. (41)
0

since U(G) U{j)
we have

A = b2()n()) [ztz - fmnz‘zzj (dz)]

~ 2b2(j)8(j) [z - fm"zzj (dz)] >0,

because of (31), Since B(j) is clearly invertible, this com-
pletes the proof.

= ],,. Making the substitution u = B(j)z,

forze R»

The following theorem gives sufficient conditions for
B(j) to be of the form described in Lemma 6.

Since, trivial cases apart, the matrix in (41) is nonsingular,
the only solution is the zero-vector solution. Therefore, the
matrices Co(i)B(0),---,Ci—1())B(i), B(i) are diagonal.
Now, for | = m, the diagonal elements of these matrices
satisfy, for every [, the same equation as (41) with the right
side replaced by the column matrix [y(0)A(Q)a(i,0), 1,
v(i = DAG = Da(i,i = 1),y GAGE)). Therefore, B(i) is of
the form b(i)I, as is, in fact, every matrix in sight. This
completes the proof of the theorem,

The most obvious consequences of the separation the-
orem are a) when it holds, we need only implement the
optimal measurements Z; that should be thought of as
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intrinsic to the quantum field and can he found a priori,
we have thus a considerable reduction on the number of
measuring devices needed; b) when the physical imple-
mentation of the POM Z; does not depend explicitly on
j (i,e., on time) and the classical estimation problem (i.e.,
the normal equations (29)) admits a recursive solution,
then the filter simplifies even further. Such an example
follows.

Example: Suppose that x (k) is a 2-vector signal process
(xy(k),xa(k)), where x((k) and x3(k) are independent
zero-mean identically distributed Gaussian random se-
quences with variances A(k), and that x (k) is transmitted
as the in-phase (x,(k)) and quadrature (x2(k)) amplitudes
of a monochromatic laser that is received, alang with
thermal noise, in a single-mode cavity upon which mea-
surements can be made, k = 0,1, - - .. The density operator
in the coherent state representation (or P-representation)
[21] is

p(a(h) = == [ e=lesikr=ixsb /o] ) (a dPe,

g
where the coherent states |a) [32] are eigenstates of the
photon annihilation operator of the mode a, ng is the mean
number of thermal photons in the mode, and the integra-
tion is taken over the entire camplex a-plane (« = Re e +
i Im a, d%a = d(Re a)d(Im «)).

It is known [6], {7], [22] that the POM defined by

Zi(4) = L ‘dge)> <d?k) an
(42)

d2(k)r’
d(k) = 2X(k)[no + 2\(k) + 1|7}, represents an optimal
measurement for the minimum variance estimation of x (k)
without regard to past data. For completeness, we show
that the above POM satisfies the necessary and sufficient
conditions for optimality (30) and (31) from conditions ii)
and iii) of Theorem 3. Using the properties of the coherent
states, it is straightforward ta show that n(k) = [1 — exp
(=o(k))] exp (—a(k)ata), where a(k) =Ine(k), e(k) = (ng
+ 2X(k) + 1). (ng + 2A(k)) ! and ata is the “number op-
erator” [21]. Also §,(k) = Mk)(ng + 2A(R) ! [an(R) +
n(k)at] and da(k) = —iA(k)(go + 2N(R))"! [an(k) —
n(k)at). (Compare with [6, eqs. (6,16)-(8,18)]. Ta evaluate

for A e B"

(33), we need the first and second moments of the POM |

defined in (42): we find, via the coherent gtate represen-
tation, Uy(R) = d(k)(a + a%)/2, Uq(k) = d(k)(a. — a")/2,
Un(k) = Ui + d(k)21/4, Use(k) = Uj + d*(k)I/4, and
Uia(k) = Uai(k) = U Ug — d(k)2I/4i. 1t follows imme-
diately that the gperator-valued function in (32) is inte-
grable with respect ta Z, in (42). Finally, to show (33) we
must establish, for all complex scalars «, that
ANR)(R) t

no + 2A(k)"(k)a a

¥ 2M(k)d (k) 2\ (k)

o+ 20() 21RAT ) an(k)a
2 (k)

- m n(k)ata = 0. (43)

n(k)ea — d%(R)y(k)aat +

Working with the “number representation” [7] for a,
a' and q(k), it is easy to establish that n(k)a = e(k)an(k)
and atp(k) = e(R)n(k)a’. Thus (43) demands that (@ —
d(k)at)n(k)(a — d(k)a) be nonnegative, which is true since
n(k) is nonnegative definite,

We proceed now with the solution to the filtering
problem. From (42), we note that Zx (A) = ¥, [d;1(4)], A
€ B", where
d%

Ve (A) = j:\ |ee) (] .

and where the mapping di: R? — R? is defined by dj(x)
=d(k)x, x € IR% Soif we let y(k) € IR? denote the out-
come of a measurement represented by the POM ¥, we
see that 2(k) = d(k)y(k). Moreover, the first and second
moments of ¥, are obtained from the moments calculated
above by replacing d(k) by unity. Now the probability
density function of the outcome y(k), conditioned on x (k),
is given by Tr [p(x(k))|a){a|/]: the calculation shows
that y(k) and y3(k), conditioned on x (k), are uncorrelated
Gaussian random variables with means x;(k) and xa(k),
respectively, and identical variances (ng + 1)/2. The
physical realization of the POM ¥, is optical heterodyning
(8], 19], [34], [36] of the raceived field. It is known [22] that
the measurement represented hy the POM ¥}, is “realized”
(see Section II) by the simultaneous measurement of the
commuting operators [(a + a')/2 — (a. + a})/2] and [(a
— a')/2i + (a. — a.")/2i] on the Hilbert space H ® H,
representing the receiver cavity adjdined by an harmonic
oscillator in the ground state p, = |0 ) (0e|.

A simple calculation shows that E{2(k)2(k)t] = (no +
2X(k) + 1)12/2. Therefore, the hypotheses of Theorem &
are satisfied and the separation theorem (Theorem 4)
holds. It is clear from (49) and from the above discussion
that the optimal measurement without postprocessing Z;
does not depend explicitly on &, a great practical advan-
tage; the k-dependence is entirely accountable in the
classical postprocessing,

Thus the optimal filtering estimator becomes

(44)

2(8) = bRy + T GBI,

where the coefficient matrices {Co(k)b(0)d(0), - -+ ,b(k)
d(k)]5} satisfy the normal equations for the LMVE of x (k)
based an y(0),y(1),+-+,y(k).

The outcomes y(i) are statistically equivalent to the
following fictitious abservation process

y@ =x() +e@), i=0,1,---k, (45)

where €(i) {s a white zero-mean Gaussian random vector
sequence with covariance matrix (ng + 1/2)/5.

Finally, if the |x (k)] sequence satisfies the recursive
relation (1), then the optimal estimator is given by the
well-known Kalman-Bucy filtering equations [16, sect. 4.7
for the classical problem (1) and (45), namely,

i(k) = @k — 1)2(k — 1)
+ K(R)[y(k) — ®(k — 2(k — D},
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Fig. 3. Illustrating form of filter in this example.

where

K(k) = P(R) [P(k) ot

-1
112]

and

P(k) = ®(k = 1)[P(k - 1)
- K(k = 1)P(k — 1)]®(k - 1) + Q(k — 1).

The realization of this computation is shown in Fig. 3.
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