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Abstract
There is evidence that the algorithms for estimating traffic flows from

sensor data need to be improved before computer controlled traffic responsive
urban traffic control systems can reach their full potential effectiveness. A
large part of the problem appears to be that the data f;‘om traffic sensors is,
in the statistical jargon, a marked point process. It is only very recently
that the theoretical te;:hniques for estimation based on point process data have
reache'd the sophistication needed for traffic problems. Thus, this paper
describes and illustrates the way in which these techniques are being applied

to the design of algorithms for filtering and prediction of urban traffic flows,
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Introduction:

There is some evidence that a major difficulty in implementing traffic
responsive,computer controlled,urban traffic control systems is that the
existing algorithms for estimating and predicting traffic parameters are not
accurate enough. For example, recent attempts to implement one such system
(the UTCS in Washington, D.C.) resulted in, at best, only marginal improve-
ment ov'e'r. the previously implemented system based on time of day and

historical data [1]. This paper describes some techniques and traffic models

-

that are being utilized in the development of improved filtering and prediction
algorithms for use in urban traffic control. |

The basic problem is to take the signals from traffic sensors (normally
loop detectors) scattered throughout the network and to process this data to
obtain good estimates of traffic volume, occupancy, queue length, stops, delay,
average speed and travel time. One difficulty is that the data are either:

1) a sequence of times t . (ti < ti+1) representing the activation

1’ tZ’ .
times of the detector or,
2) the 'data in (1) together with some auxiliary observations‘, such as
the characteristics of each pulse (e.g. dAuration).
Case (1) is a random point process; case (2) is a marked point process. In the
urban traffic situation, neither of these processes is a Poisson process.
Theoretically, an optimal estimator for traffic can be developed via a

purely Bayesian approach. To do this one first determines (experimentally or

theoretically) a statistical model for traffic flow. Specifically, it is necessary



to obtain the conditional prébability of the sensor data given the state of
traffic in the network (the apriori probabilities). Straightforward application
of Bayes' Rule then allows the calculation of the conditional probability of

the traffic state given the sensor data (the a posteriori probability). This
approach is illustrated in Section Three of this paper and leads to a set of
equations that are difficult, if not impossible, to solve in a practical traffic
situation. Thus, the major practical problem is to determine means to either
reduce the complexity of these equations, or approximate them in a useful
way, or calculate ‘the estimates without having to first calculate the entire
posterior probabilities.

Section Four introduces some recent results from the theory of point
processes which reduce the complexity of the equations for the a posteriori
probabilities. These results are then applied, primarily for illustrative
purposes, to a very simple and highly idealized traffic problem. The basic
idea utilized is to represent the detector signals as 'generated' by certain
other stochastic processes intrinsically associated with them (effectively, to
model the probabilities in a more convenient way). Once this -
representation has been found it is fairly straightforward to produce a dynamical
system, driven by the sensor signal, that produces the time trajectory of the
estimators. -

2. Traffic Models

It should be apparent from the discussion above that our approach to the

design of filtering and prediction algorithms requires the preliminary develop-

ment of a model for the statistics and, even more important, the dynamics of



traffic flow. The model described below is believed to be adaptable to a wide
variety of traffic situations, convenient to parameterize, reasonably accurate
and analytically tractable.

Consider a link of the traffic network (assumed to be one-way without loss
of generality), say link i between intersections k, L. We divide each link into
a rna:;imurn of three sections, with the division points (some or all) being

detector locations.
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Figure 1. Illustrating the sections of a link of the network.
th
Forl < j <3 we let dij be the length of the j  section of link i, xij(t) be the
number of vehicles in section j of link i at time t (i.e., aggregate density),

(t)

uij(t) b‘e the mean speed of vehicles in section j of link i at time t and ¢ik
the nux'nber of vehicles entering link i at the upstréam intersection k during the
time interval [t,t+l]. The determination of the time unit will be based on the
state of the traffic flow (light, moderate, heavy) and on the effect it will have
on the filter/predictor performance. Finally let oij(t) denote the percentage

of cars in section j of link i that stay in that section during one unit of time.

Then the equations for link i are:



x (E+1) = o (6) x;)(t) + 8(0)
x4 1) = [1- o (0] 5 (8) + e (thx,,(t) ’ (M)
x4 (t+ 1) =[1 - aq,M] %, (0) + a5 ()x5(0) o

. th v
Let q‘; (t) be the output of the j detector on the ith link. As was previously
indicated qi(t) is a marked point process [ 2]. Let Ni(t) be the associated

counting process per unit time. That is, N?(t) denotes the number of vehicles
. i
passing detector j on link i during the time interval [t,t+l]. Then if detector

Dj+l is located at the downstream end of section j of link i we have that

- NS A
(=g (D)%, (0) = Nyt 5 5= 1,2 (2)

We let ei(t) denote the flow entering the network at the input intersection and
proceeding in link i during [t,t+1], and ym(t) denote the flow that was formerly
. . . . h

in branch m (which is entering node k) and leaves the network at the kt inter-

section, Then
k,
. 1 .
g(t) = S[1-q 5)x (1) -y (0] 480 (3)

m-=l m

Equations (1), (2), (3) describe the model for link i. The summation in (3) is
overall links entering node k and such that traffic can proceed to link i.
Normally k,1 <3. In general the F will depend randomly on the traffic
conditions in the section and the downstream section and on traffic signals.

This can be expressed as an initial functional relationship

°ij(t) =fij(xij(t). xi(j+1)(t)’ uij(t)’ ui(j+1)(t)' Vij(t)) (4)



(where j+1 should be interpreted as 'next'). Simplicity of the model requires

simplicity in the fij. Typically fi :fi2=fi =f in terms of their functional form,

1 3

It is generally possible, by means of one of the various traffic flow

theories [ 3, 4] to eliminate the dependence on velocity and reduce Egq. (4) to:

°‘1j(t) :f(xij' x (t));j=12

iG+1)7 4
(5)

(+1

13(1:) =1 - uL(t) [1- f(xi3(f), X

s Y]

where uz(t) denotes the time variation of the traffic signal at intersection £ and
is a time function taking values 1 (corresponding to green) or 0 (corresponding
to red). The subindex m in (5) refers either to the next link of the same road-
way downstream or to the link of a crossing roadway.

Equations (1)-(3) and (5) can then be combined to give a complete model
of an urban traffic network. This model is used in the next two sections to

derive procedures for estimating traffic parameters.

3. Bayesian Traffic Estimation

In this section a straightforward Bayesian approach to the estimation of
traffic' parameters is illustrated.r It is essential to first interpfet the traffic
flow model of t'he previous section in a slightly ;lifferent way.

For simplicity, assume we are dealing with a single street segment (drop
the subscripti in Egs. (1)-(5)). In addition assume that: ‘

Al) At, the time interval betweent and t+l is so small that Nj(t) and

g(t) are 0-1 processes, e.g. NJ(t) =0 or NJ(t) =1

A2) g(t) has a known deterministic rate. That is, g(t) is a sequence of

Bernoulli trials



=1 = = H .: = -
Pr [ g(t) =1] p¢ )\¢ Pr{ g(t) =0] =1 p¢

p¢assumed constant for simplicity,

A3) The observations from the detectors are:

Dl - ignored

, :
D, - z(t) = N(t) +£(t) = (1 - a1 (1)) x() + £ ()

3
- = 13 = -
D, - 2,(t) = N (t) + £,(t) = (1 = o (£)) %, (t) + E,(t)
where §l and gz are noise terms. Again, we are ignoring velocity
data to simplify the presentation. Detector 1 is primarily for veleccity

estimates and so is ignored.

A4) Pr[x,(0)=m] =n_ .(0) is known j=1,2,3;m=0,1,2 ...

J m)
A5) Pr g (t)x.(t) =m|x.(t) =m] =P__. is known ;m =0,1,2 ...
J J J mj
then Pr ) x (t) =m-1|x.(t) =m]"1 -P . =% . byassumption (1)
[aJ( J( ] J() ] mj = Mmj ©Y P

_ i+l ~ b
Ab) Pr[zj(t) =0| N° ' (t) = 0] -PjO

n

Priz(m=1] N =0 -0-p ) b;j=1,2
J

J
i+l

le
1- le) )

The above assumptions provide a complete statistical description of the

(t) =1]
j+1

Pr[zj(t):1| N

(t) =1]

PI_‘[zj(t):OI N

traffic model and, in a moment, will be used to derive an estimator. However,
several remarks about the model are in order first.
It is clear that several of the assumptions simplify the model beyond the

point where it would be useable in a real traffic environment. In particular,

g(t) would really have a rate function \(t) that is time-varying, dependent on



traffic elsewhere in the network and unknown. Similarly, (A5) makes ¢ (t)
dependent only on xj(t) and ignores the dependence on x, + 1(t) (the downstream
traffic).

It is not difficult to incorporate improvements to the statistical model that
would eliminate these objections without changing the essentia.l features of the
model. Furthermore, the theoretical traffic estimator developed below can
be developed for the more complex and more realistic traffic model. We
leave the assumptions as they are in the interest of simplifying and clarifying
the exposition of the techniques.

It should be clear that the traffic flow model, Egs. (1)-(3) and (5) and
assumptions (Al)-(A6) result in a traffic model that is a discrete time and
discrete space Markov Process. Similar models have proven useful before
in both theoretical and practical traffic problems [ 5, 6]. Given the model,
one poses the following problem.

Given a sequence of measurements zj(t); j=1,2;t=0,1,..., T
Estimate:

a) xj(T) = number of vehicles in segment j at time T

b)‘ the rate at which vehicles leave segment j in interval T to T + 1

The minimum variance estimates can be computed as follows [ 7, 8] .

Let

m_(t)=Pr[x (1) =n | e (t)] = Pr{x,(t) =0, %, (t) =n,, x,(t) =n e ()] (6)

—

where ¢ (t) = total information available to the estimator at time t.



Then, since the only information acquired at time t is z(t)

ety = [z(), e(t-1)) (M

We next perform a sequence of straightforward calculations of conditional

probabilities.
m (6 =Prlx(t)=n, z(t) = 2]e(t-1)]/ Prlz(t) = £ |e(t-1)] (8)
where z(t) = £ means Zl(t): ,61 and zz(t) = £2 for known 21 and !,2 (Li=0 or 1).

But,

Pr(x(t)=n | x(t-1) =m, g(t- )] X Pr[x(t-1)=m]e(t-1D]} (9}

where ¥ equals the sum over all possible triples m,, m,, mj. However,
m

under the assumpitons made about the model

Pr(x(t)=n|x(t-1)=m, g(t-1)] = Pr[x(t)=n |x(t-1)=m] (10)
Pr(z(t)=2 |x(t)=n, x(t-1)=m, g(t-1)] = Pr[z(t)=£ | x(t)=n ] (11)
Prx(t-1)=m [e(t-1)] =mr_(t-1) | (12)

Combining Eqs. (8)-(12) gives

z Pr[g(_(t)=_rll§(t—1):_r3] . Pr[_z_(t)=£|_§(t)=g_]ﬁm(t-l)
m

mL(t) = (13)

£ £ Pr[x(t)=n|x(t-1)=m] - Pr[z(t)=L|x(t)=n] 7_ (t-1)
nm -

All of the quantities in Eg. (13) can be calculated from the initial

assumptions, before any data is acquired, with the exception of Trm(t-l).

The ﬁm(t) are calculated recursively, as data arrives, from Eq. (13) and the



known value for %xn(o) (obtained from A4). Once T‘;;l(t) is known, the minimum

variance estimates of traffic parameters are calculated as follows:

%)= n (% z ng(t)) (14)
1 273
il(t)zrate estimate for section 1 :E (l-Pnl)(E IZI ;rﬂ’(t)> (15)

1 2 3
The other estimates are computed analogously.
These results can be summarized as follows:
1) The estimates‘g(t) andi(t) are minimum variance estimates. .That is, no
filter or estimator can be built, using the same data, that gives a lower error

variance provided traffic actually matches the model.

2) Most of the defects in the model can be corrected. That is, at the expense
of some additional complication, the model can be made into a very good

mathematical model of real traffic,

3) It is necessary to posses a good deal of information about traffic flow on the
network to build the estimator. However, the probahbilities that are needed are

probabilities of vehicle flow and are thus relatively easy to measure.

4) This is not a practical estimator as it stands. The reason is almost entirely
that the computational burden is too large. One must calculate 'nn(t) for all

possible values of n at each instant of time. This is an enormous number for

a realistic network.

5) Thus, one approach to the development of practical traffic estimators is to
try to find good approximations to the above calculations. An alternate approach

is described in the next section.

10



4, Techniques Based on Point Processes Theory

From the previous section, it is apparent that efficient optimal filtering
or prediction algorithms should either produce a solution to the conditional
density equation with simpler calculations, or directly compute conditional
expectations in a more efficient manner. Since data from tr.affic detectors
(see Introduction) are point processes, recent advances in point process
theory [9., 10, 11, 12]) hold promise for simple recursive solutions to various
estimation problems of interest to traffic engineers. To illustrate these
techniques, we give a somewhat oversimplified application to traffic below.

Suppose we have a perfect detector located at the upstream end of an
urban street (by a perfect detector we mean that the detector accurately counts
every vehicle passing it). The output of the detector is then denoted by N{(t)
and is a counting observation process. In fact N(t)=¢(t) from the previous
sections. However, we now make the more realistic assumption that the
rate )\¢(t) is, in fact, time varying. To kecep the problem as simple as

possible we assume that

{)‘0 0<tgT ; T random
(t) = A (t) = 14
o ’ )\1 T<t (14)

The ;;roblem is to estimate the time, T, at which the rate changed, based on
the signal from the detector.

This model, while somewhat arbitrary, is reasonable in situations where
it is important to estimate the time when the rate of passing cars switches'
between markedly different values. This is certainly important for detectors
located at entrance points of the network, since the switching in the rate of

arrivals of cars, determines a change in the user demand for the network.

On the other hand, most control algorithms are based on fixed rates for periods

11



of time, and change as the rates changc;. Thus determination of switching times
for the rates of passing cars, influences the switching times for various control
policies. By comparing data from two detectors the motion of large platoons
of cars can be followed and traffic lights adjusted accordingly. Finally the
detection of switches in the rates of passing cars clearly has applications in
the incident detection problem.

As was the casc in the previous section, it would be possible to solve
a more realistic traffic estimation problem. For example, point pr_ocess
theory produces a recursive solution to the problem of optimally estimating
the time when the distributions of a general counting obscrvations process
change. The problem has becen solved in a general situation, allowing arbitrary
apriori distributions for the switching timme T and dependence of T on the under-
lying general counting process in [13]. The latter case is of obvious importance
in closed loop traffic control systems. It is shown in [13] that the solution of
the above filtering problem can be easily computed on a computer. We present
here, for simplicity, the solution when the counting process N(t) is a Poisson
counting process whose rate changes from )\O to )\1 (positive constants) at a
certain time T. T is a random variable that is zero with probability m; and
given that T>0 is exponentially distributed with parameter . We follow
the analysis as presented in [10]. For the solution of this filtering problem

one wants to calculate the time evolution of the a posteriori probability

m(t) = Pr(Tst]e(t)) " (15)
where ¢(t), is as before, the information available at time t (i. e. N(s), s <t).
In the filtering theory for point process [9, 10] observations one usually

needs a dynamical model for a ''signal" process and for an ''observation"

process. In the following paragraph the present filtering problem is brought

12



into an appropriate form for the application of the general filtering equation
[10]. This involves the introduction of some artificial random variables
(for details and further explanations we refer to [10]). So, let o be a 0,1
random variable with probabilities m and 1-m and p(t), p(o)(t), p(l)(t) be

(0)

three Poisson processes with constant rates }, )\O, )\l such that @, p, p 7,

p“) are mutually independent. Then if T1 is the first jump of p(t), one

defines

T=aTl

fity=axl (16)

{t<T1}

yt(t)z(l—a)-Hyp(tATl)

where I{t < Tl} is the indicator function for. the interval (0, Tl)’ tAT1 = min(t, Tl)'
The random process y(t) plays the role of the ''signal process' and we want

a dynamical model for this process. Observe that {t<T}= {y(t)=0},

{T <t}={y(t)=1} and therefore y(t) :I{y(t) -1} = I{T <t} Therefore

f(t) =x(1l - y(t)) and the signal equation becomes

dy(t) = (1 -y(t))dt +dv(t)

y(0) = 1-a (17)
where ¢
vt) A y(t) - | f(s)ds = (1-a) +a [p(t AT}) - AEAT D]
o -
Then the counting observation process is
t t
No =] (1-ysnap! s+ [ yisiap' i) (18)
0 0

Therefore the dynamical model for the observation process is

13



dN(t) = [(1-y(t) gt y(A ]dt +dw(t) (19)
where

t
wit) s N(t) - [ [(1-y(s) 2y +y(s),)ds -
0

Since . . ~
yt) =E{y() e} = B{I 1y ]e]} =Priy(t)=1]et)=Pr(t2T |g(t)=n(t) (20)

one applies to the ''signal' and observation model (17), (19) the general filtering

equation to obtain [ 10]:

.dﬁ(t) = (x-(il—xo))%(t) (1-7(t) )dt +

(= Ao ) TT(E) = (1-F(t-))
y —0 dN(t) k

Aol 1-Ti(t-)) 42T (t-)

(21)

m(0) =1 ‘ J

This is a simple equation, driven by the counting process N(t), whose solution
completely specifies the posterior distribution of T. Here ;T(t-) denotes the
left hand limit of TAT(t) at time t. Observe that when no car is passing the
second term vanishes, leaving a simple differential equation to solve, while
the second discontinuous term enters into the computation only when counts
occur. It is easy to see that giveﬁ a record of the counting procéss one can
solve the above equation. Trajectorieé of ﬁ(t) are therefore easily computed.
For further results on trajectories for other cases (i.e. different counting
processes and (or) different apriori distributions for T) we refer to [13] .

In more complicated situations in traffic, we can have more than one
possibility for the rate process. Point process theory can handle this
case too. Furthermore.in several instanc;:s in traffic control problems

the ''signal' process y(t) will generally be a finite state Markov

14



process satisfying

dy(t) = f(t)dt + du(t), y(0)=0

with discrete state space {0,1,...N}. Then point process filtering theory
allows for the derivation of the time evolution of the N-vector process ﬁ(t)

where

m,(t) = Priy(t)=i | e(t))

Further applications of point process methods to traffic control problems will

be reported elsewhere,

5. Conclusions

The basic idea in all of the preceeding discussion is that the- effective
estimation of traffic parameters is contingent upon the effective mathematical
modeling of the underlying stochastic processes that give rise to the signals
from the traffic sensors on the strecets. In fact, the same detector statistics
can be mathematically described in many ways, each of which gives rise to a
different estimator. The basic thrust of this research is to find that representation

that gives rise to the ''best' estimator in the practical sense.
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