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a b s t r a c t

In this paper we present analysis of a discrete-time, decentralized, stochastic coordination algorithm for a
group of mobile nodes, called an autonomous swarm, on a finite spatial lattice. All nodes take their moves
by sampling in parallel their locally perceived Gibbs distributions corresponding to a pairwise, nearest-
neighbor potential. The algorithm has no explicit requirements on the connectedness of the underlying
information graph, which varies with the swarm configuration. It is established that, with an appropriate
annealing schedule, the algorithm results in swarm configurations converging to the (global) minimizers
of a modified potential energy function. The extent of discrepancy between the modified and original
potential energy functions is determined by the maximum node travel between time steps, and when
such distance is small, the ultimate swarm configurations are close to the globalminimizers of the original
potential energy. Simulation results are further presented to illustrate the capability of the sampling
algorithm in approximate global optimization for swarms.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Rapid technological advances have made it possible to build
and deploy a large number of mobile robots or unmanned vehicles
at an affordable cost. Networks of such autonomous vehicles,
called autonomous swarms in this paper, can have a multitude
of applications, ranging from surveillance and reconnaissance, to
search and rescue, to weather forecast, and to oceanography. In
recent years significant advances have been made in collaborative
control of autonomous swarms, where tools in optimization,
control, dynamical systems, and algebraic graph theory are applied
to formally analyze or synthesize interaction rules for mobile
nodes. Various problemshavebeen studied, including, e.g., flocking
(Jadbabaie, Lin, & Morse, 2003; Olfati-Saber, 2006), rendezvous
or aggregation (Cortes, Martinez, & Bullo, 2006; Gazi & Passino,
2003), consensus (Moreau, 2005; Olfati-Saber &Murray, 2004; Ren
& Beard, 2005), formation control (Egerstedt & Hu, 2001; Justh
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& Krishnaprasad, 2004; Xi, Tan, & Baras, 2006), and deployment
(Cortes & Bullo, 2005; Martinez & Bullo, 2006). Many of the studies
have considered the requirement of distributed, local interactions
among nodes, which is dictated by the otherwise prohibitive cost
for centralized coordination of large-scale networks, and by the
need to ensure robustness against single-node failures.

It is notable that a number of convergence results in multi-
agent control accommodate a time-varying information-sharing
topology, which is an important concern in practice. This has been
achieved by adopting and developing different tools, including the
theory of stochastic matrices (Jadbabaie et al., 2003; Ren & Beard,
2005), common Lyapunov functions for switched systems (Olfati-
Saber & Murray, 2004), set-valued Lyapunov theory (Moreau,
2005), generalized Lyapunov analysis for nonsmooth and set-
valued dynamics (Cortes & Bullo, 2005; Cortes et al., 2006), and
passivity theory (Arcak, 2007). Despite the progress made, most
results provide only convergence to local minima of potential or
objective functions (Baras, Tan, & Hovareshti, 2003; Cortes & Bullo,
2005; Ogren, Fiorelli, & Leonard, 2004; Olfati-Saber, 2006), and
global objectives are achievable only if initial configurations are
sufficiently close to the desired ones.

In an attempt to overcome the aforementioned problem of
nodes being trapped at local minima of potential/objective func-
tions, Baras and Tan (2004) explored by simulation a stochastic, de-
centralized approach to coordination ofmultiplemobile nodes. The
approach exploits the concept of Markov Random Fields (MRFs) to
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capture the local interactions among mobile nodes. MRFs can be
thought of as a generalization of Markov chains with the temporal
index replaced by a spatial index (Kindermann & Snell, 1980). An
MRF is thus a collection of random variables, each located at a spa-
tial site, where the conditional probability of any random variable
given the values of all the other randomvariables is equal to its con-
ditional probability given only the values of its neighbors. Clearly,
a neighborhood system needs to be specified in defining an MRF.
Another related notion is the Gibbs Random Field (GRF). A GRF is
a collection of random variables at sites where their joint proba-
bility for each configuration x is proportional to e−H(x)/T , where T
represents the temperature in the context of statistical physics and
H is the Gibbs potential energy as a function of the configuration
x. Such a probability measure is called a Gibbs distribution. It turns
out that anMRF is equivalent to a GRF (Kindermann & Snell, 1980),
and hence one can capture the local interactions among neighbors,
as typical of an MRF, through an appropriate definition of the po-
tential for a GRF. Gibbs sampling is a Markov Chain Monte Carlo
(MCMC) method, where, by sampling the local characteristics of
the Gibbs distribution, one produces aMarkov chain on the config-
uration space of the random field. Starting from any initial distri-
bution, theGibbs sampling-inducedMarkov chain converges to the
Gibbs distribution. Furthermore, performing Gibbs sampling while
reducing T with a proper cooling schedule can result in configura-
tions with globally minimal energy. The latter was applied with
great success in image processing and computer vision (Chellappa
& Jain, 1993; Geman & Geman, 1984;Winkler, 1995), and it largely
motivated the work in Baras and Tan (2004).

The work of Baras and Tan (2004) extends the concept of MRFs
to the context of autonomous swarms. A group of mobile nodes
is assumed to move in discrete time on a finite spatial lattice,
where each node is considered as a (mobile) site of the random
field. A nearest-neighbor potential energy, as a function of the
swarm configuration, is defined to encode desired configurations
as its minimizers, and consists of the sum of terms involving only
each node and its proximity-based neighbors. At each time instant,
each node decides its next move by sampling a locally perceived
conditional Gibbs distribution given the current locations of its
neighbors. With Gibbs sampling under a suitable cooling schedule,
simulation results have indicated that the approach is promising
in achieving global objectives (without being trapped at local
minima) through purely local interactions (Baras & Tan, 2004).
However, no analytical results were presented to explain why the
approach worked in Baras and Tan (2004). A primary difficulty in
the analysis is that the neighborhood system, or the information
graph, varies with the swarm configuration. This is fundamentally
different from classical MRFs (Kindermann & Snell, 1980; Winkler,
1995), where the neighborhood systems are assumed to be
fixed. Another difficulty is due to the parallel sampling in the
autonomous swarm setting, where all nodes update their locations
at the same time. Even for classical MRFs, convergence results are
typically available for the case of sequential sampling (one site
updating at a time) only.

In prior work of the authors (Xi et al., 2006), analytical re-
sults were obtained for sequential Gibbs sampling of autonomous
swarmswith an additional assumption that global communication
is available for forwarding relevant information to a newly selected
node at each time step. Sequential sampling, however, has two lim-
itations in practice: (1) it takes too long to complete one round of
updating for large networks, and (2) it requires explicit indexing of
nodes, which is often impossible due to dynamic addition/removal
of nodes. The global communication requirement, despite the lim-
ited amount of information transmitted, defeats the goal of full de-
centralization.

The contribution of the current paper is the rigorous analysis of
the parallel Gibbs sampling-based swarm coordination algorithm,
for the special but important case of pairwise potentials. A
pairwise potential energy function consists of contributions from
singletons or pairs of nodes, and is widely adopted in the literature
of multi-agent control. It is established that, under a constant
temperature, the parallel sampling algorithm results in a unique
stationary distribution for the swarm configuration. Furthermore,
if the temperature follows an appropriate annealing schedule, the
configuration converges to the (global) minimizers of a modified
potential energy, where the extent of discrepancy between the
modified and original potential energy functions is determined by
the maximum node travel distance per time step. In particular,
when the maximum travel range per update is sufficiently small,
or equivalently, when the information about neighbors’ locations
is updated frequently enough, the ultimate swarm configuration
is close to the global minimizers of the original potential energy
function. We also note that the algorithm and the proof do not
require explicitly the connectedness of the information graph.

Simulation results on examples of rendezvous and line for-
mation are further presented to support the analysis, where the
Gibbs sampling algorithm is compared to a deterministic gradient
descent-type algorithm.With the gradient descent-type algorithm,
the swarm configuration is often stuck at local minima of the po-
tential energy function, while in contrast, the Gibbs sampling algo-
rithm always results in configurations close to the desired ones.

The remainder of the paper is organized as follows. In Section 2,
the background on MRFs is briefly reviewed and the application of
MRFs to modeling of autonomous swarms is described. Analysis
of the parallel sampling algorithm is carried out in Section 3.
Simulation results are presented in Section 4. Finally, Section 5
provides concluding remarks.

2. MRFs and application to swarming control

2.1. Review of classical MRFs and Gibbs sampling

2.1.1. MRFs
Intuitively, a random field can be thought of as a (spatial) field

of random variables. Let α denote the set of spatial sites, with a
cardinality ofN .Without loss of generality,wewill denote each site
with its index s, with s = 1, 2, . . . ,N . Consequently, we have α =

{1, 2, . . . ,N}. At each site s, there is an associated random variable
Xs, which takes values in a setΛs.Λs is called the phase space for site
s. The collection of the random variables, X = {Xs}

N
s=1 = {Xs}s∈α ,

is called a random field. A realization x = {xs}s∈α of X is called a
configuration or a state of the field. The configuration space of the
random field is defined as χ , {(x1, x2, . . . , xN) : xs ∈ Λs, s ∈ α}.

A neighborhood system on α is defined to be a family Γ of sets,
Γ = {Γs}s∈α . Here Γs ⊂ α is the set of neighbors for site s.
The neighborhood system satisfies the following conditions: for
s, r ∈ α, (1) s ∉ Γs, and (2) r ∈ Γs ⇔ s ∈ Γr . The neighborhood
system induces an undirected graph with vertices s ∈ α, where
an edge exists between vertices s and r if and only if r ∈ Γs. A set
C ⊂ α is called a clique if all elements of C are neighbors of each
other. A random field X is called aMarkov random field (MRF) with
respect to the neighborhood system Γ if, ∀s ∈ α,

P(Xs = xs|Xr = xr : r ∈ α, r ≠ s) = P(Xs = xs|Xr = xr : r ∈ Γs).

(1)

Here P(E1|E2) denotes the conditional probability of E1 given
E2. The right-hand side of (1) is often referred to as the local
characteristics of the MRF.

A potential U is a family {UA : A ⊂ α} of functions on the
configuration space χ , where UA : χ → R, and UA(x) depends
only on xA , {xs : s ∈ A}. In other words, UA is only a function of
the values at the sites contained in the set A. For convenience, we
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will denote UA(x) as UA(xA) from here on. If UA ≡ 0 whenever A is
not a clique or a singleton, U is called a nearest-neighbor potential.
If UA ≡ 0 whenever A is not a pair or a singleton, U is called a
pairwise potential.U is called a pairwise, nearest-neighbor potential
if it is both a pairwise potential and a nearest-neighbor potential.

Given a potential U , the potential energy H(x) for configuration
x is defined as

H(x) =

−
A⊂α

UA(xA). (2)

In particular, for a pairwise, nearest-neighbor potential U , we can
write H as

H(x) =

−
s∈α

U{s}(xs) +

−
(s,t)∈α×α, t∈Γs

U{s,t}(xs, xt). (3)

A random field X is called a Gibbs random field (GRF) if

P(X = x) =
e−H(x)/T

Z
, with Z =

−
z

e−H(z)/T . (4)

The probabilitymeasure shown in (4) is called a Gibbs distribution,
and the underlying potentialU is called a Gibbs potential. T has the
interpretation of temperature in the context of statistical physics.
Eq. (4) implies that a higher-energy state has a lower probability,
and that the influence of energy on probability increases as
T decreases. The Hammersley–Clifford theorem establishes the
equivalence between an MRF and a GRF (Kindermann & Snell,
1980): any MRF can be shown to have a Gibbs distribution for an
appropriately defined potential energy functionH , and conversely,
any GRF can be shown to have the Markovian properties (1) with
the neighborhood system determined by the potential U . This
equivalence provides a tangible, convenient characterization of
local interactions among neighboring sites in MRFs through Gibbs
potentials.

2.1.2. Gibbs sampling
In statistical physics, aGRF is oftenused to describe the distribu-

tion of system configurations at the thermodynamic equilibrium.
However, direct evaluation of (4) and related ensemble averages
is often impossible due to the high cardinality of the configura-
tion space (the latter rendering the computation of Z intractable).
Markov ChainMonte Carlo (MCMC)methods, such as theMetropo-
lis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,
1953) and the Gibbs sampler (Geman & Geman, 1984), can gener-
ate Markov chains on the configuration space, with (4) as the lim-
iting probability measure. Next we illustrate such a process with
the example of sequential Gibbs sampling.

Given a configuration x = (x1, . . . , xN) at time instant n, one
can update it to a different configuration y by updating the values
at each site sequentially. For example, for site s, one can update xs
to some value ys at time n + 1 based on the following probability
(this is what is meant by sampling): for ys ∈ Λs,

P(Xs(n + 1) = ys | Xα\s(n) = xα\s) =
e−H(ys,xα\s)/T∑

zs∈Λs

e−H(zs,xα\s)/T
. (5)

In (5), α\s denotes the set of all sites other than s:

α\s , {r ∈ α : r ≠ s},

and xα\s represents the components of x corresponding to the sites
in α\s:xα\s , {xr : r ∈ α\s}. The notation


ys, xα\s


(likewise for

(zs, xα\s)) represents a configuration where site s takes the value ys
while other sites take the values xα\s. Note that the right-hand side
of (5) is precisely the conditional probability of Xs given the values
at other sites for a Gibbs distribution (4). It can be verified easily
that the evaluation of (5) involves only {xr : r ∈ Γs} for a Gibbs
field with a nearest-neighbor potential, and thus can be performed
efficiently. Following the above procedure, one can update all sites
in a prescribed order within N time steps. This process generates
a (homogeneous) Markov chain in the configuration space χ , with
positive N-step transition probabilities P(x, y), ∀x, y ∈ χ . Here
P(x, y) denotes the probability of reaching y after N steps of
sequential sampling, starting from the configuration x. It can be
shown that the following detailed balance equation holds forP and
the Gibbs distribution P:

P(x)P(x, y) = P(y)P(y, x), (6)

which implies that the Gibbs measure P(x) is the (unique) sta-
tionary distribution for the Gibbs sampling-induced Markov chain
(Winkler, 1995). In other words, starting from any initial distribu-
tion, the sampling process will ultimately result in a Gibbs distri-
bution for the configurations.

The Gibbs distribution (4) depends on the temperature T . The
lower T is, the higher probabilities for the lowest-energy config-
urations. In the limit of T → 0, (4) produces probabilities con-
centrating solely on configurations ofminimum energy. Taking the
idea of simulated annealing (Kirkpatrick, Gebatt, & Vecchi, 1983),
Geman and Geman proposed decreasing T gradually during Gibbs
sampling and established the convergence to the lowest-energy
configurations (Geman & Geman, 1984).

2.2. Extension to autonomous swarms

Motivated by the promise of Gibbs sampling in achieving glob-
ally minimizing configurations through local interactions, Baras
and Tan extended the concepts of MRFs and Gibbs sampling to
the context of autonomous swarms (Baras & Tan, 2004). Consider
a group of mobile nodes moving in a bounded region within the
two-dimensional (2D) or three-dimensional (3D) space. The region
is discretized into a lattice, and for ease of presentation, each cell is
assumed to be square with unit dimensions. A mobile node is as-
sumed to be a point that moves from the center of one cell to that
of another. Each node has a sensing range Rs: it can sense the lo-
cations of obstacles and other nodes within distance Rs. It also has
an interaction range Ri ≤ Rs: the moving decision of a node is only
influenced by nodes within the distance Ri, which form its set of
neighbors. In addition, each node can travel by at most Rm ≤ Rs
within each time step. Fig. 1 illustrates the definitions of the three
ranges in a 2D grid. The distances on the lattice are defined using
the Euclidean norm based on the center locations of the cells.

The Ri-neighborhood relations induce a graph structure, where
the nodes form the vertices of the graph and an edge exists
between two nodes if and only if they are neighbors of each other.
A random field is then defined on this graph, where each node
is considered as a site and the random variable associated with
this site represents the location of the node. In particular, we will
denote the set of nodes as α = {1, 2, . . . ,N}, where N is the total
number of nodes. Xs (or xs) will denote the center location of the
cell inwhich node s resides. Similar notation, such as ys, zs, etc., will
also be used in the later discussion.Wewill use x = (x1, . . . , xN) to
denote the configuration of the swarm.Given x, the set of neighbors
Γs(x) is defined as

Γs(x) , {r ∈ α : r ≠ s, ‖xr − xs‖ ≤ Ri}.

The set of lattice cells within Rm from node s form the phase
space Λs. Unlike in the classical MRF case, the phase space Λs here
will vary with xs, the location of node s. A suitable potential U
can be defined to reflect the swarm coordination objectives, from
which the potential energy H(x) can be evaluated, as explained in
Section 2.1.1.

One can then performGibbs samplingwith simulated annealing
to update the locations of the nodes. For a nearest-neighbor
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Fig. 1. Illustration of the sensing range Rs , the interaction range Ri , and the moving
range Rm on a 2D grid.

potential, the sampling can be done by each node locally. While
simulation results were promising (Baras & Tan, 2004), the
analysis is challenging because the neighborhood system Γ (x) ,
{Γs(x), s ∈ α} varies with the swarm configuration. Analytical
results for classical MRFs cannot be applied directly, since the
neighborhood system is assumed to be fixed there (Kindermann
& Snell, 1980; Winkler, 1995). In particular, even with sequential
sampling, the detailed balance (6) no longer holds and the Gibbs
distribution is no longer the stationary distribution. In our prior
work (Xi et al., 2006), we analyzed a special sequential sampling
scheme with an assumption on limited global communication.
However, due to feasibility considerations, one will be mostly
interested in parallel sampling schemes. Analysis of parallel
sampling is involved even for classical MRFs (Winkler, 1995). The
goal of this paper is to provide rigorous analysis of a parallel
Gibbs sampling scheme for swarm coordination, for the special but
popular case of pairwise, nearest-neighbor potentials.

3. Analysis of the parallel Gibbs sampling scheme

3.1. The parallel sampling algorithm

Let n denote the index of time steps. Let X(n) = x = (x1, . . . ,
xN) be the swarm configuration at time n. Let Fs(x) , {zs : ‖zs −

xs‖ ≤ Rm} be the set of accessible cell locations for node s given the
configuration x, determined by the mobility constraint. Let F(x) be
the set of configurations that are accessible from xwithin one time
step:

F(x) , {z = (z1, . . . , zN) : ‖zs − xs‖ ≤ Rm, s ∈ α}.

Under parallel Gibbs sampling, all nodes will simultaneously up-
date their locations based on the configuration x at time n; in
particular, the node s will move from xs to ys at time n + 1 with
probability

PT ,s(xs, ys|x) =


e−H(ys,xα\s)/T∑

zs∈Fs(x)
e−H(zs,xα\s)/T

if ys ∈ Fs(x)

0 if ys ∉ Fs(x).

(7)

For simulated annealing, the temperature variable T will be a func-
tion of the time step n. The following assumptions are made:
– (A1) The total number of lattice cells is bounded;
– (A2) Ri + Rm ≤ Rs;
– (A3) U is a pairwise, nearest-neighbor potential.

Remark 3.1. (A1) requires that the nodes move in a bounded re-
gion, which is a reasonable assumption. It will allow us to establish
the ergodicity of the Markov chain induced by Gibbs sampling un-
der a constant temperature, and consequently the convergence of
the chain to a unique stationary distribution.

Remark 3.2. (A2) implies that a node s at xs is able to evaluate the
set of newneighbors should itmove to ys ∈ Fs(x)while other nodes
stay put.

Remark 3.3. Similar to (3), (A3) implies that the corresponding
potential energy H(x) for configuration x can be written as

H(x) =

−
s∈α

U{s}(xs) +

−
(s,t)∈α×α, t∈Γs(x)

U{s,t}(xs, xt). (8)

We can show that (A2) and (A3) together ensure the local com-
putability of (7) by node s. In particular, for ys, zs ∈ Fs(x),

H(ys, xα\s) = U{s}(ys) +

−
t∈Γs(ys,xα\s)

U{s,t}(ys, xt)

+ terms not involving node s,

H

zs, xα\s


= U{s}(zs) +

−
t∈Γs(zs,xα\s)

U{s,t}(zs, xt)

+ terms not involving node s.

Since H(ys, xα\s) and H(ys, xα\s) share the terms not involving s,

e−H(ys,xα\s)/T∑
zs∈Fs(x)

e−H(zs,xα\s)/T

=
e
−

U{s}(ys)+
∑

t∈Γs(ys,xα\s)
U{s,t}(ys,xt )

T

∑
zs∈Fs(x)

e
−

U{s}(zs)+
∑

t∈Γs(zs,xα\s)
U{s,t}(zs,xt )

T

. (9)

Evaluation of (9) thus only requires the knowledge of

Ūs(zs, xα\s) , U{s}(zs) +

−
t∈Γs(zs,xα\s)

U{s,t}(zs, xt) (10)

for all zs ∈ Fs(x) (since ys ∈ Fs(x)). From (A2), node s at the cur-
rent location xs is able to evaluate the set of its neighbors should
it move to zs ∈ Fs(x), implying the local computability. Note that
Ūs(zs, xα\s) is well defined even if Γs(zs, xα\s) = ∅, in which case
Ūs(zs, xα\s) = U{s}(zs).

Using (9), we can write (7) as

PT ,s(xs, ys|x)

=
1 (ys ∈ Fs(x)) · e

−

U{s}(ys)+
∑

t∈Γs(ys,xα\s)
U{s,t}(ys,xt )

T

∑
zs∈Fs(x)

e
−

U{s}(zs)+
∑

t∈Γs(zs,xα\s)
U{s,t}(zs,xt )

T

, (11)

where 1(·) denotes the indicator function. Since the nodes make
independent moving decisions at time n for given x, the kernel
PT (x, y) , Prob(X(n + 1) = y|X(n) = x) for the parallel Gibbs
sampling-induced Markov chain can be obtained from (11):
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PT (x, y) =

∏
s∈α

PT ,s(xs, ys|x)

= 1(y ∈ F(x))

·
e
−
∑
s∈α

U{s}(ys)+
∑

t∈Γs(ys,xα\s)
U{s,t}(ys,xt )

T

∑
z∈F(x)

e
−
∑
s∈α

U{s}(zs)+
∑

t∈Γs(zs,xα\s)
U{s,t}(zs,xt )

T

(12)

= 1(y ∈ F(x))

·
e
−
∑
s∈α

U{s}(xs)+U{s}(ys)+
∑

t∈Γs(ys,xα\s)
U{s,t}(ys,xt )

T

∑
z∈F(x)

e
−
∑
s∈α

U{s}(xs)+U{s}(zs)+
∑

t∈Γs(zs,xα\s)
U{s,t}(zs,xt )

T

(13)

= 1(y ∈ F(x)) ·
e−G(x,y)/T∑

z∈F(x)
e−G(x,z)/T

, (14)

where

G(x, y) ,
−
s∈α

(U{s}(xs) + U{s}(ys) +

−
t∈Γs(ys,xα\s)

U{s,t}(ys, xt)). (15)

The denominator of (12) is derived from that, for y ∈ F(x), PT (x, y)
is proportional to the expression in the numerator, and that∑

z∈F(x) PT (x, z) = 1. Eq. (13) is obtained from (12) bymultiplying
both its denominator and numerator by e−

∑
s∈α U{s}(xs). Note that

the transition matrix PT has dimensions of q× q, where q denotes
the cardinality of the configuration space χ .

Lemma 3.1. For y ∈ F(x), the function G is symmetric, i.e., G(x, y) =

G(y, x).

Proof. A key observation is that t ∈ Γs(ys, xα\s) ⇒ s ∈ Γt(xt ,
yα\t). In other words, node t being a neighbor of node s for the
configuration (ys, xα\s) implies that node s will be a neighbor of
node t for the configuration (xt , yα\t) (or vice versa). This is because
both conditions mean ‖ys − xt‖ ≤ Ri. One can then write

G(x, y) =

−
s∈α

U{s}(xs) + U{s}(ys) +

−
t∈Γs(ys,xα\s)

U{s,t}(ys, xt)


=

−
s∈α


U{s}(ys) + U{s}(xs)


+

−
t∈α

−
s∈Γt (xt ,yα\t )

U{t,s}(xt , ys)

=

−
t∈α

U{t}(yt) + U{t}(xt) +

−
s∈Γt (xt ,yα\t )

U{t,s}(xt , ys)


= G(y, x),

where the aforementioned observation is used in arriving at the
second equality. �

3.2. Stationary distribution under constant-T sampling

Parallel Gibbs sampling produces a Markov chain X(n) for
the swarm configuration. We first characterize the stationary
distribution of X(n) for a fixed temperature T . This can then be
used to analyze the limiting behavior as T → 0 during simulated
annealing.

Theorem 3.1. Let the assumptions (A1)–(A3) hold. Under parallel
Gibbs sampling with a fixed T , the swarm configuration X(n) has a
unique stationary distribution ΠT . Starting from any distribution ν
for the swarm configuration,

lim
n→∞

νPn
T → ΠT , (16)

where PT represents the transition matrix of the Markov chain, as
determined by (14). Furthermore, the explicit form of ΠT is

ΠT (x) =

∑
z∈F(x)

e−G(x,z)/T

∑
x′∈χ

∑
z∈F(x′)

e−G(x′,z)/T
, (17)

where χ denotes the space of swarm configurations.

Proof. For a constant T , X(n) generated under the parallel Gibbs
sampling is a homogeneous Markov chain with the transition
matrix PT . Given any current configuration x, the probability of
reaching any y ∈ F(x)within one time step is strictly positive. From
(A1), there exists a finite integer τ > 0, such that, given any x and
y in the configuration space χ , the probability of reaching y from x
within τ sampling steps is positive. In otherwords,PT has a strictly
positive power Pτ

T . Hence the Markov chain X(n) is ergodic and
has a unique, stationary distribution ΠT (Horn & Johnson, 1985);
furthermore, (16) follows.

Next we verify that ΠT has an explicit expression as in (17).
Denote the right-hand side of (17) as Π̂T , and its denominator as
ZT . For y ∈ F(x),

Π̂T (x)PT (x, y) =

∑
z∈F(x)

e−G(x,z)/T

ZT
·

e−G(x,y)/T∑
z∈F(x)

e−G(x,z)/T

=
e−G(x,y)/T

ZT

=

∑
z∈F(y)

e−G(y,z)/T

ZT
·

e−G(y,x)/T∑
z∈F(y)

e−G(y,z)/T
(18)

= Π̂T (y)PT (y, x), (19)

where Lemma 3.1 is used in (18). If y ∉ F(x), PT (x, y) =

PT (y, x) = 0 and (19) still holds. With (19), we can write, ∀x ∈ χ ,−
y∈χ

Π̂T (y)PT (y, x) =

−
y∈χ

Π̂T (x)PT (x, y)

= Π̂T (x)
−
y∈χ

PT (x, y)

= Π̂T (x), (20)

since
∑

y∈χ PT (x, y) = 1. Eq. (20) confirms that Π̂T is a stationary
distribution for theMarkov kernelPT .ΠT = Π̂T then follows from
the uniqueness of the stationary distribution. �

Remark 3.4. From (16), the swarm configuration under parallel,
constant-T , Gibbs sampling converges to the distribution ΠT . Note
that while it takes a form similar to a Gibbs distribution, ΠT
is not a Gibbs distribution. This illustrates the difference of the
parallel sampling algorithm from the sequential Gibbs sampling of
a classical MRF, which would result in a Gibbs distribution.

3.3. Convergence under annealing

Let τ be the minimum integer such that all entries of Pτ
T are

strictly positive. Note that the definition of τ is independent of
T . In annealing, the temperature T (n) will drop as a function of
time n.
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Theorem 3.2. Let the assumptions (A1)–(A3) hold. Define

∆ , max
x

max
y,z∈F(x)

|G(x, y) − G(x, z)|.

Let T (n) be a cooling schedule such that

T (n) = Tk, τk ≤ n < τ(k + 1), (21)

where {Tk} is a sequence decreasing to 0 and satisfying

Tk ≥
∆

ln k
. (22)

Then for any initial distribution ν for the swarm configuration,
(1)

lim
k→∞

νQ1 · · ·Qk → Π0, (23)

where Qi , Pτ
Ti
, and Π0 represents the limit of ΠT , (17), as

T → 0;
(2) Define Ĥ(x) , minz∈F(x) G(x, z) and m0 , minx Ĥ(x). The

support M of the limiting distribution Π0 is

M = {x : Ĥ(x) = m0}. (24)

Proof. Claim (1) concerns the characterization of the limiting
behavior of ‖νQ1 · · ·Qk − Π0‖1, where ‖ · ‖1 denotes the 1-norm
of a vector. The proof uses the contraction property of the Markov
kernel Qk, which is where the annealing schedule (22) comes in.
The full proof follows closely the steps in proving Theorem 3.2 in
Xi et al. (2006), and is omitted here in the interest of brevity.

To establish the support of Π0, one can rewrite ΠT as

ΠT (x) =

∑
z∈F(x)

e−(G(x,z)−m0)/T

∑
x′∈χ

∑
z∈F(x′)

e−(G(x′,z)−m0)/T
. (25)

As T → 0, e−(G(x,z)−m0)/T approaches 1 if G(x, z) = m0, and
approaches 0 otherwise. As a result, the numerator of Π0(x),
expressed as in (25), will be nonzero if and only if x ∈ M . Claim (2)
follows by noting that the denominator of Π0(x) is always positive
and finite. �

Remark 3.5. From Theorem 3.2, the swarm configuration under
the parallel Gibbs sampling algorithm with annealing converges
to the (global) minimizer of Ĥ(x) = minz∈F(x) G(x, z). Recall the
definition of G in (15) and note the expression for the original
potential energy

H(x) =

−
s∈α


U{s}(xs) +

1
2

−
t∈Γs(x)

U{s,t}(xs, xt)


, (26)

where 1
2 accounts for the fact that each pairwise interaction is

counted twice in (26). It can be seen that G(x, z) represents an en-
ergy term obtained by combining the components from configura-
tions x and z. In particular, G(x, x) = 2H(x). Consequently, Ĥ(x)
can be regarded as a potential energy function that is modified
from 2H(x). Since for each s ∈ α, ‖zs − xs‖ ≤ Rm, the difference
|Ĥ(x) − 2H(x)| depends on the moving range Rm per time step.

Remark 3.6. Given the physical constraint on the speed of a mo-
bile node, Rm is inversely proportional to the actual time between
steps n and n + 1. The latter indicates how frequent the nodes
get feedback information about their neighbors for making mov-
ing decisions. More frequent updatewould imply a smaller Rm, and
consequently, the difference between themodified energy and the
original energy, |Ĥ(x) − 2H(x)| becomes smaller. This can be in-
terpreted as a tradeoff between the cost for information gathering
and the achievable performance in minimizing H .
Remark 3.7. The parallel Gibbs sampling algorithm achieves glo-
bal minimizers of the modified energy Ĥ(x), which could be suffi-
ciently close to the global minimizers of the original energy H(x)
when Rm is small. This result does not require explicitly the con-
nectedness of the information graph during sampling. However,
the assumption of a bounded lattice implies a positive transition
probability between any two configurations over τ steps, which
consequently implies that there is a positive probability for any
configuration (including configurations with connected informa-
tion graph) to exist every τ steps. In other words, the information
graph associatedwith the swarm configuration is connectedwith a
positive probability every τ steps. In some sense, this is analogous
to the joint connectedness condition in the deterministic setting
(Jadbabaie et al., 2003).

Corollary 3.1. Let the assumptions (A1)–(A3) hold, and let ∆ be
defined as in Theorem 3.2. Let T (n) be a cooling schedule such that
T (n) ≥

∆′

ln n , with ∆′ > ∆. Then for any initial distribution ν , the
swarm configuration under parallel Gibbs sampling converges to M ,
the set of global minimizers of Ĥ.

Sketch of proof. First consider a schedule T1(n) that meets the
conditions in Theorem 3.2: T1(n) = Tk =

∆

ln k , τk ≤ n < τ(k + 1).
It can be shown that there exists a finite n0, such that when n ≥

n0, T (n) ≥ T1(n). Define Qk , PT (τk)PT (τk+1) · · · PT (τ (k+1)−1),
and Q̂k , Pτ

Tk
. From T (n) ≥ T1(n), one can establish that the

contraction property of Qk is non-weaker than that of Q̂k, ∀k >
n0/τ . The rest of the proof follows similarly as for Theorem3.2. �

4. Simulation results

Simulation has been further performed to corroborate the anal-
ysis and verify the effectiveness of the parallel sampling algorithm.
For comparison purposes, a deterministic, gradient descent-type
algorithm has also been implemented. Under the gradient-type al-
gorithm, the nodes are subject to the same constraints on Ri, Rs, and
Rm. The only difference from the Gibbs sampling algorithm is that,
when updating its location, each node moves to the location that
would minimize the potential energy if other nodes stay put. Two
examples are presented next: (1) rendezvous, and (2) line forma-
tion, both on a 50 × 50 square lattice. For the sampling algorithm,
in view of Corollary 3.1, we have adopted schedules of the form:
T (n) = T0/ ln(n). T0 is chosen empirically since the analytically
determined values are found to be too conservative in simulation.

4.1. Rendezvous

In the rendezvous problem, the potential is designed as,
U{s}(xs) = 0, ∀s ∈ α, and for t ∈ Γs(x),

U{s,t}(xs, xt) =

10 if ‖xs − xt‖ = 0

−
1

‖xs − xt‖
otherwise. (27)

The equation U{s}(xs) = 0 implies that there is no pre-specified
gathering point. By setting the potential of an overlapping pair
to be high in (27), we discourage multiple nodes from occupying
the same cell and thus avoid over-crowding. Figs. 2 and 3 show
the snapshots of swarm configurations at different times for the
gradient-type algorithm and the sampling algorithm, respectively.
The initial configurations for both algorithms were the same. The
number of nodes was N = 40, and the parameters used in simula-
tion were: Rs = 13

√
2 + 2, Ri = 13

√
2, Rm = 2, and T0 = 5. From

Fig. 2, the nodes formed multiple clusters locally and were stuck
at local minima of the potential energy under the gradient-type al-
gorithm. In comparison, under the sampling algorithm, while the
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a b

c d

Fig. 2. Snapshots of a swarm of 40 nodes during rendezvous under the gradient-
type algorithm: (a) n = 2; (b) n = 5; (c) n = 10; (d) n = 15.

a b

c d

Fig. 3. Snapshots of a swarm of 40 nodes during rendezvous under the parallel
Gibbs sampling algorithm: (a) Initial configuration; (b) n = 200; (c) n = 300; (d)
n = 650.

nodes tended to form two clusters at n = 200, they success-
fully managed to escape from the trap and reached rendezvous
at n = 650. This example illustrates the advantage of the Gibbs
sampling algorithm over the traditional gradient-descent-type al-
gorithm in global optimization. Of course, the latter is achieved at a
cost—it usually takes the sampling algorithm over 10 times longer
to converge than the gradient-type algorithm.

4.2. Line formation

The nodes are required to form a line that makes a 45◦ angle
with respect to the horizontal axis. The potential is designed as,
U{s}(xs) = 0, ∀s ∈ α, and for t ∈ Γs(x),

U{s,t}(xs, xt) =


0 if ‖xs − xt‖ = 0

−
|⟨xs − xt , [1, 1]T ⟩|

√
2‖xs − xt‖

otherwise

where ⟨·⟩ indicates the inner product. The potential is essentially a
measure for the distance between 45◦ and the angle made by the
line connecting a pair of neighboring nodeswith respect to the hor-
izontal line. The additive form of the potential energy thus encour-
ages nodes to have more neighbors with desired angles, leading
a b

c d

Fig. 4. Snapshots of a swarm of 50 nodes during line formation under the gradient-
type algorithm: (a) n = 2; (b) n = 5; (b) n = 10; (c) n = 15.

a b

c d

Fig. 5. Snapshots of a swarm of 50 nodes during line formation under the Gibbs
sampling algorithm: (a) Initial configuration; (b) n = 10; (b) n = 40; (c) n = 140.

to the formation of a single line; overlapping nodes, however, are
discouraged since a connecting line is not well defined in that case.

Figs. 4 and 5 show the snapshots of swarm configurations under
the gradient-type algorithm and the Gibbs sampling algorithm,
respectively. Here 50 nodes were simulated, with Rs = 10

√
2 +

3, Ri = 10
√
2, Rm = 3, and T0 = 1. The two algorithms

started with the same initial configuration. With the gradient-
type algorithm, the swarm evolved into three major stripes, each
consisting of line segments of 45°. In contrast, with the Gibbs
sampling algorithm, the swarm first self-organized into several
parallel line segments, which thenmerged into a single line of 45°.
Fig. 6 compares the evolution of the potential energy with the two
algorithms, and it is evident that the configuration was stuck in a
local minimum under the gradient-type algorithm.

Multiple simulation runs were carried out, starting from dif-
ferent initial configurations. It is interesting to note that, in all
cases, the swarm configuration converged to the diagonal line as
in Fig. 5 under Gibbs sampling. This can be explained by the fact
that the diagonal line is the only configuration that can accom-
modate 50 vehicles with minimum inter-vehicle separation larger
than zero, thus supporting the (approximate) global optimization
capability of the algorithm. On the other hand, the gradient-type
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Fig. 6. Evolution of the potential energy under the gradient-type algorithm and the
Gibbs sampling algorithm.

Fig. 7. Histogram of the potential energy for the final swarm configurations
achieved with the gradient-type algorithm.

algorithm fails to result in the desired configuration most of the
time. Fig. 7 shows the histogram of the potential energy for the
final swarm configuration achieved with the gradient-type algo-
rithm. Out of a total of 100 simulation runs, the desired line forma-
tion was achieved only once.

5. Conclusion and discussions

In this paper the parallel Gibbs sampling algorithm for swarm
coordination was analyzed. The explicit expression for the station-
ary distribution of swarm configurationwas derived for the special
but popular case of pairwise potential, and the convergence of the
algorithm under appropriate annealing schedule was established.
It was found that the algorithmminimizes amodified potential en-
ergy Ĥ , where the extent of modification from the original energy
H is related to the moving range Rm per time step. When Rm is
relatively small, the global minimizers of the modified potential
function will be close to those of the original potential function.
Simulation results were further presented to compare the sam-
pling algorithm with a deterministic gradient-type algorithm. The
Gibbs sampling algorithm showed clear advantage in achieving
globally optimal configurations, at the cost of exploration time.
While this algorithm can provide high-level path planning for au-
tonomous swarms, it needs to be combined with lower-level path
planners and controllers in implementation, where more detailed
node dynamics and constraints are incorporated.
While only a pairwise potential is considered in this paper, we
note that the class of pairwise potentials encompasses a broad
range of interesting problems in swarming, such as rendezvous,
dispersion, and formation control. The presented algorithm is de-
centralized in the sense that there is no centralized decisionmaker,
and that each mobile node makes its moving decisions based only
on the locations of its neighbors. In our analysis here, the nodes do
need to know the global time and the annealing schedule. How-
ever, these assumptions are not considered restrictive. It is possi-
ble to relax the assumption on the global time and allow each node
to have bounded uncertainties δ on its knowledge about the global
time. In that case, we conjecture that the resulting configuration
x∗ will be close to the set M of global minimizers of Ĥ , with the
bound on the distance between x∗ and M dependent on the bound
on δ. The annealing schedule depends only on the potential and is
not influenced by the addition or removal of nodes. So it is reason-
able for a node to get the annealing schedulewhen it is informed of
the form of the potential (which corresponds to the specific swarm
mission).

Future work can be carried out in a few directions. First, the
analysis in this paper has been focused on the case of pairwise
potentials. We plan to extend the work to cases involving nearest-
neighbor potentials of other forms. Second, the design of potentials
corresponding to given swarm missions is a problem of interest.
One needs to understand how to encode configurations that are
desired for a task as the global minimizers of some potential
function. This could be intuitive for some simple cases (such as
the rendezvous), but is nontrivial in general. A more subtle issue
is related to the landscape of the potential function, which has an
effect on the convergence speed of the sampling algorithm. Finally,
we will also investigate the connection between the parallel Gibbs
sampling algorithm studied here and the continuous, diffusion-
based swarm coordination approach in Tan (2007), when the time
step for Gibbs sampling approaches zero.
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