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On the Performance Limits of
Data-Aided Synchronization
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Abstract—This paper addresses data-aided (DA) synchroniza-
tion, in which the reference parameter acquisition is aided by a
training sequence known to the receiver. The Cramer—Rao lower
bound (CRB) for the DA timing and/or carrier phase recovery is
presented. For DA parameter estimation, the CRB typically varies
with the training sequence. This indicates that different training
sequences offer fundamentally different performance. In the lit-
erature, the widely cited closed-form CRB for timing and carrier
phase recovery was derived under the assumption that the training
sequence is independent and identically distributed (i.i.d.) and suf-
ficiently long. In this paper, we derive a closed-form CRB for timing
and carrier phase recovery with respect to an arbitrary training se-
quence and pulse shaping function for the over and under sampling
cases. ltturns out that the CRB is a weighted summation of the ape-
riodic correlation of the training sequence and the weighting factor
is determined by the pulse shaping filter. Therefore, this paper re-
veals the fundamental link between a training sequence and its cor-
responding performance limit.

Index Terms—Cramer—Rao bound (CRB), data-aided (DA) syn-
chronization, phase estimation, timing, synchronizations.

. INTRODUCTION

timing offsets estimation. The CRB for joint timing and carrier
phase recovery was first introduced by Moeneclaey in [4], [5];
it was further discussed in his publications [3] and [6]. It was
considered mathematically intractable to derive the bound for
an arbitrary training sequence. Moeneclaey simplified the issue
by adopting the strong law of large numbers and the assumption
that the training sequence is zero mean, independent and iden-
tically distributed (i.i.d.), and sufficiently long. This method re-
duces the computation dramatically and provides some insights
for communication receiver design. Unfortunately, it hides the
interaction between a training sequence and its resultant estima-
tion performance. In order to deal with the estimation problemin
the presence of nuisance parameters, D’Anétes. proposed
themodifiedCRB (MCRB) in [7]. Itis pointed out in [3] that the
CRBs derived previously in [4], [6] are actually MCRBs. In [9],
the author took a frequency-domain interpretation of the CRB.
Similar to earlier works, it assumes pseudorandom training data.
In principle, it is possible to use a brute-force numerical ap-
proach to compute the CRB for any given training sequence.
However, the brute-force approach does not provide any insight

HE Cramer—Rao bound (CRB) is a lower bound on tH@" the interaction between a training sequence and its resultant

minimum mean squared error (MMSE) of anpbiased

CRB. One of the major difficulties in computing the CRB arises

estimator [1]. Since the CRB serves as a benchmark for ifi@m the fact that the computation involves the inverse of an au-
performance of an actual estimator, it has received considicovariance matrix that is Toeplitz. It is well known that the
able attention both in theory and practice. In practical systenf#dverse of a Toeplitz matrix is no longer Toeplitz, which makes
synchronization parameters, such as timing and carrier phis@ifficult to analyze the bound analytically. One technique to
offsets, are often acquired with the aid of a training sequen@?k'e this problem is to exploit the relation between Toeplitz

known to the receiver, which is called the data-aided (DA) esfpatrices and their associated circulant matrices. In fact, itis well
mation. In the DA cases, the CRB varies with the training sKnown that the inverse of a Toeplitz matrix does converge to a
quence, which implies that different training sequences offeirculant matrix in the weak sense under certain conditions [10].
fundamentally different performance. Therefore, it is importattnfortunately, the weak convergence is in the mean sense and
to understand the performance limit as given by the CRB for af{ply useful for computing the mean of some quantities such as
particular training sequence. Due to its practical significancéle mean of a quadratic form associated with a random process.
the CRB for DA synchronization has been studied extensivelylitPwever, for an arbitrary training sequence, the CRB involves
the literature [2]—[9]. However, in [2]-[8] the closed-form cRrpthe evaluation of a quadratic form of the inverse matrix. Thus,
for the DA timing and/or carrier phase recovery for an arbitraf)® Weak convergence theorem cannot be applied. Itis this fact
training sequence is unavailable. The authors in [2] gave a théat motivated the research in [11].

ough summary on the CRBs for carrier frequency, phase, and®y observing that cpmmunication receiver design often
needs to seek optimality in regard to a data sequence trans-

. . _ mitted within finite duration, we defined th@ite-term strong
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obtain a closed-form formula for the optimal receiver desigNote thatF(w) is real due to the Hermitian constraint. LI&t,
through substituting the Toeplitz matrix with its associatedenote the unitary matrix defined as

circulant matrix when the condition of the finite-term strong 1 1 1

convergence is met. e e—i(2m/n) e—i(2r(n=1)/n)
Based on the results presented in [11], a closed-form CRB, =

for the DA joint timing and carrier phase offsets estimation is vn | : . :

derived with respect to any given training sequence and pulse- 1 e i@r(n=1)/n) ... ,—i@r(n—1)(n—-1)/n)

shaping function. The only assumption is that the derivative of 1)

the pulse-shaping function exists, i.e., it is sufficiently smooth.
The bound uncovers the close relation between a training
guence and its resultant performance limit on timing and carri
phase recovery. We present the bound both in the frequency and D, = diag {po,n, #1,n, -+ Bn—1,n}- (2)
time domains. In particular, the time-domain expression clearljhe matrix

exhibits the interaction between the pulse-shaping function and "

the training sequence. Under the same framework, this paper re- C¢.=U,D,U, ®3)
veals the tradeoff between the sampling rate and the estimaqigra circulant matrix [12], [10].

performance. This provides guidance for high-speed modem dey, 1, 2< been observed that in many applications substittiting

sign where it is critical to make the sampling rate as low gg, C,, often leads to very useful and dramatic simplification

possible. _ , _ _ to the problems at hand. This is due to the following facts.
The rest of the paper is organized as follows. Section Il briefly

reviews the relevant mathematical tools presented in [11]. Sec-* The inverse of a circulant matrix is still circulant.
tion Ill derives the CRB. Section IV further evaluates the bound « The eigendecomposition of a circulant matrix is equivalent

for various practical scenarios and offers comparison with the  to the discrete Fourier transform (DFT), providing addi-
state of the art in the literature. Section V concludes the paper.  tional insight in the frequency domain.

dD,, denote the diagonal matrix with thith diagonal entry
aqual top; , = F(2mi/n), i.e.,

» The eigenvalues af',, is the samples of the spectrum of
Il. ON THE INVERSE OFTOEPLITZ MATRICES {t;}
i}

Toeplitz matrices and their inverses were studied in [12,1\’ parently, in order to make such a substitution meaningful, the

[10], [13]-[20]. Grenander and Szego’s book systematicaliy, . sas of Toeplitz matrices need to converge to their associated
documents major results on Toeplitz matrices [12]. A I'teraturcirculant matrices

survey is given in [11] on the works related to the inverses o The most well-known convergence is the weak convergence,

Toeplitz matnces. , . . ) which is based on the weak norm defined forral n matrix
A family of Toeplitz matricesT’,, is defined by a sequence 4 _ {ai;} as
= {ai;

of complex number$t;; i = ..., —1, 0, 1, ...} such that the

entry of T',, at the:th row andjth column is equal te;_;, i.e., n—1n—1

T, = {t;—;}. Furthermore, we restrict our discussion to the n-1 |aij|2. 4)
case that_, = t;, wheret! is the complex conjugate af. i=0 ;=0

With this restriction,T',, becomes Hermitian. Toeplitz Hermi- ) ]
tian matrices play a pivotal role in signal processing. In fadf ¢&n be shown that the Toeplitz matfk, converges t&, in

what is really relevant is the inverse of such a matrix rather thf#f Weak sense as long g&(w)| is bounded [12], [10]. Note

the matrix itself for many applications. For instancet;ifep- hatTw converging toC', may not necessarily mean tHllf,

resents the autocorrelation of a stationary random process, §RBVerges i@, - evenifT,,* does exist. A sufficient condition

inverse ofT,, is associated with the joint probability density/" the weak convergence of the inverses is that the strong norm

function ofn consecutive samples of the random procesgl-In °f T andC.," is uniformly bounded [10]. The strong norm

tering problems, such an inverse appears in the Wiener—HdBf & Hermitian matrix4 can be d%f,'gid as

equation [21], [22]. ||Al| = max r =
As mentioned earlier, one of the difficulties in analyzing the ) _ r |TTT )

inverse matrices arises from the fact that the inverse of a ToepH{2ere the maximum is over all the vectors of the same dimen-

matrix is no longer Toeplitz. A technique to tackle the probleriion asA.

is to exploit the relation between Toeplitz matrices and their as-EXamining the definition of the weak norm in (4), we can
sociated circulant matrices. Anx n matrix is called airculant  S€€ that the weak convergence is in the mean sense due to the
matrix if its (i, j)th entry is only a function ofi — j) mod n. In division factorl/n. Indeed, several successful applications of
particular, for the family of Toeplitz matrices defined by the s¢l® Weak approximation theory relate to the evaluation of the
quence{t; }, a family of their associated circulant matrices caf1e@n of some quantities, such as source coding and filtering
be defined through the discrete-time Fourier transform (DTFPjoblems based on the MMSE criterion, or computing the mean
of the sequencét; }. Let F(w) denote the DTFT of¢; 1, i.e. of a quadratic form associated with a random process [10], [19],
oo [18], [20].
F(w) = Z tpe Ik, However, the usefulness of the weak convergence theorem is
b —oo severely limited due to the fact that many applications actually
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Transmitter n( % g (—1) T
Output x ( ¢ ) , ,
—— TT Delay N, Matched ﬁ’ \;k>

Filter

Fig. 1. Communication system model.

involve the quadratic form di‘;l, e.g., the problem addressedA. Problem Formulation

in this paper. Elven iT;1 <1:onverges tm’)’;l inthe weak sense,  The paseband received signal is modeled as
substituting?’,,~ with C;,~ may not yield correct results since N/2-1

the convergence of a quadratic form can only be guaranteed if ..,y — . /5~ ama(t = mT — 7T)e?® + n(t )
the convergence is in the strong sense. ®) Sm_z_;\w md( ) @0 ®

Based on the res_ults in [13], [14], it can be shown tHat whereg(t) = gr(t) ®c(t) ® f(t) (without loss of generality, let
can con\_/erge_to a qlrculan? matrix in the strong sense only whgg assumg(t) is real),gr (1) is the transmitter pulse-shaping
Ef\aCh:E" |shan |dent|;[y mat(;in‘(;ﬁ gwever, following t:‘]e Og:_elrvaTunction,c(t) is the channel responsg(t) is the prefiltern(t)
tion that the central part df,, - does converge to that @, ;¢ 1o 4qditive white Gaussian noise (AWGN) with two-sided
under certain conditions, we can define thg followfimge-term power spectral density equal 1,/2, T is the symbol interval,
strong convergencter two families of matrices. {am}, m € Z (Z the set of integers) is the training sequence

Definition 1. For two families of Hermitian matriced,, and drawn from the complex plane with[|a,,|?] = 1. Variable¢

B,,, consider the quadratic form models the carrier phase offset. The delay jittérmodels the
absence of symbol synchronization between transmitter and
max [I(An — By )z|| (5) receiver. Itis assumed thate [-7, ) andT € [-0.5, 0.5).
z ]| The received signak(t) is passed through a matched filter

A . with responsgy(—t) as shown in Fig. 1. We assume that the
where||z|| = vz is the vector norm for a vectar, the max-  channel impulse response and the prefilter are perfectyi.,
imum is over all thex-dimension vectors of the form is equal to the transmitter pulse-shaping functigr(t). The

. o o outputy(t) of the matched filter is sampled every seconds,
=0y 0w, s @0y ey 2w, 0,0, 0) 0 (6) e, T L)LTS where I is the sampling rate in samples per
If (5) converges to zero for any givé#i asn — oo, we say that Symbol period. In the DA case, the training sequefiag, }
A,, converges tdB,, in the finite-term strong sense. A quadrati¢ = —N/2, ..., N/2 — 1) is known to the receiver. The

form associated witt is called a finite-term quadratic form. Phase offse$ and timing offsetr are assumed to remain fixed

o ] _over the duration of the observation.
If z corresponds to a data transmission contained within thet,o output of the matched filtex(t) is

window [-W, W] (whereWW does not increase with), we are N/2-1

able to _replace4n with B, a_lsymptot_ical_ly in eve_1|uatin_g the y(t) = \/E_s Z amr(t — mT — 7T)ed® + N(t)  (9)
quadratic forms. Many practical applications fall into this cate-

gory. The following result is established in [11]. where mEN
Theorem 1:Let T, be a family of Toeplitz Hermitian ma- r(t) = /OO g(t +u)g(u) du
trices associated with the sequekitg, andF(w) be the DTFT —o0
Of,{lt""}' If |F(w)| # 91fqrw € [.0,. 2r)andY ro  |kty] < oo, N(t) = / n(t + uw)g(u) du.
T, = converges t&,, " in the finite-term strong sense. J oo
Furthermore, for a vectar with the form defined in (6), the  Therefore, the samples g¢ft) are expressed as
quadratic form is bounded by N/2-1 '
v =VEs Y amr(kTe —mT —1T)e/* + N, (10)
(= - o:1)]
]| <O (1/vn). () with N, = N(ET;) that is a sequence of Gaussian random
variables with zero mean and the ;}utocorrelation function
The theorem provides a simple way to diagonalize the R,[k — ] = E[N,N;'] = 707"((1@- —DTs). (11)

inverses of a Toeplitz matrix. The condition ot} (i-e., e rewrite (10) in terms of a matrix and vector product. First,
Y ore oo |ktr] < 00) is sufficient for the convergence but notyefine the following vectors:

k=—o00
necessary. The finite-term quadratic form may converge much T
faster tharO(1//n). Y= [ny/z Yo o yK/271]
T
a= [G—N/z TG o aN/2—1]
[ll. DERIVATION OF THE CRAMER—RAO LOWER BOUND T
N=[N_gs» -+ No -+ Ngja_i] (12)

We start with the mathematical formulation of the DA synwhere the observation window lengkhis typically longer than
chronization to establish the notation used in the presentatiof.V, the training signal length, in order to capture the sigi(a)
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beyond the training sequence for the optimal receiver designwe can compute them further based on examining the condi-
with correlated noise. Second, defin&a« N matrix R(7) with  tion whetherp andr are deterministic or not. It can be readily
the {m, n}th entry equal to-((m — K/2)T, — (n — N/2)T — verified that.Jy 4, is equal to

mT),form=0,1,..., K—landn =0, 1, ..., N —1. With

this notation, (10) can be rewritten as Joo = 1 [omy! Q omy om;f Q om,
) Y9 Ny | 06 08; a0 a0
y =/ E, R(t)ae’® + N. (13)
2 om om,
The mean ofy givena, ¢, andr is N R l 805 Q WJJ] (21)

my(a, ¢, 7) = Elyla, ¢, 7] = VE  R(t)ac’®.  (14) \hereR(-) represents the real part of a complex number. From

. . . 14), it follows that
The autocovariance matrix gfis (14)

om, . ;
=5/ Es R(7)ac??
covlyla, ¢, 7] = N7 A (15) ¢ )
om, OR(T) .
whereA is aK x K Toeplitz matrix defined as 8TJ =V E; “or ae’?.
r(0T%) r(=T%) coeor(—(K = 1)Ty) Therefore, the entries of the Fisher information matrix (20)
r(T,) r(0T) o r(—(K —2)Ty) can be rewritten gs
A=l S ; Tos = 22" " R(r)QR(r)a (22
. . . . 0
(K =11 r(K-2)T) - r(0T) _2E, g i OR(T)
(16) Jor = No R |(=j)a” R(1)"Q or a (23)
with the {k, m}th entry of A equal tory,, = r[(k — m)Ts]. Jro =Jyr (24)
The likelihood function ok andr givena is 2k H
g =2 OR(T) Q OR(T) a (25)
1 H (N, —1 N[) 87' 87'
exp{ =3 (y=m,)" (3 A)” (y-m,) } , o |
flyla, ¢, 7) = ) The CRBy,'s for the DA joint estimation of carrier phase and
(2m)K/2 | B A|1/2 timing offsets are expressed as
17) X
The log-likelihood function is given by E [@s - ¢)ﬂ >CRBos ()2 — 77" (26)
JopTrr =I5,
l(yla, ¢, T) = log(f(yla, ¢, 7)) A J
1 E[(r—7)% >CRBpa(1) = —2 . (27)
= [-y"Qm, — m'Qy + m[ Qm,] JooJrr — J3.
1 N 1/2 ] )
— | — y7Qy+log (27[-)1(/2 TOA B. CRB in the Frequency Domain
No Previous research was unable to derive a closed-form CRB

(18) for an arbitrary training sequence In order to simplify the

. . _ . . computation,Jy ¢, Was approximated by being averaged over
e e o 098 o 1 S5t s eromean, 1. and o
: ' nough [2]-[4], (6], [7].

volves quadratic forms of the inverse matéx The CRBy4's
(i.e., the CRB for DA estimation) are the diagonal entries of ﬂ]g

i_”"erse of the Fisher inforr_natio_n matrikfor the joint estima- observation window. When the observation window increases,
tion of {¢, 7} [1], whereJ is defined as the estimator approaches the optimal solution for colored noise.
Joo  Jor Therefore, the resultant CRB is the ultimate performance lower
J= {Jw JTJ (19)  pound. This decoupling enables us to apply the finite-term
strong convergence theorem presented in Section Il to derive
whose entries are given by (I8t= [¢; 62] with §; = ¢ and the exact CRB for a training sequence of arbitrary length. We
6y = 1) intend to asymptotically replac® with UZ DU . Before
applying the theorem, let us examine the conditions.

Note that in our formulation, we have decouplédd the
ngth of the training sequence, arid, the length of the

l(yla, ¢, T
Jo.o, = E [_%} : (20) » The combined pulse-shaping functiot) is negligible
’ for larget. This means that only a finite number of rows of
The expectation is with respect o 7, and ¢ if ¢ andr are R(7) have nonnegligible values. Thus,, can be consid-
random, or justy if ¢ andr are deterministic [1]. Let us av- ered to have a finite number of nonzero terms. This con-

eragely, s, With respect tg first. If the result depends opand dition is equivalent to the requirement that the modulated
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training sequence is completely transmitted within a finitSubstituting (32) and (33) into (30), (30) becomes

time interval. N/2—1
- . 1 - 2m i
» The sequencdr(kTs)} defining A is the autocorrela- NG Z R, - <7> ape
tion function of the noise procegsV(k7;)}. For a posi- n——N/z

tive-definite A, the DTFT of{r(kT5s)} is always positive. 2rm 2k 2wml

However, oversampling typically degenerates the correla- = I \/— Z ( T, >A< e 27rkL>
tion matrix such that the inverse does not exist. This is

a classical issue related to the likelihood function evalua- e—j(-r(27rmL/K—27rkL)+7rm). (34)
tion. In order to guarantee that the operation is meaningful,

A should be positive definite. One technique to overconikis easy to verify that thenth entry of Uk R(7)a given by
the artifact in the literature is to assume that there is a sm&d#) is a periodic function ofn. with period K', which follows

AWGN in Ny, [1, p. 289]. the property of DTFT. Based on the following equation:
» In regard to the condition tha}, |ktx| < oo, the Ux OR(r) EUKR(r)a (35)
pulse-shaping functioqr(kTs)} usually converges to ar or

zero faster tharD(1/|k|?) in practice. For instance, thethemth entry of (35) is also a periodic function ef with the
magnitude of the raised cosine pulse converges to zerassame period. Note that the DTFT @f (kT; — nT — 7T) /07 is
a speed faster than(1/|k[?).

o T & (w 27k w  2rk
In summary, all the conditions for gpplying the finite—ternﬂn,r(“’) T, Z J . T, T, T,
strong convergence theorem are satisfied. Thus, the inverse ma- k=—o0
trix Q can be substituted by the circulant matti%. D' U i e d(TAMT (/T =27k/Ts) — (36)
asK — oco. Note that the unitary matri&/ i is defined in (1)
with n = K. The diagonal matridDx has theith diagonal ntroduce the following shorthand notation:

entry equal toF(27:/ K). Recall that the DTFTF (w) of r(kT) Al orm 2rk 2rml,
(k=...,—-1,0,1,...)is defined as RA(m, k) = iR<KTQ T >A< 7 27rkL> :
— ; 37
Fw)= Y r(kT)e ¥ (28) (37)
k=—oo With this notation, (22) becomes
First, considelU x R(7)a. Its mth entry is equal to 0. K-l 1
Kot N2 oo = MoK F(2rm/K)
Z Z r(KTs—nT—7T)ane —j2mm(k+K/2)/K m=0

—K/2n=—N/2
(29)
For sufficiently largek’, the summation with respectidn (29)
can be extended teco andoo, sincer(kT;) is negligible for - (23) pecomes
large|k|. Equation (29) becomes

i RA(m, k)RA(m, z)*ei2ﬂ<k—l>L], (38)

k,l=—o00

K—-1 e}
N/2—1 oo 2F T
1 Jor = — RA(m, k
R Z 3= r(kTy — nT — 7T)a, e 72mm K/ K 70 NoK { ZO F( 27rm/K) . l;oo (e 1)
—N/2k=—o0
(30) 2mm 27k _
Let R(w) be the Fourier transform of(t), i.e., RA(m, 1) <KT - T) ef?mr k=Dl (39)
R(w) = / r(t)e™"" dt. (1) and (25) becomes
FurthermoreR(w) is the power spectrum density of the noise 2E,T? K-l 1
processN (t) and nonnegative. DefinR,, .(w), the DTFT of Jrr = NoK Z F(2rm/K)
r(kTy —nT —7T), k=...,—-1,0,1,...,as m=0
5 _ 1 w 2k 3 RA(m, k)RA(m, 1)* (27”” - 2”’“)
R r(@) = 7 k; R <Ts T ) M_z;oo KT, T,
A o IEmTC/T 27k T (32) . (igf - 2?“) pizmr (kL | (40)
Clearly, Ry, o(w) = F(w) in (28). LetA(w) be the DTFT of, s s
€., Although the summation ovek, [ is from —oo to oo, in all
N/2—1 the cases of interest, we shall see that there are at most three
Aw) = Z aneIem, (33) nonzero terms due to the fact that the pulse-shaping function

n=—N/2 r(t) is band-limited.
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1) CRB for Oversamplingin the case of oversampling, op, N2 |A(%)|2
1/Ts > 2B with B the single-sided bandwidth oft), i.e., Jor = _NoKT3 z% ) W
R(w) =0, o] > 7. . :
T 2mmL 2rm 27k
There is no aliasing of (w) in the frequency domain. Because l Z ( K 2ﬂLk>R<KTS T, )
the entriesoU x R(T)a orUk 31;(:) a are periodic with period S (48)

K, the summations in (38)—(40) can range frionk /2, K /2—1] K/2-1 |A ( S ) |2
K

instead of0, K—1]. In this caseR.A(m, k) is nonzero only for _ 2K Z
k = 0whenm € [-K/2, K/2—1]. Alsonotethatinthecaseof “™"  NoKT2? - <, F(2rm/K)
oversampling,F(2rm/K) = R(2rm/KT,)/Ts. Therefore, - m=K ) 5
(38)—(40) can be reduced to the following simple forms: . <27TmL 3 27rLk> R<27rm 3 27rk>
o8, "' 1 (2 2mmL k= KL T
™m Tm oo
Jgg = —— —R 41
** T NoK 22T <KT>’A< K ) (1) (49)
Equations (47)—(49) follow the fact that(w — 27k) = A(w)
28, K2—t o 0N\ 1 2m for an integerk. _This allows separgting&(w)_from the aliased
Jpr =— Z — R(w)?. In practice, a pulse-shaping function is always band-
NoK K T KT, N o . , . 7=
m=—K/2 limited. Its effective single-sided bandwidfh typically limits
2rml\ |2 to1/7. This means that the nonzero terms in (32) are only those
m™m
A K (42)  with k = —1, 0, 1. As in the case of oversampling, we obtain
the following entries of the Fisher information matrix in integral
B Kg: ! <27rmL>2 1 <27Tm> forms by increasing the observation windéw— oo:
NOK “K/2 TS KTS - _ Z 'R(w 27rk) |A( )|
2rmL oo = — — / dw (50)
: T No J_. w2k
() @@ TN e
These values are independentoindr. This implies that the . -
CRBs for timing and carrier phase recovery are the same forJ¢ 1 B /
both random and deterministicandr. 7T Ny ),
As the observation window{ — oo, we obtain the following - _ w—2mk
entries of the Fisher information matrix: kzz_:oo(w 2mk)R (57 ) AP
1 Es o w 9 > o d(.d (51)
Joo=rpw | R(p)A@F 4 @ T R(=)
1 E 1 E, [T
Jyr =—— — R 45 - =
wmrw [ RGO  we g o LR
Je'o} oo w27k 2
g, =t b / PR (E) AW do. (46) > (w—2rk)*R (2525) " | Aw)
T No J_o T k=—o0 do. (52)
2) CRB for Undersampling:in the case of undersampling, f: R (w72wk)
1/Ts < 2B. There is aliasing in the frequency domain. In this k=—o0 r

scenario,Jys, Jor, and.J;, in (38)—(40) are independent ¢f  Combining (44)—(46) and (50)—(52), we can recapitulate the
but dependent om, and they should be averaged with respeggsults for both the over- and undersampling cases formally as
to 7. In practice, it is reasonable to modehs a uniformly dis- follows.

tributed random variable in the receiver front end. A case of par-

ticular interest is one sample per symbol. The following equa- | N€0rem 2:For a DA joint timing and carrier phase offsets
tion is true for arbitrary integers andi estimator given an arbitrary training sequermcef length IV,

the mean-squared estimation error for timing offsét lower-

/ P2 et o st bounded by the following CRB:
—1/2
wheres[n] = 1, if n/ = 0; 6[n] = 0, otherwise. Thereforel,,, E[(7 —#)*] = CRBpa(r) = ﬁ (53)
Jor, andJ; become and the mean-squared estimation error for carrier phase gffset
T = 2F, I‘il A ( 2r£nL)| is Iower-boun(Ajed by the following CRB.J
NoKTZ | o T (2mm/K) B (¢~ 9)°] 2 CRBoa(9) = 7. (54)
ppdrr — Jgr

(47) When the sampling rate is larger than or equal to the Nyquist
sampling rate/44, Jor, andJ,. are given by (44)—(46). When

27rm ok \ ?
|Jc—z:ooR< TQ )
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the sampling rate is one sample per symbgl, J4-., and.J, Theorem 3: When the sampling rate is equal to or above the
are given by (50)—(52). In these equatioR4w) is the Fourier Nyquist sampling rate, we have
transform of the cascaded response of the pulse-shaping filter

N N
and the matched filter as defined in (31), ad() is the dis- Jpp = 2E, Z r(nT) Z a;a’_ (60)
crete-time Fourier transform of the training sequence as defined 0 . —N =N
in (33).
_ _ o 2B, <~ dr(tT) -
For the Nyquist pulse-shaping function with one sample per Jor =7 Z Z a;Q;_, (61)
; ) . . . ; No e |,_
symbol, the entries of the Fisher information matrix can be sim- n=-N t=n i=—N
plified as follows. L 28, N 2r(iT) N ) o
Corollary 1: For the Nyquist pulse-shaping function and the ™ N Z a2 |, aia;_,. (62)
one-sample-per-symbol sampling rate, we have ) ":_JY ==N
. B oo ) When the sampling rate is one sample per symbol and the com-
Jpp = —7 FS / R (%) |,4(w)|2 dw (55) bined pulse shaping function is Nyquist, we have
U 0 J—c .
N N
2F
. 1 E, [ w2 9 Jpp == u(nT) Z a;a;_, (63)
Yo === | R (5) M@ d G6) N 2 2
Toe= iy ot / TR () AP d. 67) Jo 2B N U)o g
TT — 12 NO S T . pr =] NO _ZN dt — "_ZN ail;_p ( )
Proof: With the Nyquist assumption, we have ~ N
2F, d*u(tT .
> R(w—2rk/T) =T. Jrr =— > u(2 ) > aial_, (65)
k NO =N dt t=n ;—_N

Therefore, the denominator of the integrand in (50)—(52) where u(tT") is the convolution ofr(tT") and r(—tT), i.e.,
equal to a constant. The summation of the nominator simplyz7") 2 r(tT) @ r(—tT).
extends the integral fromm, 7] to (—oo, 00). This proves

the assertion. The time-domain expressions do not require an integral,

which is an advantage. Furthermore, the derivative: (@)
When compared with the oversampling case, the undersagn-+(+7") can be computed independently from the training
pling bound with the Nyquist pulse-shaping function simply resequence since they are only functions of the shaping pulse.
placesR(-) with R(-)*. In both cases, the frequency-domaifFor a given pulse-shaping function, these derivatives can be
multiplication of the pulse-shaping function and the training s@recomputed and used for the design of training sequences.
quence appears ify, . . This is the reason that we call them theNow it is clear that the dependency of the CRB on a training

frequency-domailtRBs. sequence is only related to the aperiodic correlation of the
The next subsection presents the CRB in the time domagsquence.

It will become clear that the time-domain representations are

rather simple to compute and no integral is necessary. Remark: In the literature, the CRB has been investigated

with the assumption that the noise with multiple samples per
C. CRB in the Time Domain symbol is white. This assumption holds when the antialiasing
filter is rectangular and the bound is evaluated before the
Shatched filter. The validity of the bound for the samples after
the matched filter is due to that any sufficient statistics give
cisely the same CRB. We could have applied that argument
to simplify the derivation in this manuscript. However, we feel
that the current approach is advantageous. For instance, if the
= al . noise before the matched filter is colored rather than white, pre-
Z Z aia;_p8(t =) ®8)  yious methodology cannot be directly applied. In order to adopt

For convenience, we perform zero padding to the training
quence, i.e., define; = 0 for |i| > N/2. Note that the “zero”
means physical zero rather than logical zero. With this notati
|A(w)|? is equal to the Fourier transform of the following con
tinuous time function:

n=Teei==N the white noise assumption, prewhitening has to be applied.
whered(t) is the Dirac function such that However, it is not immediately clear how the whitening filter
oo should be accounted for in the final CRB. Using the approach
/OO 6(t) = 1. presented here, we can simply repla€g) in (38)—(40) with

the power spectral density of the noise process to account for
any colored Gaussian noise. Essentially, we have proved that

o ) 1 ; . . .
/ (47" = = R(w/T). (59) the DFT itself decorrelates the noise for computing the CRB

The Fourier transform of(¢T') is equal to

Using Parseval's relation we can substitute the terms in V. ANALYSIS OF THE CRB AND EXAMPLES
(44)—(46) and (55)—(57) with (58) and (59), which leads to the In this section, we analyze the CRB obtained and compare it

time-domain representation df,, Js-, and.J; .. with the known bound in the literature. Furthermore, we present
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a few interesting examples to illustrate the performance limiBs Comparison With the Known Bound

offered by different training sequences. First, for J,, (60) reduces to the known results [2]. As ob-
served in [2], for the Nyquist pulse-shaping function, the CRB
A. J,.: Cost of Two Unknown Parameters for phase estimation becomes
. ) ) Jpp = 2NE, /Ny, (69)
SlnceJd%T > 0, the following can be obtained from (26) and ,
27): with the assumption that||a,,|?] = 1 andr(0) = 1.
For timing estimation, in the literature [2]-[6], the CRB is
J J 1 only available for the case that the training sequence is i.i.d.
i TT_ 27 T} = (66) pseudorandom data and very long. When the samplingrate
opirT T Mlgr CerrT od 2, the CRB (denoted as CRB (7)) is given by
T T 1 oo =
> = —. (67) _ 1 [2E, 2 02
Jd)d)JT‘r - J¢2)7- Jd)d)JTT Jrr CRBRD(T) T2 { Ny N J oo dm f R(Zﬂf) df :
(70)
It is straightforward to verify that the CRB, for timing/carrier When L = 1, for the Nyquist pulse-shaping function,
phase estimation with known carrier phase/timing offsetis equUaRBrp (7) is given by
to 1/J:r (1/Jg4), .resp.ectivelly. Therefore],, is the costin . 1 (2B, 1 [~ , -1
terms of larger estimation variance when the other parameter is CRBrp(7) = T2\ N N = re(t)ydty . (71)

unknown. It was observed in [2] thak;. reduces to zero for h | how that (70 and (71 h il
pseudorandom training sequences and real shaping pulse. V\} the sequel, we show that (70) and (71) are the special cases

shall show that this observation can be easily extended to a(?{d%) ang (57)dunder Fh_e same assump;sons. For zercr>] mean,
real training sequence. I.I.d. pseudorandom training sequengeas /N goes tooco, the

power spectral density @f becomes white, i.e.,
* In the oversampling casé, is given by (45). Given the |A(-)|2 ~ N (72)
assumption that(t) is real, its Fourier transforR (w) is T

an even function ofs. With w an odd function, an even Substitutel.A(w)|* with N in (46) and (57), leto/T’ = 2 f,
|A(w)| will guaranteeJs, = 0. In the under sampling the equivalence of (46) to the known bound (70) under this con-

case,J, is given by (51). For reat(t) and ever|A(w)|, dition follows. The equivalence for the undersampling case can

we have be established by further applying Parseval’s relation
. / ()2 dt = / (2rfR (2rf))? df. (73)
> (~w = 2mk)R (=777 [A(-w)? — e . : .
k=—oc From the representations of the CRB in the time domain,
i R (_W_ZT,C) it is clear that the difference between the i.i.d. pseudo-
iy T random sequence and any fixed training sequence depends on
- d?r(tT)/dt? |, fOr n # 0. If {|d?r(tT)/dt?|i=n; n # 0}
Y (w4 2mk)R (Z27E) |A(-w)[? are very small compared witdr (¢7) /dt?|;=o, the new CRB
_ h=—o0 would be of minor interest. The following results show that
i R (=wtinh) {|d?>r(tT)/dt?|s=n; n # 0} are indeed significant compared
ke oo T with d?r(tT) /dt?|—o.
3 (w— 2mk)R (2527 | A(w)? Corollary 2: If the signalr(t) is bar;(jr—llmned byer /T, i.e.,
_ k= - (68) R(w) =0, |w| > T
k_z R (=2"%) we have
- i (i) _
where the first equality follows from substitutikgwith S WL L P
—k, the second equality is due to the fact that bBifw) and
and|.A(w)| are even functions. Therefore, we have shown = d?r(tT)
that the integrand of (51) is an odd functionwf There- Z |, =0.

n=—oo

fore, as long agA(w)| is an even function ofy, Jy, is

equal to zero. Proof: The DTFT of{dr(tT)/dt|i=.; n} is equal to

oo
+ A sufficient condition to makd,, = 0 is that the training % Z d T27m R (w T27m> .
sequence is real, which implies that4(w)| is an even n=—oo
function. Forw = 0, the summation is equal to zero, which means that
Previ . . . ([]here is no DC component. In the time domain, this implies that
revious discussion shows that under very realistic condi- oo
tions we are able to separate the estimation of carrier phase and Z dr(tT) —0.
timing. In the sequel, we focus on the bound with = 0. W= dt L,
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Similarly, we can show that TABLE |
J--/(2E;/Ny) OF CW GIVEN DIFFERENT SEQUENCELENGTH NV
o dzr(tT) AND ROLLOFF FACTOR «r, WHERE THE SAMPLING RATE
Z 02 =0. O IS TWO SAMPLES PER SYMBOL (L = 2)
n=-—oo ! =n

a N=6 N=10 N=20 N=50 N =100

This simple result shows that the combined effect of all the  0.25 2.8189 2.8364 2.8328 2.8330 2.8330
terms other thaa?r(¢T') /dt?|;=o in (61) and (62) is as signif-
icant asd?r(tT)/dt?|;—¢. Corollary 2 reveals that by properly
designing the training sequence, significant gain can be obtained 0.75 3.5435 3.5286  3.5326  3.5329  3.5329
over the pseudorandom sequence. 100 55314 55402 55439 55450 55450

0.50 3.0331 3.0403 3.0417 3.0416 3.0416

C. Examples

In the sequel, we use a few typical training data patterns ¥4 the fact thati*r(t7") /dt*|,—,, becomes virtually zero for
illustrate the bound. The raised cosine shaping function is &&/gen, we have
sumed to be the cascaded filter, whose Fourier transformisgiven

) d?r(tT) . d?r(tT)

by N _Z N =G| _ = N, 2. N s
T, 0<|w| <7(1-a)/T n=-N In|>N
T —

R =17 [1_sin(T|;L—”)}, 7(1—a)/T < |w] =0.

w) =
< m(14«)/T  This shows that for a long but finite-length CW, . converges

0, otherwise. to

When the rolloff factora ranges fronD to 1, its single-sided No  —_ a* |, '

bandwidth ranges frorh/2T to 1/T.
Example 1—Continuous WaveThe continuous wave (CW) Table I illustrates/, /(2E;/N,) of CW sequences given dif-
sequence is the training sequence with data pattern ferent rolloff factors and sequence length. It shows thatcon-
) verges to a nonzero constant Asincreases. This constant is
am = (1 +J)/\/§ (form = -N/2—1,..., N/2). related to the pulse-shaping function but independent.ofhe
Itis widely adopted in burst preambles in time-division multipl@onzero/., captures the impact of the ramping up and ramping
access (TDMA) networks for carrier acquisition. We considélown of a finite-length CW. No matter how long a training se-
two different scenarios in the oversampling case: infinite-lengfiiénce is, the ramping effect will not disappear. This explains
CW and finite-length CW. For the infinite-length CW, we haveéVhy the CRB of a finite-length CW cannot converge to that of
- the infinite-length CW. Although CW itself has little value for
Alw) = 14y Z p—dwn timing synchronization, it is a very good pedag(_)gica_\l example.
It shows that the bound can capture the detailed impact of a
- training sequence on timing estimation performance. For other
14y sequences such as pseudorandom sequences, as shown previ-
=5 D 2mbw—2mn). (75) ously, the bound increases wifi. Therefore, when it is nor-
o ) malized by the length of the sequence, the boundary ramping
Substituting (75) into (46)/,, = 0 follows from the fact that offect will not play a visible role.

R(w/T) = 0 for |w| > 2m. Therefore, the infinite-length  £xample 2—Finite-Length Pseudo Random Sequence:
CW provides no timing information as heuristically explained \when we assume that the training data is i.i.d. but of finite
in [2, p. 336]. For a finite-length CW, the autocorrelation of thgsngth, 7. . in (62) reduces to
training sequence is given by ; 2F, Pr(iT)

T s 47T

N —_— = .
S i, = { N—ln|,  |n| < N (76) N Ny dt? |,
=N 0, otherwise. Thus, a finite-length pseudorandom sequence has the same nor-
Substituting (76) into (62), we obtain malized timing bognd as an infinite-length one does. Thisis rgl-
evant when applying the bound to the tracking mode operation
Jrr = of a synchronization circuit. In that case, for fixed tracking loop
28, N d2r(tT) N d2r(tT) bandwidth, the training sequence can be assumed to be i.i.d. but
No ZN n| a2 ‘tn -N ZN a2 ‘ - offixed length. Therefore, the result in this paper shows that the

bound for an infinite-length pseudorandom sequence applies to
By using the following result shown in the previous section: that of a fixed-length sequence. Another interesting case is the
o bound of a one-bit training sequence. We can easily see that the
Z d*r(iT) ’ =0 CRB for a one-bit training sequence gives the exact CRB of a
dt* =n pseudorandom sequence normalized\ay

n=—oo
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CRBD A(1:): One-Zero Pattern vs. Pseudo-Random Pattern

10 T T T T

Timing Bound: CRBD A(1:)

1
IN

—_
o

1 0-5 1 I 1 1

I
1/0 1
RD, 0=0.25 |]
RD, 0=0.50 |1
RD, 0=1.00 |}

4 0%

1 1 1 1 1

0 1 2 3 4

5 6 7 8 9 10

E/N,(dB), N=64, 25PS

Fig. 2. Timing bound CRBx (7) for alternating one—zero and pseudorandom sequences in the oversampling caséy whérk, L = 2, “1/0” denotes the
alternating one—zero sequence, and “RD” denotes the pseudorandom sequence.

Example 3—Alternating One—Zero Sequendée alter- For a Nyquist band-limited pulse-shaping functi®(w) = 0
nating one—zero pattern is the training sequence with data dat-|w| > 27 /T, we haveR(«/T)/T = R(—=/T)/T = 1/2.
terna,, = v2/2(1 + j)(—=1)™. Itis widely used as preamble This shows that

in TDMA networks for timing recovery. Its autocorrelation is

5, (~)"N =1nl), In|<N
Zaiain:{

P 0, otherwise.

As the sequence lengffi — oo, substituting this into (62), we

obtain
Jrr 2F, «— d?r(tT)
lim - = - —1)" —— 77
NS N No n:z_oo( " e _-

The Fourier transform of the sequende-1)"} is

oo oo

Z (—1)"eien = Z 2n6(w — 7 — 27n).

n=—oo n=-—oo

Applying Parseval’s relation, we have

oo

L, d%r(tT)
> o0 S,

n=—oo

928,
Ny

E, [T , -
_7TTNO/ w R(w/T)2m Z 6(w—7m —27mn)dw

- n=-—oo

- % (m®R(x/T)/T + n*R(—=/T)/T).

2F,
No

i (—1)" d?r(tT) _ 2n’E;
ez |,_, No

n=—oo

Therefore, the CRBa(7) for a long alternating one—zero se-
guence is independent of the pulse-shaping function as long as
itis Nyquist. In contrast, for a pseudorandom sequence, the nor-
malized bound is equal to

B 2E, d?r(tT)
Ny  dt?

t=0

with d?r(¢T)/dt?|;—o dependent on the pulse-shaping func-
tion. For the raised cosine pulse, it is easy to show that
—d?r(tT)/dt?|s=0 = (7> + 3a?(n? — 8))/3.t Thus, an alter-
nating one-zero sequence offers a performance improvement
over a pseudorandom sequence of the same length by a factor
of

3n?
72 4+ 3a?(m —8)’
Fig. 2 illustrates the comparison of the timing bound between an
alternating one—zero sequence and a pseudorandom sequence

given N = 64, L. = 2, and different rolloff factors. For small
«, the gain approachel)log3 =~ 4.7 dB. Fora = 1, the

1This expression was also derived in [6] based on (70).
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CRBD A(¢): One-Zero Pattern vs. Pseudo-Random Pattern
—1
10 [ T T T T T T T

T
1/0 1
RD, a=0.25 |]
RD, 0=0.50 |1
RD, 0=1.00 |]

X + ¥ O

Timing Bound: CRBDA(q))

10-4 1 1 1 1 I 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Es/No(dB), N=64, 1 sample per symbol

Fig. 3. Phase bound CRB (¢) for alternating one—zero and pseudorandom sequences in the one-sample-per-symbol casg, whede L = 1, “1/0”
denotes the alternating one—zero sequence, and “RD” denotes the pseudorandom sequence.

gain reduces to 2.8 dB. Although the normalized CRB for a fby using the fact thak(x/T)/T = 1/2. For a pseudorandom
nite-length alternating one—zero sequence is slightly differesequence, we have

from that of the infinite length, the difference is negligible when J 9F o

N is large enough (e.gly\ = 64). This shows that practical ek | (1 — —) . (79)
sequences can offer much better performance than a pseudo- N No 4

random sequence. Note that an alternating one—zero sequéliteerefore, for the carrier phase estimation with one sample per
is not good for frame synchronization. In practice, when an alymbol, a pseudorandom sequence outperforms an alternating
ternating one—zero sequence is employed, other frame synclmee—zero sequence of the same length by a factor of

nization techniques may have to be used, such as embedding a

frame synchronization data pattern into error-correction-coded 2-<.

. L . X 2
bits. In that case, the frame synchronization pattern is designed .
in such a way that only its successful recovery results in the c69- 3 shows the comparison of the phase bound betweena pseu-
rect decoding of the error correction code. dorandom sequence and an alternating one—zero sequence in the

Example 4—One Sample Per Symbbi: this example, we one-sample-per-symbol scenario givln= 64 and different

compare the one-sample-per-symbol case with the oversdfloff factors. For smalk, the gain obtained by the pseudo-

pling case for both alternating one—zero and pseudorand&#idom sequence is aroubidlog 2 = 3 dB, whereas for = 1,
sequences. the gain reduces to 2.4 dB.

i For a long alternating one—zero sequence similar to the over-
In the oversampling case, the CRB(¢)

Is given by samiling case, itis easy to show that the normalizeds equal
(69), which is independent of the training sequence a%i ping A y W iEeds equ

pulse-shaping function. However, in the undersampling case, it

(given by (55) and (60)) depends on both the training sequence i, Jrr - 2E,
and the pulse-shaping function. For a long alternating one-zero N—e N NoT?
sequence, similar to the oversampling case, it is easy to show 72 F,
that the normalized;, is equal to N,

(m*R*(n/T) + m*R*(—7/T))

This shows that the CRB given one sample per symbol is ex-
. Jpp  2E; 9 12 22y Es actly 3 dB worse than that of the oversampling case for the
]\lgnoo N N (R<7T/T) [T"+R(=x/T)"/T )_ N, alternating one—zero sequence. In comparison, for a pseudo-

(78) random sequencéd,., can be obtained by using (71) asin [6] or
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Normalized CRBD A(1-,) with One-Zero Pattern and Pseudo-Random Pattern
05 T T T T T T T T T
¢ RD,1SPS
+ RD,2SPS
045 | x 1/0,1SPS T
* 1/0,2SPS

I
'S

o
w
5

paDENE/N,)

0.3

0.25

Normalized CRB:CRB

0.2

0.1 « « « « « « « « %
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Rolloff factor o, SPS: samples per symbol

Fig. 4. Normalized timing bound CRRB\ (1) - 2N E, /N, for alternating one—zero and pseudorandom sequences in both the over- and undersampling cases,
where “1/0” denotes the alternating one—zero sequence, “RD” denotes the pseudorandom sequence, and “SPS” denotes “samples per symbol.”

by computing the second derivative of the convolutign) = trates the dependence of the performance limits on the training
r(t) ® r(—t). We obtain the following expressian sequence. It turns out that such dependence only relates to the
aperiodic correlation of the training sequence. The previously

Jer _ 2B, d*u(tT) known bound for i.i.d. and infinitely long sequence is actually
N No dt? |,_, a special case of the bound derived in this paper. We further
2 2 2 showed that different training sequences can offer significantly
2F0, 1 = 3 9 9 T s . . .
=N 3 13)° +(7° = 8)a” — v a+? . different performance. In particular, there exist sequences pro-
0

viding much better performance than the ideal pseudorandom
sequences. By using CW sequences as an example, we have

Fig. 4 plots the normalized timing bound as a function of th‘céhOWn that the bound derived here can capture very detailed

rolloff factor « for both alternating one—zero and seudorandolmtorma"[ion such as the ramping up and down of a finite-length
SeqUENCesS \?\é/ith different sam Iign rates P g?—zquence. The alternating one—zero sequence is used as an
ﬂ] summary. an alternatin pong—zero.se uence out erfor?r)](ample to show that practical sequences can be designed to
Y, g one- quer P Dieve significantly better performance than a pseudorandom
a pseudorandom sequence for timing recovery in both the over- o .
seguence. In a subsequent publication, the bound is further

and undersampling cases. For phase recovery with a Nyq%)s( loited for sequence design.

pulse, all the sequences perform equally in the oversamplin trictly speaking, the CRB is associated with the receiver ob-

case. However, in the undersampling case, the alternatlQeqrvation window. This means that for a specific length of the

one—zero sequence 1 inferior o the pseudorandom Sequef%%%Ervation window, there is a CRB associated with it even for
This shows that different design tradeoffs are needed for

different systems. The bound presented in this paper aII0\t/v|se same training sequence. t|s.|ntU|t|ve and casy FO show an
. : alytically that the longer the receiver observation window, the
such tradeoffs to be examined readily.

lower the CRB. For infinite observation window, the bound re-

veals the fundamental limits in the estimation based on the in-

formation conveyed by the training sequence. This is part of the
In this paper, the closed-form CRB for the DA joint timingreason that this paper is titled “Performance Limits rather

and carrier phase offsets estimation was derived given #an the “Cramer—Rao Bound.”

arbitrary training sequence. This new bound explicitly illus-

(80)
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