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Abstract—This paper addresses data-aided (DA) synchroniza-
tion, in which the reference parameter acquisition is aided by a
training sequence known to the receiver. The Cramer–Rao lower
bound (CRB) for the DA timing and/or carrier phase recovery is
presented. For DA parameter estimation, the CRB typically varies
with the training sequence. This indicates that different training
sequences offer fundamentally different performance. In the lit-
erature, the widely cited closed-form CRB for timing and carrier
phase recovery was derived under the assumption that the training
sequence is independent and identically distributed (i.i.d.) and suf-
ficiently long. In this paper, we derive a closed-form CRB for timing
and carrier phase recovery with respect to an arbitrary training se-
quence and pulse shaping function for the over and under sampling
cases. It turns out that the CRB is a weighted summation of the ape-
riodic correlation of the training sequence and the weighting factor
is determined by the pulse shaping filter. Therefore, this paper re-
veals the fundamental link between a training sequence and its cor-
responding performance limit.

Index Terms—Cramer–Rao bound (CRB), data-aided (DA) syn-
chronization, phase estimation, timing, synchronizations.

I. INTRODUCTION

T HE Cramer–Rao bound (CRB) is a lower bound on the
minimum mean squared error (MMSE) of anyunbiased

estimator [1]. Since the CRB serves as a benchmark for the
performance of an actual estimator, it has received consider-
able attention both in theory and practice. In practical systems,
synchronization parameters, such as timing and carrier phase
offsets, are often acquired with the aid of a training sequence
known to the receiver, which is called the data-aided (DA) esti-
mation. In the DA cases, the CRB varies with the training se-
quence, which implies that different training sequences offer
fundamentally different performance. Therefore, it is important
to understand the performance limit as given by the CRB for any
particular training sequence. Due to its practical significance,
the CRB for DA synchronization has been studied extensively in
the literature [2]–[9]. However, in [2]–[8] the closed-form CRB
for the DA timing and/or carrier phase recovery for an arbitrary
training sequence is unavailable. The authors in [2] gave a thor-
ough summary on the CRBs for carrier frequency, phase, and
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timing offsets estimation. The CRB for joint timing and carrier
phase recovery was first introduced by Moeneclaey in [4], [5];
it was further discussed in his publications [3] and [6]. It was
considered mathematically intractable to derive the bound for
an arbitrary training sequence. Moeneclaey simplified the issue
by adopting the strong law of large numbers and the assumption
that the training sequence is zero mean, independent and iden-
tically distributed (i.i.d.), and sufficiently long. This method re-
duces the computation dramatically and provides some insights
for communication receiver design. Unfortunately, it hides the
interaction between a training sequence and its resultant estima-
tion performance. In order to deal with the estimation problem in
the presence of nuisance parameters, D’Andreaet al.proposed
themodifiedCRB (MCRB) in [7]. It is pointed out in [3] that the
CRBs derived previously in [4], [6] are actually MCRBs. In [9],
the author took a frequency-domain interpretation of the CRB.
Similar to earlier works, it assumes pseudorandom training data.

In principle, it is possible to use a brute-force numerical ap-
proach to compute the CRB for any given training sequence.
However, the brute-force approach does not provide any insight
on the interaction between a training sequence and its resultant
CRB. One of the major difficulties in computing the CRB arises
from the fact that the computation involves the inverse of an au-
tocovariance matrix that is Toeplitz. It is well known that the
inverse of a Toeplitz matrix is no longer Toeplitz, which makes
it difficult to analyze the bound analytically. One technique to
tackle this problem is to exploit the relation between Toeplitz
matrices and their associated circulant matrices. In fact, it is well
known that the inverse of a Toeplitz matrix does converge to a
circulant matrix in the weak sense under certain conditions [10].
Unfortunately, the weak convergence is in the mean sense and
only useful for computing the mean of some quantities such as
the mean of a quadratic form associated with a random process.
However, for an arbitrary training sequence, the CRB involves
the evaluation of a quadratic form of the inverse matrix. Thus,
the weak convergence theorem cannot be applied. It is this fact
that motivated the research in [11].

By observing that communication receiver design often
needs to seek optimality in regard to a data sequence trans-
mitted within finite duration, we defined thefinite-term strong
convergenceregarding two families of matrices in [11]. We fur-
ther presented a condition under which the inverse of a Toeplitz
matrix converges in the strong sense to a circulant matrix for
finite-term quadratic forms. The finite-term strong convergence
separates the length of the transmission window from that of
the observation window. By increasing the observation window,
the receiver design approaches the optimal solution when the
noise incurred in the system is correlated. Therefore, we can
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obtain a closed-form formula for the optimal receiver design
through substituting the Toeplitz matrix with its associated
circulant matrix when the condition of the finite-term strong
convergence is met.

Based on the results presented in [11], a closed-form CRB
for the DA joint timing and carrier phase offsets estimation is
derived with respect to any given training sequence and pulse-
shaping function. The only assumption is that the derivative of
the pulse-shaping function exists, i.e., it is sufficiently smooth.
The bound uncovers the close relation between a training se-
quence and its resultant performance limit on timing and carrier
phase recovery. We present the bound both in the frequency and
time domains. In particular, the time-domain expression clearly
exhibits the interaction between the pulse-shaping function and
the training sequence. Under the same framework, this paper re-
veals the tradeoff between the sampling rate and the estimation
performance. This provides guidance for high-speed modem de-
sign where it is critical to make the sampling rate as low as
possible.

The rest of the paper is organized as follows. Section II briefly
reviews the relevant mathematical tools presented in [11]. Sec-
tion III derives the CRB. Section IV further evaluates the bound
for various practical scenarios and offers comparison with the
state of the art in the literature. Section V concludes the paper.

II. ON THE INVERSE OFTOEPLITZ MATRICES

Toeplitz matrices and their inverses were studied in [12],
[10], [13]–[20]. Grenander and Szego’s book systematically
documents major results on Toeplitz matrices [12]. A literature
survey is given in [11] on the works related to the inverses of
Toeplitz matrices.

A family of Toeplitz matrices is defined by a sequence
of complex numbers such that the
entry of at the th row and th column is equal to , i.e.,

. Furthermore, we restrict our discussion to the
case that , where is the complex conjugate of .
With this restriction, becomes Hermitian. Toeplitz Hermi-
tian matrices play a pivotal role in signal processing. In fact,
what is really relevant is the inverse of such a matrix rather than
the matrix itself for many applications. For instance, ifrep-
resents the autocorrelation of a stationary random process, the
inverse of is associated with the joint probability density
function of consecutive samples of the random process. Infil-
tering problems, such an inverse appears in the Wiener–Hopf
equation [21], [22].

As mentioned earlier, one of the difficulties in analyzing the
inverse matrices arises from the fact that the inverse of a Toeplitz
matrix is no longer Toeplitz. A technique to tackle the problem
is to exploit the relation between Toeplitz matrices and their as-
sociated circulant matrices. An matrix is called acirculant
matrix if its th entry is only a function of . In
particular, for the family of Toeplitz matrices defined by the se-
quence , a family of their associated circulant matrices can
be defined through the discrete-time Fourier transform (DTFT)
of the sequence . Let denote the DTFT of , i.e.,

Note that is real due to the Hermitian constraint. Let
denote the unitary matrix defined as

...
...

...
...

(1)

and denote the diagonal matrix with theth diagonal entry
equal to , i.e.,

(2)

The matrix

(3)

is a circulant matrix [12], [10].
It has been observed that in many applications substituting

with often leads to very useful and dramatic simplification
to the problems at hand. This is due to the following facts.

• The inverse of a circulant matrix is still circulant.

• The eigendecomposition of a circulant matrix is equivalent
to the discrete Fourier transform (DFT), providing addi-
tional insight in the frequency domain.

• The eigenvalues of is the samples of the spectrum of
.

Apparently, in order to make such a substitution meaningful, the
inverses of Toeplitz matrices need to converge to their associated
circulant matrices.

The most well-known convergence is the weak convergence,
which is based on the weak norm defined for an matrix

as

(4)

It can be shown that the Toeplitz matrix converges to in
the weak sense as long as is bounded [12], [10]. Note
that converging to may not necessarily mean that
converges to even if does exist. A sufficient condition
for the weak convergence of the inverses is that the strong norm
of and is uniformly bounded [10]. The strong norm
for a Hermitian matrix can be defined as

where the maximum is over all the vectors of the same dimen-
sion as .

Examining the definition of the weak norm in (4), we can
see that the weak convergence is in the mean sense due to the
division factor . Indeed, several successful applications of
the weak approximation theory relate to the evaluation of the
mean of some quantities, such as source coding and filtering
problems based on the MMSE criterion, or computing the mean
of a quadratic form associated with a random process [10], [19],
[18], [20].

However, the usefulness of the weak convergence theorem is
severely limited due to the fact that many applications actually
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Fig. 1. Communication system model.

involve the quadratic form of , e.g., the problem addressed
in this paper. Even if converges to in the weak sense,
substituting with may not yield correct results since
the convergence of a quadratic form can only be guaranteed if
the convergence is in the strong sense.

Based on the results in [13], [14], it can be shown that
can converge to a circulant matrix in the strong sense only when
each is an identity matrix. However, following the observa-
tion that the central part of does converge to that of
under certain conditions, we can define the followingfinite-term
strong convergencefor two families of matrices.

Definition 1: For two families of Hermitian matrices and
, consider the quadratic form

(5)

where is the vector norm for a vector, the max-
imum is over all the -dimension vectors of the form

(6)

If (5) converges to zero for any given as , we say that
converges to in the finite-term strong sense. A quadratic

form associated with is called a finite-term quadratic form.

If corresponds to a data transmission contained within the
window (where does not increase with), we are
able to replace with asymptotically in evaluating the
quadratic forms. Many practical applications fall into this cate-
gory. The following result is established in [11].

Theorem 1: Let be a family of Toeplitz Hermitian ma-
trices associated with the sequence , and be the DTFT
of . If for and ,

converges to in the finite-term strong sense.
Furthermore, for a vector with the form defined in (6), the

quadratic form is bounded by

(7)

The theorem provides a simple way to diagonalize the
inverses of a Toeplitz matrix. The condition on (i.e.,

) is sufficient for the convergence but not
necessary. The finite-term quadratic form may converge much
faster than .

III. D ERIVATION OF THE CRAMER–RAO LOWER BOUND

We start with the mathematical formulation of the DA syn-
chronization to establish the notation used in the presentation.

A. Problem Formulation

The baseband received signal is modeled as

(8)

where (without loss of generality, let
us assume is real), is the transmitter pulse-shaping
function, is the channel response, is the prefilter,
is the additive white Gaussian noise (AWGN) with two-sided
power spectral density equal to , is the symbol interval,

, ( the set of integers) is the training sequence
drawn from the complex plane with . Variable
models the carrier phase offset. The delay jittermodels the
absence of symbol synchronization between transmitter and
receiver. It is assumed that and .
The received signal is passed through a matched filter
with response as shown in Fig. 1. We assume that the
channel impulse response and the prefilter are perfect, i.e.,
is equal to the transmitter pulse-shaping function . The
output of the matched filter is sampled every seconds,
i.e., where is the sampling rate in samples per
symbol period. In the DA case, the training sequence

is known to the receiver. The
phase offset and timing offset are assumed to remain fixed
over the duration of the observation.

The output of the matched filter is

(9)

where

Therefore, the samples of are expressed as

(10)

with that is a sequence of Gaussian random
variables with zero mean and the autocorrelation function

(11)

We rewrite (10) in terms of a matrix and vector product. First,
define the following vectors:

(12)

where the observation window lengthis typically longer than
, the training signal length, in order to capture the signal
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beyond the training sequence for the optimal receiver design
with correlated noise. Second, define a matrix with
the th entry equal to

, for and . With
this notation, (10) can be rewritten as

(13)

The mean of given , , and is

(14)

The autocovariance matrix ofis

(15)

where is a Toeplitz matrix defined as

...
...

.. .
...

(16)

with the th entry of equal to .
The likelihood function of and given is

(17)
The log-likelihood function is given by

(18)

where is the inverse matrix of . Note that is positive def-
inite as long as the inverse exists. The likelihood function in-
volves quadratic forms of the inverse matrix. The CRB ’s
(i.e., the CRB for DA estimation) are the diagonal entries of the
inverse of the Fisher information matrixfor the joint estima-
tion of [1], where is defined as

(19)

whose entries are given by (let with and
)

(20)

The expectation is with respect to, , and if and are
random, or just if and are deterministic [1]. Let us av-
erage with respect to first. If the result depends onand

, we can compute them further based on examining the condi-
tion whether and are deterministic or not. It can be readily
verified that is equal to

(21)

where represents the real part of a complex number. From
(14), it follows that

Therefore, the entries of the Fisher information matrix (20)
can be rewritten as

(22)

(23)

(24)

(25)

The CRB ’s for the DA joint estimation of carrier phase and
timing offsets are expressed as

CRB (26)

CRB (27)

B. CRB in the Frequency Domain

Previous research was unable to derive a closed-form CRB
for an arbitrary training sequence. In order to simplify the
computation, was approximated by being averaged over

based on the assumption thatis zero mean, i.i.d., and long
enough [2]–[4], [6], [7].

Note that in our formulation, we have decoupled, the
length of the training sequence, and, the length of the
observation window. When the observation window increases,
the estimator approaches the optimal solution for colored noise.
Therefore, the resultant CRB is the ultimate performance lower
bound. This decoupling enables us to apply the finite-term
strong convergence theorem presented in Section II to derive
the exact CRB for a training sequence of arbitrary length. We
intend to asymptotically replace with . Before
applying the theorem, let us examine the conditions.

• The combined pulse-shaping function is negligible
for large . This means that only a finite number of rows of

have nonnegligible values. Thus, can be consid-
ered to have a finite number of nonzero terms. This con-
dition is equivalent to the requirement that the modulated
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training sequence is completely transmitted within a finite
time interval.

• The sequence defining is the autocorrela-
tion function of the noise process . For a posi-
tive-definite , the DTFT of is always positive.
However, oversampling typically degenerates the correla-
tion matrix such that the inverse does not exist. This is
a classical issue related to the likelihood function evalua-
tion. In order to guarantee that the operation is meaningful,

should be positive definite. One technique to overcome
the artifact in the literature is to assume that there is a small
AWGN in [1, p. 289].

• In regard to the condition that , the
pulse-shaping function usually converges to
zero faster than in practice. For instance, the
magnitude of the raised cosine pulse converges to zero at
a speed faster than .

In summary, all the conditions for applying the finite-term
strong convergence theorem are satisfied. Thus, the inverse ma-
trix can be substituted by the circulant matrix
as . Note that the unitary matrix is defined in (1)
with . The diagonal matrix has the th diagonal
entry equal to . Recall that the DTFT of
( ) is defined as

(28)

First, consider . Its th entry is equal to

(29)
For sufficiently large , the summation with respect toin (29)
can be extended to and , since is negligible for
large . Equation (29) becomes

(30)
Let be the Fourier transform of , i.e.,

(31)

Furthermore, is the power spectrum density of the noise
process and nonnegative. Define , the DTFT of

, as

(32)

Clearly, in (28). Let be the DTFT of ,
i.e.,

(33)

Substituting (32) and (33) into (30), (30) becomes

(34)

It is easy to verify that the th entry of given by
(34) is a periodic function of with period , which follows
the property of DTFT. Based on the following equation:

(35)

the th entry of (35) is also a periodic function of with the
same period. Note that the DTFT of is

(36)

Introduce the following shorthand notation:

(37)

With this notation, (22) becomes

(38)

(23) becomes

(39)

and (25) becomes

(40)

Although the summation over is from to , in all
the cases of interest, we shall see that there are at most three
nonzero terms due to the fact that the pulse-shaping function

is band-limited.



196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003

1) CRB for Oversampling:In the case of oversampling,
with the single-sided bandwidth of , i.e.,

There is no aliasing of in the frequency domain. Because
the entries of or are periodic with period

, the summations in (38)–(40) can range from
instead of . In this case, is nonzero only for

when . Also note that in the case of
oversampling, . Therefore,
(38)–(40) can be reduced to the following simple forms:

(41)

(42)

(43)

These values are independent ofand . This implies that the
CRBs for timing and carrier phase recovery are the same for
both random and deterministicand .

As the observation window , we obtain the following
entries of the Fisher information matrix:

(44)

(45)

(46)

2) CRB for Undersampling:In the case of undersampling,
. There is aliasing in the frequency domain. In this

scenario, , , and in (38)–(40) are independent of
but dependent on, and they should be averaged with respect
to . In practice, it is reasonable to modelas a uniformly dis-
tributed random variable in the receiver front end. A case of par-
ticular interest is one sample per symbol. The following equa-
tion is true for arbitrary integers and

where , if ; , otherwise. Therefore, ,
, and become

(47)

(48)

(49)

Equations (47)–(49) follow the fact that
for an integer . This allows separating from the aliased

. In practice, a pulse-shaping function is always band-
limited. Its effective single-sided bandwidth typically limits
to . This means that the nonzero terms in (32) are only those
with . As in the case of oversampling, we obtain
the following entries of the Fisher information matrix in integral
forms by increasing the observation window :

(50)

(51)

(52)

Combining (44)–(46) and (50)–(52), we can recapitulate the
results for both the over- and undersampling cases formally as
follows.

Theorem 2: For a DA joint timing and carrier phase offsets
estimator given an arbitrary training sequenceof length ,
the mean-squared estimation error for timing offsetis lower-
bounded by the following CRB:

CRB (53)

and the mean-squared estimation error for carrier phase offset
is lower-bounded by the following CRB:

CRB (54)

When the sampling rate is larger than or equal to the Nyquist
sampling rate, , , and are given by (44)–(46). When
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the sampling rate is one sample per symbol,, , and
are given by (50)–(52). In these equations, is the Fourier
transform of the cascaded response of the pulse-shaping filter
and the matched filter as defined in (31), and is the dis-
crete-time Fourier transform of the training sequence as defined
in (33).

For the Nyquist pulse-shaping function with one sample per
symbol, the entries of the Fisher information matrix can be sim-
plified as follows.

Corollary 1: For the Nyquist pulse-shaping function and the
one-sample-per-symbol sampling rate, we have

(55)

(56)

(57)

Proof: With the Nyquist assumption, we have

Therefore, the denominator of the integrand in (50)–(52) is
equal to a constant. The summation of the nominator simply
extends the integral from to . This proves
the assertion.

When compared with the oversampling case, the undersam-
pling bound with the Nyquist pulse-shaping function simply re-
places with . In both cases, the frequency-domain
multiplication of the pulse-shaping function and the training se-
quence appears in . This is the reason that we call them the
frequency-domainCRBs.

The next subsection presents the CRB in the time domain.
It will become clear that the time-domain representations are
rather simple to compute and no integral is necessary.

C. CRB in the Time Domain

For convenience, we perform zero padding to the training se-
quence, i.e., define for . Note that the “zero”
means physical zero rather than logical zero. With this notation,

is equal to the Fourier transform of the following con-
tinuous time function:

(58)

where is the Dirac function such that

The Fourier transform of is equal to

(59)

Using Parseval’s relation we can substitute the terms in
(44)–(46) and (55)–(57) with (58) and (59), which leads to the
time-domain representation of , and .

Theorem 3: When the sampling rate is equal to or above the
Nyquist sampling rate, we have

(60)

(61)

(62)

When the sampling rate is one sample per symbol and the com-
bined pulse shaping function is Nyquist, we have

(63)

(64)

(65)

where is the convolution of and , i.e.,

.

The time-domain expressions do not require an integral,
which is an advantage. Furthermore, the derivative of
or can be computed independently from the training
sequence since they are only functions of the shaping pulse.
For a given pulse-shaping function, these derivatives can be
precomputed and used for the design of training sequences.
Now it is clear that the dependency of the CRB on a training
sequence is only related to the aperiodic correlation of the
sequence.

Remark: In the literature, the CRB has been investigated
with the assumption that the noise with multiple samples per
symbol is white. This assumption holds when the antialiasing
filter is rectangular and the bound is evaluated before the
matched filter. The validity of the bound for the samples after
the matched filter is due to that any sufficient statistics give
precisely the same CRB. We could have applied that argument
to simplify the derivation in this manuscript. However, we feel
that the current approach is advantageous. For instance, if the
noise before the matched filter is colored rather than white, pre-
vious methodology cannot be directly applied. In order to adopt
the white noise assumption, prewhitening has to be applied.
However, it is not immediately clear how the whitening filter
should be accounted for in the final CRB. Using the approach
presented here, we can simply replace in (38)–(40) with
the power spectral density of the noise process to account for
any colored Gaussian noise. Essentially, we have proved that
the DFT itself decorrelates the noise for computing the CRB.

IV. A NALYSIS OF THE CRB AND EXAMPLES

In this section, we analyze the CRB obtained and compare it
with the known bound in the literature. Furthermore, we present
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a few interesting examples to illustrate the performance limits
offered by different training sequences.

A. : Cost of Two Unknown Parameters

Since , the following can be obtained from (26) and
(27):

(66)

(67)

It is straightforward to verify that the CRB for timing/carrier
phase estimation with known carrier phase/timing offset is equal
to , respectively. Therefore, is the cost in
terms of larger estimation variance when the other parameter is
unknown. It was observed in [2] that reduces to zero for
pseudorandom training sequences and real shaping pulse. We
shall show that this observation can be easily extended to any
real training sequence.

• In the oversampling case, is given by (45). Given the
assumption that is real, its Fourier transform is
an even function of . With an odd function, an even

will guarantee . In the under sampling
case, is given by (51). For real and even ,
we have

(68)

where the first equality follows from substitutingwith
, the second equality is due to the fact that both

and are even functions. Therefore, we have shown
that the integrand of (51) is an odd function of. There-
fore, as long as is an even function of , is
equal to zero.

• A sufficient condition to make is that the training
sequence is real, which implies that is an even
function.

Previous discussion shows that under very realistic condi-
tions we are able to separate the estimation of carrier phase and
timing. In the sequel, we focus on the bound with .

B. Comparison With the Known Bound

First, for , (60) reduces to the known results [2]. As ob-
served in [2], for the Nyquist pulse-shaping function, the CRB
for phase estimation becomes

(69)

with the assumption that and .
For timing estimation, in the literature [2]–[6], the CRB is

only available for the case that the training sequence is i.i.d.
pseudorandom data and very long. When the sampling rate
, the CRB (denoted as CRB ) is given by

CRB

(70)
When , for the Nyquist pulse-shaping function,
CRB is given by

CRB (71)

In the sequel, we show that (70) and (71) are the special cases
of (46) and (57) under the same assumptions. For zero mean,
i.i.d. pseudorandom training sequence, as goes to , the
power spectral density of becomes white, i.e.,

(72)

Substitute with in (46) and (57), let ,
the equivalence of (46) to the known bound (70) under this con-
dition follows. The equivalence for the undersampling case can
be established by further applying Parseval’s relation

(73)

From the representations of the CRB in the time domain,
it is clear that the difference between the i.i.d. pseudo-
random sequence and any fixed training sequence depends on

for . If ;
are very small compared with , the new CRB
would be of minor interest. The following results show that

; are indeed significant compared
with .

Corollary 2: If the signal is band-limited by , i.e.,

we have

and

Proof: The DTFT of is equal to

For , the summation is equal to zero, which means that
there is no DC component. In the time domain, this implies that
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Similarly, we can show that

This simple result shows that the combined effect of all the
terms other than in (61) and (62) is as signif-
icant as . Corollary 2 reveals that by properly
designing the training sequence, significant gain can be obtained
over the pseudorandom sequence.

C. Examples

In the sequel, we use a few typical training data patterns to
illustrate the bound. The raised cosine shaping function is as-
sumed to be the cascaded filter, whose Fourier transform is given
by

otherwise.
(74)

When the rolloff factor ranges from to , its single-sided
bandwidth ranges from to .

Example 1—Continuous Wave :The continuous wave (CW)
sequence is the training sequence with data pattern

(for )

It is widely adopted in burst preambles in time-division multiple
access (TDMA) networks for carrier acquisition. We consider
two different scenarios in the oversampling case: infinite-length
CW and finite-length CW. For the infinite-length CW, we have

(75)

Substituting (75) into (46), follows from the fact that
for . Therefore, the infinite-length

CW provides no timing information as heuristically explained
in [2, p. 336]. For a finite-length CW, the autocorrelation of the
training sequence is given by

otherwise.
(76)

Substituting (76) into (62), we obtain

By using the following result shown in the previous section:

TABLE I
J =(2E =N ) OF CW GIVEN DIFFERENT SEQUENCELENGTH N

AND ROLLOFF FACTOR �, WHERE THE SAMPLING RATE

IS TWO SAMPLES PER SYMBOL (L = 2)

and the fact that becomes virtually zero for
large , we have

This shows that for a long but finite-length CW, converges
to

Table I illustrates of CW sequences given dif-
ferent rolloff factors and sequence length. It shows thatcon-
verges to a nonzero constant asincreases. This constant is
related to the pulse-shaping function but independent of. The
nonzero captures the impact of the ramping up and ramping
down of a finite-length CW. No matter how long a training se-
quence is, the ramping effect will not disappear. This explains
why the CRB of a finite-length CW cannot converge to that of
the infinite-length CW. Although CW itself has little value for
timing synchronization, it is a very good pedagogical example.
It shows that the bound can capture the detailed impact of a
training sequence on timing estimation performance. For other
sequences such as pseudorandom sequences, as shown previ-
ously, the bound increases with. Therefore, when it is nor-
malized by the length of the sequence, the boundary ramping
effect will not play a visible role.

Example 2—Finite-Length Pseudo Random Sequence:
When we assume that the training data is i.i.d. but of finite

length, in (62) reduces to

Thus, a finite-length pseudorandom sequence has the same nor-
malized timing bound as an infinite-length one does. This is rel-
evant when applying the bound to the tracking mode operation
of a synchronization circuit. In that case, for fixed tracking loop
bandwidth, the training sequence can be assumed to be i.i.d. but
of fixed length. Therefore, the result in this paper shows that the
bound for an infinite-length pseudorandom sequence applies to
that of a fixed-length sequence. Another interesting case is the
bound of a one-bit training sequence. We can easily see that the
CRB for a one-bit training sequence gives the exact CRB of a
pseudorandom sequence normalized by.
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Fig. 2. Timing bound CRB (�) for alternating one–zero and pseudorandom sequences in the oversampling case, whereN = 64, L = 2, “1/0” denotes the
alternating one–zero sequence, and “RD” denotes the pseudorandom sequence.

Example 3—Alternating One–Zero Sequence:The alter-
nating one–zero pattern is the training sequence with data pat-
tern . It is widely used as preamble
in TDMA networks for timing recovery. Its autocorrelation is

otherwise.

As the sequence length , substituting this into (62), we
obtain

(77)

The Fourier transform of the sequence is

Applying Parseval’s relation, we have

For a Nyquist band-limited pulse-shaping function,
for , we have .
This shows that

Therefore, the CRB for a long alternating one–zero se-
quence is independent of the pulse-shaping function as long as
it is Nyquist. In contrast, for a pseudorandom sequence, the nor-
malized bound is equal to

with dependent on the pulse-shaping func-
tion. For the raised cosine pulse, it is easy to show that

.1 Thus, an alter-
nating one–zero sequence offers a performance improvement
over a pseudorandom sequence of the same length by a factor
of

Fig. 2 illustrates the comparison of the timing bound between an
alternating one–zero sequence and a pseudorandom sequence
given , , and different rolloff factors. For small

, the gain approaches 4.7 dB. For , the

1This expression was also derived in [6] based on (70).
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Fig. 3. Phase bound CRB (�) for alternating one–zero and pseudorandom sequences in the one-sample-per-symbol case, whereN = 64, L = 1, “1/0”
denotes the alternating one–zero sequence, and “RD” denotes the pseudorandom sequence.

gain reduces to 2.8 dB. Although the normalized CRB for a fi-
nite-length alternating one–zero sequence is slightly different
from that of the infinite length, the difference is negligible when

is large enough (e.g., ). This shows that practical
sequences can offer much better performance than a pseudo-
random sequence. Note that an alternating one–zero sequence
is not good for frame synchronization. In practice, when an al-
ternating one–zero sequence is employed, other frame synchro-
nization techniques may have to be used, such as embedding
frame synchronization data pattern into error-correction-coded
bits. In that case, the frame synchronization pattern is designed
in such a way that only its successful recovery results in the cor-
rect decoding of the error correction code.

Example 4—One Sample Per Symbol:In this example, we
compare the one-sample-per-symbol case with the oversam-
pling case for both alternating one–zero and pseudorandom
sequences.

In the oversampling case, the CRB is given by
(69), which is independent of the training sequence and
pulse-shaping function. However, in the undersampling case, it
(given by (55) and (60)) depends on both the training sequence
and the pulse-shaping function. For a long alternating one–zero
sequence, similar to the oversampling case, it is easy to show
that the normalized is equal to

(78)

by using the fact that . For a pseudorandom
sequence, we have

(79)

Therefore, for the carrier phase estimation with one sample per
symbol, a pseudorandom sequence outperforms an alternating
one–zero sequence of the same length by a factor of

Fig. 3 shows the comparison of the phase bound between a pseu-
dorandom sequence and an alternating one–zero sequence in the
one-sample-per-symbol scenario given and different
rolloff factors. For small , the gain obtained by the pseudo-
random sequence is around 3 dB, whereas for ,
the gain reduces to 2.4 dB.

For a long alternating one–zero sequence similar to the over-
sampling case, it is easy to show that the normalizedis equal
to

This shows that the CRB given one sample per symbol is ex-
actly 3 dB worse than that of the oversampling case for the
alternating one–zero sequence. In comparison, for a pseudo-
random sequence, can be obtained by using (71) as in [6] or
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Fig. 4. Normalized timing bound CRB (�) � 2NE =N for alternating one–zero and pseudorandom sequences in both the over- and undersampling cases,
where “1/0” denotes the alternating one–zero sequence, “RD” denotes the pseudorandom sequence, and “SPS” denotes “samples per symbol.”

by computing the second derivative of the convolution
. We obtain the following expression2

(80)

Fig. 4 plots the normalized timing bound as a function of the
rolloff factor for both alternating one–zero and pseudorandom
sequences with different sampling rates.

In summary, an alternating one–zero sequence outperforms
a pseudorandom sequence for timing recovery in both the over-
and undersampling cases. For phase recovery with a Nyquist
pulse, all the sequences perform equally in the oversampling
case. However, in the undersampling case, the alternating
one–zero sequence is inferior to the pseudorandom sequence.
This shows that different design tradeoffs are needed for
different systems. The bound presented in this paper allows
such tradeoffs to be examined readily.

V. CONCLUSION

In this paper, the closed-form CRB for the DA joint timing
and carrier phase offsets estimation was derived given an
arbitrary training sequence. This new bound explicitly illus-

2A different expression was given in [6]. We have verified the current expres-
sion by directly performing numerical integral on the frequency-domain for-
mula.

trates the dependence of the performance limits on the training
sequence. It turns out that such dependence only relates to the
aperiodic correlation of the training sequence. The previously
known bound for i.i.d. and infinitely long sequence is actually
a special case of the bound derived in this paper. We further
showed that different training sequences can offer significantly
different performance. In particular, there exist sequences pro-
viding much better performance than the ideal pseudorandom
sequences. By using CW sequences as an example, we have
shown that the bound derived here can capture very detailed
information such as the ramping up and down of a finite-length
sequence. The alternating one–zero sequence is used as an
example to show that practical sequences can be designed to
achieve significantly better performance than a pseudorandom
sequence. In a subsequent publication, the bound is further
exploited for sequence design.

Strictly speaking, the CRB is associated with the receiver ob-
servation window. This means that for a specific length of the
observation window, there is a CRB associated with it even for
the same training sequence. It is intuitive and easy to show an-
alytically that the longer the receiver observation window, the
lower the CRB. For infinite observation window, the bound re-
veals the fundamental limits in the estimation based on the in-
formation conveyed by the training sequence. This is part of the
reason that this paper is titled “Performance Limits” rather
than the “Cramer–Rao Bound.”
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