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Designing Response Surface Model-Based 
Run-by-Run Controllers: A Worst Case Approach 

John s. Baras, Fellow, IEEE, and Nital S. Patel, Member, IEEE 

Abstract-This paper presents a framework for carrying out 
run-by-run (RbR) control via a deterministic worst-case ap- 
proach. In particular the RbR controller developed tries to 
minimize the worst-case performance of the plant. This yields 
a methodology for handling uncertainty. A consequence of using 
the deterministic approach is that we no longer need any as- 
sumptions on the statistics of the noise. Rather, what we require 
is that the noise be bounded. Thus, we can also deal with non- 
Gaussian and correlated noise. We provide results comparing the 
performance of the controller to a recursive least squares ( U S )  
based controller. 

Index Terms- Run-by-run control, deterministic approach, 
bounded noise, worst-case design, ellipsoidal algorithms, 
response surface models. 

I. INTRODUCTION 

ECENTLY, there has been a strong interest in run-by- 
run (RbR) control in the semiconductor industry. With 

device tolerances shrinking, it becomes necessary to squeeze 
maximum performance out of existing equipment. A further 
advantage of the RbR control framework is that it enables 
automatic recipe generation to meet different targets, and also 
aids in the recovery of the process after a large disturbance. In 
this paper, we present a worst case framework for carrying out 
RbR control. The advantage of this approach is its capability to 
handle uncertainty. This is useful in cases when we do not have 
confidence in our models, such as after a sudden change in 
process characteristics. More importantly, the approach allows 
us to relax the assumptions placed on the noise statistics. 
Toward the end of this paper, we present an example where 
the controller successfully handles both correlated skewed 
Gaussian as well as correlated non-Gaussian noise. 

As with any control strategy, some a priori information 
needs to be available about the process model. What we 
require is the structure of the map between the recipe and the 
measured variables. Such maps could be provided by models 
obtained via response surface methodology (RSM). However, 
the conceptual development is not restricted to RSM alone. A 
number of researchers have successfully employed RSM to the 
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problem of automated recipe generation, process optimization 
and design, [ 11-[7]. 

In addition to the above, we will also need bounds on the 
process noise, in the sense that the assumed model, with these 
noise bounds can account for (1 - a)% of the observations, 
where a is a very small number. For example, if we choose a 
to be 0.27, then the model with these noise bounds can account 
for 99.73% of the observations. The problem of selecting 
these bounds is similar to the problem of specifying control 
limits for control charts in statistical process control (SPC). 
The idea here is that if we define our process model in this 
manner, then the RbR controller hardly ever observes process 
results inconsistent with the model, and if the results are 
in fact inconsistent, they would also generate an alarm via 
SPC. As will be clarified, by carrying out consistency checks 
on every measurement, the RbR controller can also generate 
alarms. The influence of these bounds on the performance 
of the RbR controller is similar to that observed in control 
charts. For example, if the bounds are chosen to be smaller 
than what they actually are, the controller will generate an 
alarm, even if the process is in control. On the other hand 
if they are too lax, then the controller becomes less sensitive 
to process variation. For purposes of the controller design, 
what is of importance are the noise bounds, and not the actual 
noise statistics. In particular, one maybe able to obtain good 
bounds without any deep statistical considerations. Fig. 1 aims 
to graphically display this concept (for purposes of clarity, the 
quantity has been chosen to be vector valued). The dark dot is 
the model prediction, and the other dots are the measurements 
for a fixed recipe setting. One can either account for this 
scatter via statistical considerations, or by placing bounds on 
their magnitude. In the latter case, of course one has the 
possibility of occurrence of outliers. The idea is to choose 
the bounds so as to make their occurrence as remote as 
possible. 

These bounds are linked to the basic process variance 
(process noise), over which we have no control and the 
prediction error of the model (which need not have a poly- 
nomial structure). For example, if we assume that both the 
model error, and the process noise are independently normally 
distributed with (in the single measurement case) variances 
uL, and U;, respectively, then the bounds around the model 
are * 3 d m  for a = 0.23. An interesting problem in 
this regard is given the upper and lower control limits of a 
variable, and the process noise statistics, what order model is 
required to ensure that the combined model prediction error 
and the process noise will still result in (1 - a)% of the 
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Fig. 1. Plot of model prediction and actual measurements for a vector valued 
quantity. One can account for the scatter either by statistical considerations, 
or by placing noise bounds. Two such bounds and their associated outliers 
are shown above. 

observations falling between the control limits. Furthermore, 
for quick recipe calculation, we need the smallest number of 
terms in the model as possible. Initially, one can determine 
this via a designed experiment. However, once the RbR 
controller is implemented the process noise statistics and/or 
the error statistics of the model may change. Currently, work is 
underway to implement a strategy for carrying out automated 
online modifications of the model structure. 

The rest of this paper is organized as follows. The general 
conceptual framework is presented in Section 11. Section 
I11 specializes the framework to polynomial models. This is 
followed by simulation results in Section IV and conclusions 
in Section V. 

11. CONCEPTUAL FRAMEWORK 

This section gives the general framework under which we 
develop the RbR controller. The system is modeled as 

Here, yk E Rt are the variables to be controlled, z k  E R 
is the cost which is a function of yk, U k  E U c R" is the 
vector of recipes, and Mk E M are disturbance driven states. 
At this stage, the structure of G, F, 1, and Mk has been left 
undefined, since the conceptual framework is applicable to any 
such structure. In the next section, we will fix the structure to 
obtain an implementable solution. Furthermore, note that the 
recipes are assumed to belong to the set U. One could consider 
U = R", however, in practice this will hardly ever be the 
case. In fact, natural bounds can be placed on U based on the 
operating limits of the equipment, using engineering judgment, 
or by forcing U to be the set of recipes over which the model 
is valid. To avoid confusion, the run numbers will be indexed 
beginning with one. Hence, the inputs and measurements for 
the j th run are u,-1 and g j ,  respectively. 

The aim of the RbR is to minimize the worst case cost on 
the onset of every run. Although, the cost has been assumed 
to be scalar, we could have considered a multi-objective 
problem with the aim of obtaining Pareto-{optimal recipes. 
We could have also penalized changes in the recipe settings 
by incorporating additional terms in the cost function I ,  or 
restricted the maximum allowable change by redefining U at 
the onset of each run as a function of the previous recipe 
settings. The only change required would be in the final 
optimization stage [defined later on in (4)]. 

At this time, it becomes necessary to differentiate between 
what we call i) nominal disturbances and ii) exceptional dis- 
turbances. Nominal disturbances represent the changes that the 
process normally undergoes between runs. An example of this 
is drift due to equipment aging. We assume that one can bound 
these and represent them via F. Exceptional disturbances on 
the other hand, are those that are not represented by our model 
(1). Their magnitude is, in general, much largelr than that of the 
nominal disturbances, and they occur infrequently. They can 
be caused by various reasons, such as maintainence operations, 
e.g., renewal of parts. Furthermore, exceptional disturbances 
will also flag an error in the consistency check carried out by 
the RbR controller. The process noise is modeled separately 
from the above mentioned disturbances, and is included in 8. 

We now turn to the problem of designing the RbR controller 
for the system (1). Assuming we have carried out runs, we 
have available to us measurements yk for k = 1, . . . , j .  and 
past recipes uh for k = 0, . . . , j -  1. Based on this, we compute 
the set of feasible states P, that the system could be in during 
run j + 1 assuming that we will not encounter an exceptional 
disturbance. We can carry out this computation recursively as 
follows: First compute 

and then calculate Pj as 

The initial set PO could be defined depending on the amount 
of confidence one has on the initial value of the states 2. 
Once, we obtain P, ,  we obtain the recipe uj* which solves 

In the development above, we have ignored the special case 
when the set PJ calculated in (2) is empty. In this case, 
the problem is similar to that encountered in SPC, i.e., to 
determine whether an exceptional disturbance occurred, or that 
y j  is just a bad data point. This situation can be handled in 
various ways. Some of these are as follows: 

1) Assume that an exceptional disturbance occurred and 
reset Pj-l = M .  Now recompute 7:. In the next 
section, and during simulations, we adopt this approach. 
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Assume that y, is a bad data point. In this case, set 
P3 = P ,  - 1. If the process has shifted, this strategy will 
generate a large number of faults. We check the number 
of faults generated in a fixed number of runs, and if 
this exceeds some threshold value, we reset the set of 
feasible states to M .  
One could also assume that either of the two cases 
mentioned above occurred. That is, the process could 
have undergone an exceptional shift, or y3 is a bad 
data point. In such a case, we first set $3 = P,-1 
(i.e., assume y, is a bad data point), and then set 
P3-1 = M ,  recompute P J ,  and set F3 = P3 (i.e., 
assume an exceptional shift occurred). Then, we redefine 
PI = qu+,. 

If F ( M )  = { M } ,  i.e., one does not expect the process to 
change between runs, then 

Pj c Pj-1 

and, hence, we have a sequence of nested sets. However, 
if F ( M )  is a set, we can no longer guarantee that the sets 
remain nested. However, informally one may argue that the 
larger P, becomes, more of its elements are invalidated 
by the next observation g,+1 and, hence, the sequence of 
sets P, ,  j = 0, 1, . . will ultimately be bounded. Moreover, 
since for normal operation, 3 ( M )  will be a small set, the 
inflation introduced by it will also be small. While carrying 
out simulations, we have observed that this is indeed the case, 
and the sets P,  do in fact remain bounded. Work is currently 
in progress to derive analytic bounds on these sets. 

The main difficulty in the general approach is the excessive 
computational time required to calculate P,  in (3), and for 
solving the optimization problem with respect to P, in (4). 
However, this result may be used off-line to estimate the best 
guaranteeable performance achievable under the given model 
assumptions. We now turn to a technique for approximating 
these sets using ellipsoids. However, before doing so, we need 
to impose a suitable structure on the models. 

111. POLYNOMIAL MODELS AND 
ELLIPSOIDAL APPROXIMATIONS 

Considerable simplifications can be obtained in the above 
developments, if we impose a polynomial structure on the 
models. An additional advantage is that this is compatible with 
the models obtained via RSM [SI. In general, since these are 
obtained for one quantity at a time, we treat the problem of 
having t outputs as, t single output problems in parallel. For 
the ith output y;, we model 8; (8; , U )  as an ellipsoid given by 

where U = [l v1 v2 with vj ,  j = 1, ' s . ,  m 
being known functions of the recipe settings, and 0; being 
the vector of coefficients. In particular, B T U  represents the 
response surface for the quantity y;, and g; > 0 represents the 

bound on the noise. Also, (5 )  implies that 

This representation can take care of nonsymmetric bounds 
on the noise by adding a bias term to the first element of 0;. 

We now turn to the definition of &(0, U )  which we also 
define as an ellipsoid as 

3@) 5 { e  E R": (0 - $)'F,-1(8 -e) 5 1) 

with F; E Rmxrn, F; > 0, i.e., F, is a positive definite matrix. 
As an example, for the case of a process with drift only, Fi 
will be diagonal with very small entries for all the diagonal 
elements, except the first. 

Ellipsoidal algorithms return an ellipsoidal estimate of the 
feasible parameter set. Specifically, on the onset of run IC + 1, 
we have 

where G,,k is the center of the ellipsoid, and the matrix 
Pz.k E Rmxm, Pz,k > 0 specifies the size and orientation of the 
ellipsoid. Various ellipsoidal algorithms exist in the literature, 
[9]-[ll]. The algorithm implemented by us, has two stages, 
as follows: 

1) First using the optimal volume ellipsoid (OVE) approach 
of [IO], we try to find the minimum volume ellipsoid 
P , , k  which bounds the set 

where P,,k-I is the ellipsoidal estimate of 0; at the onset 
of run k.  

2) We then inflate P ; , k  by finding the minimal volume 
ellipsoid which bounds 

and set that equal to Pi,&. For this stage, we use the 
result from [12]. 

The initial values of P;,o can be fixed depending on the 
amount of confidence we have on the initial parameter vectors 
19;,0.  Furthermore, if the intersection in Stage 1)  of the update 
algorithm returns an empty set, we reset the entries of P; ,k-1  

to large values (in certain cases, we may be able to use our 
judgment and only modify selected entries) and then repeat 
Stage 1). 

Now, assuming we have t outputs and, hence, t ellipsoids 
characterized by ($+,P;,k),z = 1 , . . . , t ,  we can pose the 

- 
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final optimization problem (4) as 

(7) 

where U = { [ u ~ w ] ~ :  uo = 1 , v  E U } ,  and gk ,Yk  are 
t dimensional vectors, whose ith components are given by 
O,,,U - d- - Jsz and g : k ~  + d- + Js., re- 
spectively. We now force 1 to be convex with respect to y (such 
as a quadratic cost function). Then, the inner maximization is 
achieved at one of the vertices of the box defined by g k ,  ?jk 
and the optimization algorithm takes advantage of this fact to 
cut down the complexity. 

We mention here the fact, that the OVE algorithm does not 
propagate the center of the ellipsoid as a weighed recursive 
least squares (WRLS) estimate. However, there do exist ellip- 
soidal algorithms which do propagate the center as a WRLS 
estimate of the model parameters [9], [13]. In these cases, 
however, the ellipsoid may greatly overbound the feasible set 
and, hence, could yield very conservative recipes. If, however, 
the bound is tight, then one can view (7) as minimizing the 
cost based on the WRLS estimate with modulation due to the 
uncertainty in the estimate. However, trying to measure the 
tightness of the bounds is as hard as solving for the actual 
feasible set, i.e., the exact problem of the previous section. 

Note that since the feasible set for each output is computed 
independently of the others, we could sample the different 
outputs at different rates with only minor modifications to 
the structure of the RbR controller. For example, if we had 
only two outputs ( y ~ ,  g2), we could sample y1 after every 
run, and y2 after every two runs. Then we would update P1 
as mentioned above. However, for P2, we would do a full 
update only when we obtain a new measurement, else we will 
only inflate it as done in Step 2) of the update algorithm. This 
also raises the possibilities of carrying out multi-rate sampling. 

-T 

IV. SIMULATION RESULTS 

In this section, we present some simulation results. We 
consider four cases: i) system under steady drift, ii) a step 
disturbance, iii) presence of bad data points, and iv) correlated 
non-Gaussian noise. Although, the first three cases assume a 
normal distribution of the underlying noise, the distribution as 
seen by the controller is in fact skewed due to a nonlinear 
(In) transformation of the data. The simulations are based on 
the models for an LPCVD reactor presented in [ 141. Here, we 
limit our concern to the deposition rates on the first and last 
wafer. We augment the models with drift terms. The models 
express the deposition rates in terms of deposition temperature 
T ,  deposition pressure P,  and the silane flow rate Q. They are 
given by 

with the rates expressed in &min, P in mtorr, T in K, and 
Q in sccm. The parameters are given [14] to be c1 = 20.65, 

and Cg, = 1.85 x where we have dropped the units 
for convenience. d l ,  and d2 represent the drift terms. The 
measured rates are obtained from the above model by adding a 
zero mean noise to RI and R,. For the first two cases, we take 
it to be Gaussian with variance nine, and for the last case, we 
filter it to obtain a colored noise. Furthermore, the maximum 
drift expected between runs is 0.3. This actually represents 
a shift of 0 in 10 runs, and may be too large to be true in 
practice. However, we choose this value, since it enables us 
to see the corrective action of the RbR conlroller in a fewer 
number of runs. The targets U1 for RI ,  and Y:! for R2 are fixed 
at 169.75 &min and 141.7 &min, respectively. 

For the purpose of the RbR controller, we work in the In 
space. The controller observes y1 = In R I ,  and y2 = In R2. We 
now set u 1  = lnP,  u 2  = T-', and u 3  = Q-', and define the 
vector U = [l u 1  u2 ~ 3 1 ~ .  Assuming, that the RbR controller 
keeps the process on target, we fix g1 and 92 as 0.0025. Note, 
that this value yields smaller bounds than the actual bounds on 
the noise, however, due to overbounding by ithe ellipsoids, no 
consistency error was generated by the RbR {controller. Based 
on the drift information, we now fix F1 and F2 as 

~2 = 0.29, ~3 = -15189.21, c4 = -47.97, S' = 4777.8, 

0 10-12 

3.2  x 10-4 0 0 
10-12 0 

0 10-12 0 
0 0 

0 10-12 

4 . 7 x  10-4 0 0 
10-12 0 

F 2 = [  0 0 0 0 10-12 0 

The initial parameter vectors 81.0, and 8 2 , ~ ~  are fixed as 

where 02,o is obtained by fitting a polynomial model to the 
data generated by the system (8). The model is valid for a 
fixed range of the inputs, namely, the experimental design 
space. Hence, we place bounds on the recipe settings, and 
these translate to the vector U as follows: 5.67 5 u 1  5 6.33, 
1.053 x lop3 5 U:, 5 1.1777 x and 0.0103 5 u3 5 0.01. 
We initialize P1,o = P2,g = 10-121, where I is a 4 x 4 identity 
matrix. Finally, the cost is expressed as a quadratic function 
of the measurements as 

where w1 = (lnY1)' and w2 = (lnY2)2. These, weigh the 
component involving y1 more than that involving y2, since 
the former is less sensitive to error in the deposition rate, due 
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to the nonlinearity of the In transformation. Moreover, one can 
experiment with different weights, however, our results show 
these weights to be good enough. 

.; zlg0. 
A. Drifting Process 

we let both the equations (*) have a &.ift of -0.3 &/min 
0 5 10 15 20 25 30 

Run No. between runs. Simulation results for both the controlled and 
uncontrolled trajectories are displayed in Fig. 2. The dash-dot 
lines give the target and the 30 noise bounds, where 0 = 3 is 
the standard deviation of the noise. For comparison, both the 
controlled and uncontrolled trajectories have been obtained 
under identical noise conditions. The conservative nature of 
the controller is apparent by the fact that the corrections are 
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B. Step Disturbance 
Here, we change the process parameters after the third run. 

The parameters are changed to c3 = -14600, c4 = -55.97, 
d2 = 11, and C,, = 1.57 x lop5. The controller generated 
a consistency fault after run three, and we reset PI and 
Pz to  PI,^ = P2,3 = 1061. Fig. 3 shows the controlled 
and uncontrolled trajectories obtained under identical noise 
conditions. The dash-dot lines represent the target, and the 
noise limits as in Fig. 2. the controller corrects for the shift 
in the very next run and then leaves the process alone (as 
can be seen by comparing the controlled and uncontrolled 
trajectories). 

C. Bad Data Points 

Two bad data points are generated during the simulation 
runs. These occur during run 10 for R I ,  and run 20 for Ra. The 
controlled trajectories are shown in Fig. 4. The dash-dot lines 
represent the target, and the noise limits. The simulations show 
the controller to be minimally affected by bad data points. 

Fig. 4. Effect of bad data points. 

D. Skewed, Correlated, and Non-Gaussian Noise 

It should be noted that the noise seen by the controller is 
in fact skewed due to the In transformation of the data. We 
now color the noise via filters, such that the first correlation 
coefficient (i.e., E(n,n,-l) /a2) is equal to -0.2680 for the 
noise added to R I ,  and -0.0627 for the noise added to R2. 
The simulation is similar to the step disturbance case, and we 
present the plot for data from runs 6-30 in Fig. 5. Here, WCA 
corresponds the controller designed in this paper. We also 
plot the output (shown via a dashed line) obtained by using a 
controller based on the recursive least squares (RLS) estimate 
of the model coefficients. For purposes of comparison, both 
the WCA and RLS-based controllers were simulated with the 
process subject to identical noise. 

Finally, we present results for non-Gaussian noise. Note that 
the development of the controller does not assume anything 
about the noise statistics. All that is required is that the bounds 
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Fig. 5. Process subject correlated noise. 
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Fig. 6. Process subject to non-Gaussian correlated noise and steady drift. 

on the noise be well chosen. For the purposes of generating 
the noise, we employ a uniform distribution on the interval 
[-8,8], and a normal distribution with mean zero and standard 
deviation 0.33. The noise value added to the model rates 
are obtained by adding together two random variables whose 
values are generated according to the uniform and normal 
distributions, respectively. These are then passed through 
a filter to yield correlated noise with the first correlation 
coefficient of 0.34 for both the noise inputs (i.e., to RI  and 
&). The results for this case with the system subject to a 
steady drift of -0.3 &min are presented in Fig. 6. Again, the 
dashed line is the trajectory obtained by employing a least 
squares estimate-based controller. 

The means and standard deviations (STD) of the outputs 
for both the cases are given in Table I. The RbR controller 
presented in this paper outperforms the IUS-based controller 
in terms of both mean and standard deviation. 

TABLE I 
COMPARISON OF WCA AND RLS CONTROLLERS 

I Skewed/CorreEated 1) Non-normal/Correlated/Drift 
RLS I RI 1 mean 172.90 1 1  mean 170.02 

1 S T D  3.48 / [  S T D  3.60 

V. CONCLUSION 

A worst-case approach to RbR control is presented, and we 
have demonstrated its viability via simulation results. It is able 
to compensate for drifts, step disturbances, and is robust to bad 
data points. Furthermore, the method enables one to deal with 
arbitrary noise statistics. 

Work is continuing to develop an expert system based 
monitor for automated model order changes, and to carry out 
online tuning of the RbR controller. We are also looking into 
an application of the controller to an industrial process. 

We would also like to point out the fact that level sets 
in probability obtained from multivariate normal distributions 
are, in fact, ellipsoids. Hence, the ellipsoidal algorithm maybe 
equivalent to fitting a normal distribution to the statistics of the 
estimated process parameters. However, the exact relationship 
between the two is still an open question. Oine can also view 
the ellipsoids as estimating a confidence set for the model 
parameters. 
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