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Abstract. We consider the problem of optimal (in the sense of minimum 
error variance) linear filtering a vector discrete-time signal process, which 
influences a quantum mechanical field, utilizing quantum mechanical 
measurements. The nonclassical characteristic of  the problem is the joint 
optimization over the measurement process and the linear signal processing 
scheme. The problem is formulated as an opt imizat ionproblem of  a functional 
over a set of operator-valued measures and matrices. We prove existence of  
optimal linear filters and provide necessary and sufficient conditions for 
optimality. 

1. Introduction 

The motivation for the development of  detection and estimation theory with 
quantum statistics is well known [14], [15], [9], [10]. It stems primarily from the 
need to improve the design of optical communicat ion systems and evaluate the 
performance of existing systems in this area. We have previously analyzed [3] 
the linear filtering problem for a scalar signal process. Here we consider the 
linear filtering problem for a vector signal process {x(i)}, the discrete parameter  
i conveniently regarded as time. Due to the well-known quantum mechanical 
limitation on simultaneous measurements [23, p. 260], [19, p. 101] the vector 
process problem is more complicated than the scalar one, and necessitates the 
use of  generalized quantum measurements in the sense of Holevo [15]. 

* This work was partially supported by the National Science Foundation under Grant ENG 
75-20900 and by U.S. ARO Contract DAAG-39-83-C-0028. 



192 J.S. Baras 

The customary formulation of  quantum mechanics [23, p. 258] associates a 
self-adjoint operator V on a Hilbert space H with a measurement and incorporates 
a priori statistical information with a density operator p on H (p is a self-adjoint, 
positive definite operator with unit trace and represents the state of the quantum 
system [19, pp. 94 and 132]). The measurement represented by V produces a real 
number v (the outcome) whose expectation is E{v} = Tr[pV] (where Tr denotes 
the operation of  taking the trace of an operator on H [23, p. 374]). This 
formulation is adequate for restricted estimation problems only, particularly here 
the estimation of  a scalar. When a vector is to be estimated, the essentially 
quantum mechanical problem of simultaneous measurements arises and a more 
general concept of measurement must be resorted to [15, p. 341]. 

To assist in motivating the concept of  a generalized quantum measurement 
we first elaborate slightly on the customary formulation. The spectral theorem 
[23, p. 249] associates with each self-adjoint operator V on H a unique spectral 
measure Ev( ' ) ,  a mapping of the Borel sets of the real line into projection 
operators on H. The distribution function of the outcome v is then Fv(~)= 
Tr[pEv(-OO, ~]]. The spectral theorem yields the moments E{vm}=Tr[pVm], 
m = 1, 2 , . . . .  The spectral measure Ev(" ) is fundamental and is termed a simple 
measurement [15]. Following Holevo [15, p. 341] a generalized measurement is 
a map M from the o'-algebra of Borel sets ~ "  of  the n-dimensional space R', to 
the algebra ~ ( H )  of all bounded linear operators on H, such that: 

(i) M(B)-> 0 for every B c ~ ' ,  (1.1) 
(ii) if {Bi}~ ~3" is a partition of R" then ~i M(B~) =I ,  

where the series converges weakly in ~ ( H )  [13, p. 53], and I is the identity 
operator on H. That is, a measurement is a positive operator-valued measure 
(p.o.m.) [7, p. 6], or a generalized resolution of the identity [7, p. 121]. It is worth 
noting that if M is an orthogonal resolution of the identity, i.e., if in addition to 
(1.1) we have that Bc~ C = ~  for B, C e  ~3", implies M(B)M(C)---O, then M is 
necessarily a spectral measure [7, p. 12] and thus we have a simple measurement. 
A p.o.m. M induces a probability measure /z~  on ~3" via 

IzM(B) = Tr[pM(B)]  for B c ~ " ,  (1.2) 

as is readily verified; thus M is also sometimes termed a probability operator 
measure. The interpretation of this mathematical construct is that a generalized 
measurement M represents a physical measurement process with outcomes u e R', 
with distribution function 

Fu(~) = F u ( ~ l , . - . ,  ~ n ) - - - - T r [ p M ( - ~ ,  ~:]], (1.3) 

where ( - ~ ,  ~:] ~ ( - ~ ,  scl]× ( - ~ ,  so2] ×.  • • × (-o0, £,]. 
Consider now the moment E{u~}, the expectation of the ith component of 

the outcome u, of the measurement represented by the p.o.m. M: 

E{ui}=fR, u,F,(dul,...,du,)=fR,, uiTr[pM(du)], i=l , . . . ,n .  
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Assuming the interchange is permitted--this is discussed carefully in Holevo [15, 
Section 6J--we have 

The integral is a well-defined, self-adjoint operator on H [15], [16], which we 
denote by Ui. Then 

E{u,} = Tr[pUi], i = 1 , . . . ,  n. (1.4) 

Consider next the second-order moment 

where again the operator integral is a well-defined, self-adjoint operator on H 
[15], [16], which we denote by U 0. Clearly, U0=Uj~ but, unlike the (special) 
case when M is a spectral measure, U~ ¢ V~U~. Holevo termed the operators 

U~ ...... ~k = JR" u~,. •. u~M(du)  (1.6) 

the operator moments of  the p .o .m.M.  In particular, Ui are the first operator 
moments and U 0 the second operator moments. Observe that, in the case of a 
simple measurement, the p.o.m, is uniquely defined by its first operator moment. 

As pointed out by Holevo [15, p. 343] this generalization of the concept of 
a quantum measurement is well justified in view of Naimark's theorem [1, p. 
124] which asserts that, given a generalized measurement M in H, there exist an 
auxiliary Hilbert space He, a (pure) density operator Pe o n  ~ ( H e )  , and a simple 
measurement Era in H ® H e  (the tensor product of Hilbert spaces H, He) [23, p. 
144] such that 

Tr[pM(B)]  = Tr[ (p® pc)Era(B)] (1.7) 

for every B ~ ~ "  and every density operator p on H. That is, the distribution 
functions of  the measurement outcomes induced by the generalized measurement 
M and the simple measurement Era are the same. The physical interpretation is 
[15], [11] that a generalized quantum measurement is realized by the measurement 
of compatible observables (i.e., a simple measurement) on a composite quantum 
system produced by adjoining to the original system, characterized by (p, H), an 
auxiliary system, characterized by (pc, He). Thus justifiably the triple (He, Pc, Era) 
is called a realization of the measurement represented by the p .o .m .M.  For 
simplicity we shall refer to generalized quantum measurements as quantum 
measurements for the rest of this paper, unless explicitly stated otherwise. 

Let x be a vector random variable, with a distribution function Fx, on which 
the density operator p depends; i.e., p = p ( x ) .  Then the distribution function 
Fu(~) (1.3) of the vector outcome u of the generalized quantum measurement 
M becomes a conditional distribution function Ful~(~:, ~'). The first moments of 
u are 
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Using the results of Holevo [15] we can justify interchanging the order of 
M(du) integration and trace to obtain 

E{u,} = [ Tr[p(~:)U,]Fx(d~:). 
dR n 

Similarly, 

E{u,uj} = j~, Tr[p(~:)U~]Fx(d~). 

The problem of interest to us is described briefly below; for further details 
we refer to [3] and [4]. We consider a quantum system characterized by a density 
operator p(x(k))  on a Hilbert space H, which is influenced in some fashion by 
a vector stochastic process x(k) ,  k = 0, 1 , . . . ,  with values in R n. At each time i, 
i = 0, 1 , . . . ,  a measurement represented by the p.o.m. M~ is made with outcome 
v(i)  ~ W'. At time k we have available the outcomes v(i), i = 0 , . . . ,  k - 1, of the 
measurements represented by the p.o.m.s M~, performed at times t = 0 , . . . ,  k -  1. 
A new measurement, represented by Mk, is to be performed at time t = k and 
the present and past measurement outcomes are to be processed linearly to give 
the estimator 

k 

~(k )  = • C~(k)v( i ) ,  (1.8) 
i = 0  

where C~(k), i = 0 ,  1 , . . . ,  k, are n x n matrices. The problem is to find a p.o.m. 
/VIk and matrices C~(k), i =  0 , . . . ,  k, to minimize the mean square error 

J ( C ( k ) ,  Mk) = E { ( x ( k )  - ~ ( k ) ) ' ( x ( k )  - ~(k))}, (1.9) 

where 

C(k)- - [Co(k) ,  Cl(k) . . . .  , Ck(k)].  (1.10) 

The expectation in (1.9) is taken with respect to the distributions of x( i )  and the 
measurement outcomes' distributions which are described below. We assume that 
the measurement outcomes {v(i)} (classical vector random variables) are indepen- 
dent, conditioned upon the sequence {x(i)}. This assumption, together with (1.3), 
yields the following expression for the joint distribution of the measurement 
outcomes v(0), v ( 1 ) , . . . ,  v(k): 

F~(0) ...... (k)(~'(0),. . . ,  . ( k ) )  

= f~, " " " fa  ° F~,o,Jx(o)(V(0), so(0)) " ' "  F~(k)l~(k)(v(k), ~(k) )  

x Fx~o) ...... ~k)(ds~(O),..., dE(k)) ,  (1.11) 

where 

F#,)I~<,) (1,(i), ~:(i)) = Tr[p(sC(i))M,(-oo, u(i)]]. (1.12) 

A convenient example for physical motivation is provided by the following 
optical communication setting [9], [10], [3]: at time k a laser field modulated in 
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some fashion by x(k) is received in a cavity containing otherwise only an 
electromagnetic field due to thermal noise. The total field is in a state described 
by a density operator O(x(k)) that depends on x(k) (but not otherwise on k). 
The filtering problem consists of estimating x(k) based on quantum mechanical 
measurements via the procedure described above. In this example the conditional 
independence assumption corresponds to "clearing" the receiver cavity prior to 
each reception [3]. 

2. Formulation of the Optimization Problem 

In this section we formulate the optimal linear filtering problem described above 
as an optimization problem of a functional over a set ofp.o.m.s and n x n matrices. 
Before proceeding in this direction we present a brief summary of the mathemati- 
cal concepts and techniques necessary for the development. Much of  the mathe- 
matical machinery used here has been developed by Holevo [15, Section 6], 
where we refer the reader for details. Our formulation utilizes the integration 
theory with respect to operator-valued measures developed by Holevo in [15]. 
This integration theory is more akin to Riemann integration. Since the original 
submission of the present paper, Mitter and Young [21], have developed a 
different, more satisfactory integration theory which is analogous to Lebesgue 
integration. 

The latter permits formulation of optimization problems arising in quantum 
detection and estimation theory as convex analysis problems in certain Banach 
spaces of operator-valued functions. In addition, it facilitates the development 
of a duality theory for such problems. Due to the special nature of our problem 
we do not need Holevo's techniques in their full generality. The problem treated 
here is more general than the estimation problems treated by Holevo [15] or 
Mitter and Young [21], in the sense that we are studying recursive estimation. 
Furthermore, the techniques of Mitter and Young [21] must be extended in order 
to apply to the problem treated here, because our cost function does not satisfy 
their assumptions. Nevertheless, their work provides an alternate route, and 
perhaps more significantly reinforces the validity of the results obtained here. 

Following [15] let ~h denote the set of all trace-class [23, p. 374], self-adjoint 
operators on a Hilbert space H. Let M be a p.o.m., representing a measurement 
with values in R" and G(u) a Zh-Valued function, u c R". Let B be a bounded 
set in ~ "  and {p,} a sequence of finite partitions p, = {B,~}, B,~ ~ ~ "  of B, and 
d, the mesh of the partition p, such that lim,_,~ d,, = 0. We then introduce the 
integral sums 

(r. =• G(u,)M(B.,). 
i 

where ui 6 B,i. Clearly, o' ,  c ~,  the space of trace class operators on H which is 
equipped with the norm 

IIAII~ ~ Tr[(A*A) '/2] 



196 J.S. Baras 

(where the asterisk denotes adjoint). If the sequence tr ,  converges in the norm 
of • as n --> oo and the limit does not depend on the choice of u~ ~ B.~, then G is 
called left integrable with respect to M over B, and the limit is called the left 
integral and is denoted by 

BG(u)M(du) .  (2.1) 

We define similarly right integrals, and it is useful to note that right integrability 
is equivalent to left integrability. G is called trace integrable with respect to M if 
the sequence Tr tr ,  converges. The limit is called the trace integral of  G with 
respect to M over B and is denoted by 

lira Tr o',  = (G, M)B. (2.2) 
n~oO 

In all cases described in this paper G will be of  the form 
! 

G(u) = Z ~tigi(u), (2.3) 
i = l  

where ~g ~ ~n and g~ are continuous real-valued functions on R n. Then for such 
G the trace integral with respect to any p.o.m. M and over any bounded set 
B ~ ~ "  exists [15, p. 356] and equals 

(G, M ) ,  = 5~ [ gi(u) Tr[~gM(du)]. (2.4) 
i = 1  dB 

The operator-valued function G is locally trace integrable if it is trace integrable 
over any bounded B ~ ~n. Let B~ be a nondecreasing sequence of subsets in ~ "  
and such that [.J~ B~ = R". Then one writes B~ t R". If  the limit 

lim fB G(u)M(du)  
Bi'f  '~'~ i 

exists in 2 ,  and does not depend on the choice of the sequence {B~}, G is called 
integrable over R" and the limit is denoted by 

R" G(u)M(du) .  (2.5) 

Let G be locally trace integrable with respect to M. Then G is trace integrable if 
the limit 

lim (G, M)~ 
B~1'R" 

exists, finite or infinite. The limit is denoted by 

(G, M)R" 

and is called the trace integral o f  G with respect to M over R ~. Notice that if G 
is left or right integrable with respect to M over ~n then 

(G, M)a,, = Tr 0RI" G ( u ) M ( d u ) =  Tr .ll M(du)G(u) .  (2.6) 
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When tz(du) is a measure on R ~ and G a Z-valued function we say that G 
is Bochner integrable (in the Z-norm sense) [13, p. 78] with respect to tz if the 
scalar function IIGII~ is integrable with respect to /z ,  i.e., when 

R, IIG( u ( au  ) < oo. 

Here ~ and ~h refer to spaces of operators on H. 
Before proceeding with the actual computat ion of the functional J ( C ( k ) ,  Mk) 

in (1.9) we want to make two remarks. First let us observe that we can set 
Ck(k) = In (i.e., the identity matrix on R") without loss of  generality. Indeed, 
consider any pair of p.o.m. X and n x n matrix C, and let v e R n be the outcome 
of the measurement  represented by X. Let c(x) = Cx be a linear map from R" 
into R" and define for every A~ ~ "  

X'(A) = X(c-~(A)). (2.7) 

It is easy to verify that X' is a p.o.m, which represents the measurement  with 
outcome Cv. So for the rest of  the paper  we shall take Ck(k) = I,. Second, a 
direct consequence here of  U o # UiUj (cf. (1.4)-(1.6)) is that the mean square 
error will not be expressible directly in terms of self-adjoint operators in a 
quadratic form (as in the scalar filtering problem [3]) but rather will remain 
expressed in terms of p.o.m.s. Since the set of  self-adjoint operators on H is a 
linear space while the set of  p.o.m.s is only a convex set, the nature of  the 
optimization problem will be different. 

Since we are dealing with a second-order problem it is customary to assume 
that each x(i) and the past measurement outcomes v(0), v ( 1 ) , . . . ,  v ( k - 1 )  have 
finite second moments. Then since 

the Bochner integral 

h(k)  = j~,  ¢'¢p(¢)Fx<k)(a¢) (2.8) 

exists and is a nonnegative operator in ~h. Similarly, since 

the Bochner integral 

8,(k) = I ¢,@(¢)F~<k)(d¢), i = 1, 2 , . . . ,  n, (2.9) 
JR n 

exists and is an operator in ~h. We introduce the following n-vector of  operators: 

t (i)A 
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Clearly, since 

fR" JlP(~)JJ~Fx(k)(d~)= 1, 

the Bochner integral 

• l(k) = fa, p(¢)Fx(k)(d¢) (2.11) 

exists and is a nonnegative operator in ~h. Since 

IR " " " IR ~ JJE{Vl(i)[x(i)= ~}p(~)JJ:~Fx(i),x(k)(d~, d~) 

<-- fR" fR" E{Vl(i)Jx(i)=~}Fx(i)(d~)<-E{Vl(i)}<°°' 

the Bochner integral 

~/,(k, i )=  I~ . . . fR° E{v,(i)[x(i)= ~}p(~)Fx(i).x(k)(d~, d~), 

1= 1, 2 , . . . ,  n, (2.12) 

exists and is an operator in ~h. We introduce the n-vector of operators 

F'yl(k , i q  

i)_l 
Finally, since 

I o o  " 

<-- J." JR" I~'E{vj(i)lx(i)= ~}lF~(i)'x(k)(d~' d~)<- E{Jxt(k)vj(i)J} 

<_ (E{lxt(k)12})'/2(E{Ivj(i)12})l/2 < ~, 
the Bochner integral 

, , j ( k ,  i )=  In""""  fa ° ~'E{vj(i)lx(i)= '}P(')F~(°'~(k)(d~' d,) ,  

l= l , . . . ,n ,  j= l , . . . , n ,  (2.13) 

exists and is an operator in ~h. We introduce the n x n matrix of operators: 

,~(k~ i) = • "'. . (2.14) 

L~,.,(k, i) • . .  xr,.,(k, i) 
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From (1.9) the mean-square error can be rewritten as 

~(C(k) ,  Mk) = E{(x(k) - v(k))'(x(k) - v(k))} 

-2E((x(k)-v(k))t(jk~=i Cj(k)v(j)) } 

+ E{(k~i  \t[k-lcj(k)v(j))). Ci(k)v(i)) ~j~=o (2.15) 

The first two terms now become 

k - 1  

-2~ (k ) '  E C,(k)E{v(i)lx(i) = ~:(i)} 
i = 1  

k, ] 
+2 E u'C,(k)E{v(i)lx(i) = E(i)} 

i = 0  

× Tr[p(E(k))Mk(du)]Fx(o) ....... (k)(d~(O),..., dE(k)). (2.16) 

Proceeding in a fashion similar to that of Holevo [15] we let 
W(u, E(0) , . . . ,  E(k), C(k)) denote the integrand in (2.16), where C(k) is (as 
usual) the matrix 

C(k) = [Co(k), C l ( k ) , . . . ,  I,]. 

In view of (2.8), (2.9), (2.11), (2.12), and (2.13) the Bochner integral 

G(u,C(k))=Iao'"fR W(u,~(O),...,E(k),C(k)) 

x p(E(k))Fx(o) ...... (k)(dE(0), • • •, dE(k)) (2.17) 

exists and is an operator-valued function with values in ~h. Utilizing the notation 
introduced in (2.8)-(2.14), we have 

G(u, C(k)) = k ( k ) - 2  ~ u,8(k),+u'u'q(k) 
i = 1  

k - I  n 

-2 ~. E ~ [C,(k)],j~t,,~(k, i) 
i = 0  1 = 1 j = 1  

k - 1  n 

+2 ~ E [C,(k)'u],v,(k, i), (2.18) 
i = O  I = 1  

where the notation [ ]i, [ ]tj indicate the ith element of a vector and the l,j 
element of a matrix, respectively. 
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To simplify this expression for G(u, C(k))  we 
notation: 

introduce the following 

(a) For a ~ R n and 13 an n-vector of  operators, 

a'13 = 13'a = ~ a~13,. (2.19) 
i = 1  

(b) For A an n x n matrix and ~r an n x n matrix of  operators, 

tr a o r = t r t r a =  i ~ A0trji. (2.20) 
i = l  j = l  

As a result we can rewrite (2.18) as 

G(u, C(k))  = Mk)  - 2utB(k) + u'un(k ) 
k - 1  k - I  

+2  • u'C~(k)~l(k, i ) - 2  E tr C~(k)'av(k, i). (2.21) 
i = 0  i = 0  

It is immediately seen from (2.21) that for any C(k), G(u, C(k)) is a ~h-Valued 
function of the form described in (2.3). Therefore from (2.4) G(u, C(k)) is locally 
trace integrable with respect to any p.o.m. X on H. Let now B be a bounded set 
in ~ ' .  Then since G( . ,  C(k)) is in the class (2.3), its trace integral with respect 
to any p.o.m. X on H over B is given, according to (2.4) and (2.21), by 

f W(u,,(O),...,,(k),C(k)) 
xTr[p(~(k))X(du)]Fx(o) ...... (k)(d~:(0),... ,  d~(k)). (2.22) 

That is so because we can interchange integrals in the right-hand side of  (2.22) 
by Fubini 's theorem [24, p. 140] in view of the finite second moments assumptions 
made above, and because 

f 
Tr[ k( k )X( du ) ] = L "  ~ts¢ Tr[p( ~)X( du ) ]Fx(k)( d~), 

Tr[ S( k ),X( du) ] = I~" ~i Tr[o( ~)X( du) ]Fx(k)( d~), 

Tr[~q( k )X( du ) ] = I~ ° Tr[p( ~)X( du ) ]Fx(k)( d~), 

Tr[3~l(k , i)X(du)] 

= fR"""  fa" E{vt(i)lx(i)=~} Tr[p(~:)X(du)] • Fx(i,.~(k,(d~, d(), 

Tr[~/,j (k, i)X(du)] 

= f . , ' ' '  f.,, ~tE{vj(i)[x(i)=~} Tr[p(sc)X(du)] .F~(,).~(k)(d~,d,). 
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Since the outcomes v ( 0 ) , . . . ,  v(k-1) have finite second moments 

Ix(°)--,(°), ... 

x (k -  1) = E ( k -  1)}p(E(k)) Fx(o) ...... (k)(dE(0),. . . ,  dE(k)) 

k - 1  

\ j = 0  

and therefore the Bochner integral 

x(k -1)=E(k-1)}  

× p(E(k))Fx(o) ...... (k)(dE(O), • • . ,  dE(k)) (2.23) 

exists and defines a nonnegative operator in ~:h. For any p.o.m. X(du) on H we 
obviously have that 

(~(C(k)), X)a,, = [ Tr[~(C(k))X(du)] 
3~ n 

= E Ci(k)v(i) Cj(k)v(j) < oo. (2.24) 
i \ j = 0  

We define now a new ~h-Valued function 

~(u, C(k)) = G(u, C(k))+~(C(k)). (2.25) 

It then follows directly from the local trace integrability of G( . ,  C(k)) and (2.24) 
that ~( - ,  C(k)) is locally trace integrable with respect to any p.o.m, on H (cf. 
Proposition 6.1(1) in [15]). Utilizing (2.18), (2.8)-(2.14), and (2.23) we have 

~(u, C(k)) 

= fR,, " " fR. [E(k)'E(k)-2utE(k)+u'u 

k - I  

+2 Y~ utC~(k)E{v(i)lx(i) = E(i)} 
i = O  

k - 1  

-2  Y E(k)'C~(k)E{v(i)lx(i) = E(i)} 
i = 0  

+E ~, C,(k)v(i k)v x(O)= E(O),..., 
i j 

xp(E(k))F~(o) ...... (~)(dE(O),. . . ,dE(k)) 
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L . . . . .  u -  ~ C~(k)v(i 
n n i = O  

x k ) - u -  L Cj(k)v  x ( O ) = ~ ( O ) , . . . ,  
j = 0  

x ( k - 1 ) = ~ ( k - 1 ) }  

x p(~:(k))F~o) ...... ¢k)(d£(O),.. . ,  d£(k)).  (2.26) 

Therefore ~ ( . ,  C(k)) is a nonnegative ~h-Valued function, and since it is locally 
trace integrable it follows from Proposition 6.1(2) of  [15] that its trace integral 
with respect to any p.o.m. X on H over R n is well defined. Furthermore, we see 
immediately from (2.15), (2.22), and (2.24) that 

J ( C ( k ) ,  Mk) = ( ~ ( ' ,  C(k)) ,  Mk)~". (2.27) 

We summarize the above in the following. 

Lemma 2.1. I f  the signal sequence {x(i)} and the past measurement outcomes at 
times O, 1 , . . . ,  k - 1  have finite second moments, then the mean-square error may 
be expressed as in (2.27) above. For each n x ( k + l ) n  matrix C(k), and u c R ~, 
~(u,  C(k))  is a nonnegative, self-adjoint operator, with finite trace on H. 

I f  we now let ~ be the convex set o f  p.o.m.s on H, we see that the linear filtering 
problem becomes: find a p.o.m. Mk and n x n matrices Ci(k), i = 0 , . . . ,  k - 1, which 
minimize (2.27) over the set ~ ×  (Rn×n) k. This is the optimization problem we 
analyze in this paper. We would also like to point out that all operators appearing 
in (2.18) or (2.25) (i.e., in G or ~ )  are known at the time instant k and are 
computable from the signal statistics and the known p.o.m. Mo . . . .  , M k - 1 .  

The optimization problem (2.27) is more general than the one considered by 
Holevo [15] and Mitter and Young [21], in that we must jointly optimize over 
a set of  parameters and p.o.m.s. 

3. Existence of Optimal Linear Filters 

In this section we establish the existence of solutions to the optimization problem 
formulated in the previous section. We need some preparations first. Let ~3~ be 
the set of  p.o.m.s on H. This is a convex set. Following Holevo [15, p. 363] we 
have a convergence notion on ~ .  A sequence of p.o.m.s Xn on H converges, if 

n for any ~ c H ,  the sequence of scalar probability measures ~ ( d u ) =  
(~0, Xn(du)~)n converges weakly [26, p. 19], i.e., the limit 

lim I .  g(u)Iz~(du) 
n ~ o o  n 

exists for any bounded continuous function g. I f  this limit equals S~" g ( u ) / ~ ( d u ) ,  
where tz~(du)=(¢,X(du)~o)H for some p.o.m. X on H, we shall say that Xn 
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converges to X. Let ~2 be the set of p.o.m, on H which represent measurements 
with outcomes v(k)  having finite second moments. The set 92~ 2 is convex. This 
follows from the fact that M ~ ~ 2  if and only if 

f ~ ° . . . f R u t u T r [ p ( , ) M ( d u ) ] F x ( k ) ( d , ) < o o  (3.1) 

which is closed under convex combinations. Clearly, ~ (C(k ) ,  Mk) is a nonnega- 
tive functional on ~)~x (~,×.)k,  where ~"×" is the set of  all n x n matrices over 
the reals. We endow R "×" with the standard Euclidean topology induced by the 
norm 

II c I1~ . . . .  (tr[ C 'C ] ) ' / 2  

and ~ with the topology induced by the convergence notion described above. 
From the discussion in [ 15, p. 363 ] we have that ~ with this topology is sequentially 
complete; t ha t  is, every, convergent sequence of p.o.m, converges to a p.o.m, in 
9~. We give Tkx (~nxn)k the product topology and it also becomes sequentially 
complete. 

Recall [20, p. 40] that a real-valued function f on a topological space N is 
lower semicontinuous at Yo ~ N if lim,_~oo inff (y , )>-f(Yo)  for any sequence {y,} 
converging to Yo. It is lower semicontinuous on a subset S if it is lower semicon- 
t inuous at every point of  S. 

Lemma 3.1. 

(a) For each M k E~J,J~, ~(C(k ) ,  Mk) is continuous on (~nxn)k. 
(b) For each C(k) c (R"×n) k, ~ (C(k ) ,  Mk) is lower semicontinuous on YfJL 

Proof. We are certainly interested only in those p.o.m. M k which give finite 
mean-square error. Part (a) follows immediately from (2.15). As for part  (b) it 
follows directly from the nonnegativity of  ~ ( . ,  C(k))  for each C(k),  (2.27), and 
Lemma 7.5 in [15]. [] 

Lemma 3.2. J ( C ( k ) ,  Mk) is a lower semicontinuous functional on ~ x (~,×,)k. 

Proof. Immediate  from Lemma 3.1. [] 

Let c be a positive number  such that 

inf J ( C ( k ) ,  Mk) ----- c, C(k)  ~ (R"×") k. 

We are obviously only interested in the case where c < oo. Let 

-~/c = {Mk ~ ~ ,  C(k) c (•"×")klJ(C(k),  Mk) --< c}. (3.2) 

Recall that a subset S of  a topological space N is conditionally compact if every 
sequence in S has a convergent subsequence [22], [13, p. 5]. 
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Lemma 3.3. The set Mc c_ ~ x (R" ×")k is conditionally compact. 

Proof Since J ( C ( k ) ,  Mk) is nonnegative and continuous in C(k), for each Mk, 
the set 

~ak = {C(k) ~ (R"×")kl~(C(k) , Mk) --< c} (3.3) 

is compact. Since for any real a,/3 

~ ( 1 - a 2 ) l l x ( k ) - v ( k ) l l 2 . + ( 1 - a  -2) C~(k)v(i) 
i R" 

->(1 - ~ ) [ ( 1  - ~ ) l l x ( k ) l l ~ °  + (1 - ~ -~)  II v(k)ll  ~°] 

+ (1 - a -z C~(k)v(i) 
i= g~n 

= (1 - ,~ ) (1 - .8 -=)11  v(k)ll~. + (1 - ,~=)(1-/~=)llx(k)lr ~. 

+ (1 - a -2 C~(k)v~i (3.4) 

we find from (2.26) that 
~(u, C(k ) )>- (1 -aE) (1 - f l -2 ) l lu l lE .~ (k )+(1-aE) (1 - f lE)k (k )  

+ (1 - ot-2)~(C(k)). (3.5) 

Choosing a < 1 and f l >  1 we have that ( 1 - c~ ) (1 - f l - 2 )~ l (k  ) is a nonnegative 
operator in ~h and (1 - 3 2 ) ( 1 -  f l2)k(k)+ (1 - a -2 )~(C(k) )  is an operator in ~h. 
Clearly then for each C(k)~(Rn×") k, 3 ( ' ,  C(k)) satisfies the conditions of 
Theorem 7.1 in [15] and therefore by Lemma 7.4 of  [15], for each C(k) the set 

~)~(k) = {Mk ~ ~ I J ( C ( k ) ,  Mk) --~ C} (3.6) 
is conditionally compact. So now let {(C"(k), M~)}_ M~. Since {(C"(k), M~)}_ 
~ there exists a subsequence {cl '"(k)} of {C"(k)} such that {(Cl'"(k), M1)} 
converges. Since {(Cl'"(k), M~)}___ ~ there exists a subsequence {C2'"(k)} of  
{Cl'"(k)} such that {(C2""(k), M2)} converges. Thus we construct a countable 
family of sequences {CS'"(k)}, each of which is a subsequence of  the previous. 
Then for each MSk of the original sequence {(C"(k),M~)} the sequence 

c 1 {(C"'"(k), M~k)} converges. Now since {(C~'l(k), M~)}-----~c.'(k)there exists a 
subsequence {M~ J} of {M~} such that {(C~'I(k),M~'J)} converges. Since 
{(C2"2(k), Ml'S)} ~ ~ c 2 , 2 ( k  ) there exists a subsequence {M~ "s} of {Mld} such that 
{(C2'2(k), M~J)} converges. Thus we construct again a countable family of  sequen- 
ces {M~"}, each of which is a subsequence of  the previous. Then for each CSJ(k) 
the sequence {(CSJ(k), M~,'")} converges. Consider now the diagonal subsequence 
{(C'"(k) ,  M~,'")} of  the original sequence. It clearly converges, establishing that 
the set sCc is conditionally compact. [] 

We now give our existence theorem. 

Theorem 3.4. Suppose that the signal sequence {x(i)} and the measurement out- 
comes at time O, 1 , . . . ,  k -  1 have finite second moments. Then there exist p.o.m. 
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1(¢I k and n x n  matrices Ci(k), i = O , . . . , k - 1 ,  which minimize ~(C(k) ,Mk) .  
Moreover, the optimal measurement outcome also has finite second moments. 

Proof. Let c be chosen as above. Then the set sdc is conditionally compact by 
Lemma 3.3. Now J (C(k ) ,  Mk) is lower semicontinuous on sgc by Lemma 3.2. 
Suppose {Cn(k), M~}___ Ac and converges say to (C°(k), M~). Then the lower 
semicontinuity of J (C(k ) ,  Mk) implies that (C°(k) ,M°)~ ~tc, i.e., d~ is also 
closed. Therefore s~c is sequentially compact [13, p. 8]. "But then it is well known 
[20, p. 40] that a lower semicontinuous functional attains its minimum on a 
sequentially compact subset of a topological space. It follows clearly from the 
expression (2.27) for ~¢(C(k), Mk), the inequality (3.5), and the finite second 
moments assumption for {x(k)} and v ( 0 ) , . . . ,  v ( k -  1) that a measurement Mk 
results in finite J (C(k ) ,  Mk) if and only if Mk E ~f~2. Therefore the optimal 
measurement l~lk~g)~ 2 (provided i n f J ( C ( k ) , M k )  is finite, which is the only 
interesting case). [] 

4. Necessary and Sufficient Conditions for Optimality 

In this section we derive necessary and sufficient conditions for the optimal 
measurement 1VIk and optimal processing coefficient matrices Ci(k), i = 0, 1 . . . .  , 
k -  1. Our first result is given by 

Theorem 4.1. Necessary and sufficient conditions for Co(k), C l ( k ) , . . . ,  Ck-l(k) 
^ 

and Mk to be optimal processing coefficients and optimal measurement at time k are: 

(i) <~(-, C(k)), X)ao_><~(., {~(k)), I¢lk)a,, for every X e ~ .  

(ii) 
I, .... 

L~v(kiv(O) } . i: ~{v(kiv(k),}3 [ ~_',(k)~o LE{v(ki~(k) ' }J  ' 

where the distributions for v( k ) are induced by 1VIk. 

In the proof of the sufficiency of this theorem we will need the following 
lemma. 

Lemma 4.2. Suppose n x n matrices Co(k),..., ~- l (k )  and p.o.m, ff, lk satisfy 
conditions (i) and (ii) of  Theorem 4.1. Let X be any p.o.m, and define n x n matrices 
Do(k) . . . .  , Dk-l(k)  so that 

::: 1 {v(G(o)'} ... ~{v(kiv(k)'~ ID~l(k)l ke~v(kix(k) }J' 
L I . J  

where the distributions for v( k ) are induced by X. 1-hen 

~(D(k), ×) >- y(~:(k), MD- (4.2) 
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Proof Condition (i) of Theorem 4.1 implies 
^ A ^ 

J(C(k) ,X)>-J(C(k) ,Mk) for any X c ~ .  (4.3) 

Consider the partitioned covariance matrix 

n n 

• A • I " 

rT. ~OE6~x(£f'~-l--~;(6f~(&7 . . . .  - - -  . . . .  ~(~-o];-( ~---iTr;-r-¥-{ ;-( 6~;Efd'~-i 
a J • I . . I • I 

R x = l  " ' ' I ' / 

. . .  

{ l -  N-{- - ( # f £ ( i ? ]  - 7- ~ ( ; ~ - / ~ ; [ 6 f  ~ . . . .  : 7--  - - -~];~7,5;~ 7 -_- 55 r } - -~ - . ]~ ;  (~,7; ~ ,7 , ] - / }  
n L~  . , I " I ~ . ~ /  n 

n n 

and define the various blocks via 

~F" A I Bx] 
. x  

n 

and 

(4.4) 

(4.5) 

--[ln,--C,o(k), . . . , --Ck-l(k)]Bx--Btxl~Co(k)[ +[~ X • 

(4.7) 

On the other hand, J (C(k) ,  l~'lk) has a similar expression where we change the 

= t r I [ / . ,  
A t " 

-Ck_,(k) 

/. 
- C ' g ( k )  

- C o ( k )  . . . .  , - G _ l ( k ) ] A  

[ * i " %  
A - - 7 - r  . . . .  T - - F  

Rx= i *  , Ao I B x /  (4.6) 
. . . . .  o[B__~x iJ" . . . .  it -i-------~'~ n{ , Bx I }" 

/I n 

where the subindex x refers to the p.o.m, which induces the distributions for the 
random variable v(k). Then we have 

i .  
-d ; (k)  

~ I r A[Bx l  
¢(C(k),  X )  = t r [ l , ,  - C o ( k ) , . . . ,  - C k _ , (  k ) ,  - .]L-.-,xl f x] 

! _  
d ~ _ l ( k )  

- I .  
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subindex x to ~k. Therefore (4.3) implies 

t r{- [ I , ,  - C o ( k ) , . . . ,  -Ck-l(  k ) ]Bx -  B~[ I,,, - C o ( k ) , . . . ,  - d k - l ( k ) ] '  

+ Fx+ [I, ,  -Co(k)  . . . . .  --dk-l(k)]Br~ + B ~ [ I , ,  - C o ( k ) , . . . ,  - Ck_l(k)]' 

-F~k}-->0 for any Xc~0~. (4.8) 

But Co(k) , . . . ,  Ck_l(k) satisfy the normal equations (ii) with the p.o.m, l~lk. So 

Co(k) 
[_ 
LB~.Ir~,~j B ~ k  " 

,(k) | (4.9) 

L/o J 
So 

[Co(k), ^ 'r • . . ,  Ck_l(k)]Ao+ B~ k = qb (4.10) 

and 

[Co(k ) , . . . ,  Ck-,(k)]Bhk + r~,~ = B°k .  (4.11) 

Then (4.11) gives 
A A 

[I, ,  -Co(k ) , . . . ,  -Ck_ , (k )]B~ = r~k (4.12) 

and then (4.8) becomes 

t r{-[ I , ,  -Co(k) ,  A , . . ,  . . . .  -Ck_l (k )]Bx-Bx[I , ,  -Co(k), .  -Ck-l(k)] '  

+ F x + F ~ } - > 0  for any Xc~0~. (4.13) 

So assumptions (i) and (ii) imply (4.13). Now given any p.o.m. X6 9~ we define 
the matrices Do(k) , . . . ,  Dk_l(k) via (4.1). Then (4.1) implies (similarly as (ii) 
implies (4.10)-(4.12)) 

[Do(k ) , . . . ,  Dk_,(k)]Ao+ B~' = ~,  (4.14) 

[Do(k), . . . ,  Dk_,( k ) ]Bx + Fx = B °, (4.15) 

and 

[I, ,  - D o ( k ) , . . . ,  -Dk_,(k)]Bx = Fx. (4.16) 

Then 

y (D(k ) ,  X) = tr [S,, -Do(k),..., -D~_,(k) ]  L,I,, ,, Aoj 

x [I, ,  - D o ( k ) , . . . ,  -Dk_,(k)]' - rx} 

= tr{Z + @ [ - D o ( k ) , . . . ,  -Dk-l(k)] '  + [ - D o ( k ) , . . . ,  -Dk_,(k)]O' 

+ [ - D o ( k ) , . . . ,  -Dk-x(k)]Ao[-Do(k) , . . . ,  -Dk-l(k)] '  - Fx}. 

(4.17) 
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Trivial cases apart, we can assume without loss of  generality that Ao is invertible. 
Then from (4.10) 

[ -  Co(k), , - C k - l ( k ) ]  I t  -1 -1 (4.18) . . .  = Bcak Ao -dPAo . 

Therefore (4.13) becomes 

o it -1 1+ B o, u l t A - l u l  t r { - B x - B ~ A o  Bx  dPAolB 1 -  - u x  o ,-,1¢¢1k 

+ B ~ ' A o l q b ' + F x + F ~ } > - 0  for any X~9)~. (4.19) 

From (4.14) and (4.15) it now follows that 

I t  - -1  1 - -1  1 - B x A o  Bx+dPAo B x + F x = B  °. (4.20) 

Using (4.20), (4.19) becomes 

I t  - -1  1 tr{BxAo Bx - r  u l t  A-11t~l l~1ta-ll:i1 + B 1 , A o l B I _ F x + F x + F ~ k }  x X  - -  X j l ~ l k  ,-xO Jt~ X - -  . I j X  .'3t 0 . U M k  

1 1 t - -1  1 1 I t  - -1  I = tr{ ( Bx  - Br~k ) Ao ( Bx  - Bcak ) + Bx  Ao Bx  

_ F  X I t  --1 1 - B ~ , A o  B~k+F~k}->0  for any XegJ~. (4.21) 

So the assumptions of  the lemma are equivalent to (4.21). 
Now we transform the inequality we want to establish (i.e., (4.2)) using 

similar methods. Utilizing (4.14) = (4.15), (4.17) results in 

¢ ( D ( k ) ,  X) = tr{E + r b A o l B ~ -  dPmol¢~ ̀  + It -1 t Bx  Ao ¢b - d P A o l t ~  t 

I t  --1 1 --1 1 u l t  A- l , .h t  + d P A o l d p t  } - Fx + Bx Ao B x -  qbA0 Bx - ux  "~o "~ 

- 1  t I t  - 1  1 = tr{E - qbAo • + Bx Ao B x -  Fx}. (4.22) 

Similarly J ( C ( k ) ,  l~Ik) has an identical expression to (4.22), with subindices ~ 
instead of x- Therefore the result of  the lemma (i.e., (4.2)) holds if and only if 

I t  - -1  1 tr{BxAo B x - F x -  ~,~k-~oUlt a-lul,.,~k + F ~ } _ > 0  for any Xe  ~r~. (4.23) 

Therefore the proof  of  the lemma will be complete if we show that (4.21) implies 
(4.23). We prove it by contradiction. So assume there exists a p.o.m, air such that 

I t  - 1  1 tr{B,i, Ao B,I, - F ,  -uk'LrMkn Ozl --  1 ]t~ l ~ u M k  + F~k} < 0. (4.24) 

Let now 

Z ( B ) = a q t ( B ) + ( 1 - a ) I ( / l k ( B )  f o r a n y  B ~  n, (4.25) 

where a is a real number  0 <  a < 1. Clearly, Z ~ ~)~ for all a in that interval. 
Moreover, observe that 

B ~ =  ' l a B ,  + (1 - a)  Bfak (4.26) 

and 

Fz = a F , +  (1 - a ) F ~  k. (4.27) 
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We write (4.21) for Z 
u l  ~ W I ~ I I A - 1 B I  1 ~ Bk* A-1B k + F ~ k  } t r { (B~-B~tJAol (B~z- , - ,~ , - - , z ,~o  z - * z - M  k 0 M k 

2 1 1 t 1 1 1 =t r{a  ( B . - B ~ t , )  Ao (B . -B~t~)  

+ (aBe, + (1 - a)B~k)'Ao 1(aBly+ (1 - a ) B ~ )  
~ L t  a l ~ k  1. - a F , I , - F ~ +  a F ~ + F ~ - ~ , M ~ O  ~,M~J 

2 I t  -1  1 =tr{cr B,Ao  B,I, 2.~1, A--lnl 2nlt a--lrtl - -ok  D ~ k , ~ l  o Dq~ - -O l  l~,qrZ-I o Dl~lk 

_~_ 2 n l t  A--1 r~l. - -  2 n i t  , t - - l n l  
0£ Dl~keql 0 D M k  -I- Ol IJqt2qk 0 Dxlr 

"4-O/(1 It  --1 1 ~ lt~ I t  A--1 /:/1 -a)B, i ,  Ao B M k + a ( 1 - - a J u ~ k ~ 0  *''V 
q'- (1  --  x2 r , l /  t - I B I  i t  -1  1 

2 1, -1 1 (1 it -1 1 = t r{2a  B,Ao  B,r+ce - 2 a ) B ~ A o  B,u 

+ a ( 1  1, -1 1 _l)B~tkAo B M k _ a F . + a F ~ k  } - 2 a ) B . A o  B~t~ + 2 a ( a  is -1 1, 

tx(2a - 1) 1 1 t --1 1 1 = tr{(B,i, - B~  k) Ao (B,I, - B ~ ) }  
It  --1 1 l~k t a - i n k  "t (4.28) + c~ t r{B,Ao B,t ,-Flt ,+F~tk - oMk~o "-'M~i. 

Now the second component  in (4.28) is strictly negative for all 0 < ce < 1 because 
of our assumption (4.24). On the other hand, by choosing 0 <  ce<½ we can 
obviously make the first component  nonpositive. Then for such a choice of ce 
(i.e., 0 <  cr <½) the corresponding Z defined via (4.25) will violate (4.21), as is 
shown by (4.28), and thus we have a contradiction. So the proof  of  the lemma 
is complete. [] 

We are now able to give the 

Proof of Theorem 4.1. The necessity is clear. Note that (ii) are the normal 
equations for the minimum variance linear estimate of  x(k) based on the random 
variables v ( 0 ) , . . . ,  v ( k -  1), ~3(k), with the constraint Ck(k) = In. The sufficiency 
is more complicated. It is based on the fact that J(C(k) ,  X) is a quadratic function 
of C(k) and a linear function of X. Given any fixed p.o.m. X we define matrices 
Do(k) . . . .  , Dk-l(k) which satisfy (ii) (the normal equations) when the densities 
are those induced by X. Then for any set of  matrices Co(k) . . . .  , Ck l(k) we have 
that 

J ( C ( k ) ,  X) > - J ( D ( k ) ,  X). (4.29) 

Now from Lemma 4.2 we have that (i) and (ii) above imply 

~(D(k) ,X)->~((~(k) , IVIk)  for any X e ~ .  (4.30) 

But then (4.29) and (4.30) prove the optimality of  C o ( k ) , . . . ,  Ck_l(k) 
and ~ / l  k • [] 

We now concentrate on condition (i) of  Theorem 4.1 in our effort to improve 
these necessary and sufficient conditions. This condition represents an optimi- 
zation problem with respect to the p.o.m. X (while C(k) is held fixed), similar 
to those studied extensively by Holevo in [15, pp. 368-372]. Note that in our 
case the operator-valued function ~(u,  (~(k)) is quadratic in u. 

The following lemma, an application of the Lagrange duality theorem 
[2, p. 94], has been announced by Holevo in a more general setting [18]. 
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Lemma 4.3. Let ~ be a continuous operator-valued function on R n, such that for  
every u ~ R ~, ~ ( u )  is a nonnegative, self-adjoint operator with finite trace on a 
Hilbert space H. Consider the set o f  operators on H, S~ = {7 is self-adjoint, with 
finite trace, 7 >- 0 and 7 <- ~ ( u )  for  all u ~ R" }. Then 

inf (~, X)R, = max Tr[x]. (4.31) 

Proof  First we observe that if 7 ~ Sn then 

Tr[x] = (7, X)~- -< (~, X)~°. (4.32) 

Therefore 

sup Yr[7]-< inf (~, X)R,,. (4.33) 

Now consider the vector space Y of all unconstrained operator-valued measures 
on R". That is, X~Y if: 

(i) X ( A )  ~ 23(H) and self-adjoint, for every A~ ~3"; ] 
(ii) for {Bi} any paaition of E" 

(4.34) 
X(B,)  = X(R"),  

i = l  

where (ii) is interpreted in the weak sense. We let, as usual, ~ ( H )  denote the 
space of all bounded operators on H. Then we consider the duality pair [25, p. 
369], [8, p. 38] 

~ x ~ ( H )  <">> C, (4.35) 
(7, A) , Wr[TA] = (7, A), 

where ~ is the trace class operators on H. Then if we give 2~(H) the ultra weak 
topology [8, p. 32] (i.e., the weakest topology that makes all these forms (4.35) 
induced by L r continuous on 2~(H)), ~E becomes the dual of ~ ( H )  [8] [25, pp. 
497-498]. Now let 12 be the subset of positive unconstrained operator-valued 
measures in ft. That is X c l) if in addition to (4.34) the condition X(A)~ 0 for 
all A c ~ n is satisfied. Let 

and (4.36) 
Y{(X) = I - X ( R " ) ,  I the identity on H. 

Clearly, (~, X)n, is a linear functional on Y and Y{ is affine [2, p. 93]. Then, since 
all hypotheses are satisfied, by a direct application of the Lagrange duality theorem 
[2, pp. 92-94], [20, p. 224] we have that for 7 c ~h 

(~, X)a" = sup I inf {(~, X)a,. + Tr[7( I -  X(~"))]}/.  (4.37) inf 
X ~  -r->0 kX~f~ J 

Yf(X)<O 
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Since the only interesting case is when the inf on the left-hand side of (4.37) is 
finite, we must consider only those 7 for which ~(u)---a" for all u c R  ~ and 
therefore we conclude that 

inf { (~ - , r ,  X)~- + Tr[~]} = Tr[,r] (4.38) 
X~I't 

and 

inf (~, X)R, = sup Tr[7] = Tr['ro] (4.39) 
X ~  ~ S ~  

for some ~o~S~, as follows from the properties of S~. This completes the 
proof. [] 

As a consequence we have: 

Corollary 4.4. Necessary and sufficient conditions for the p.o.m, folk to solve the 
optimization problem described in (i) of Theorem 4.1 are: 

(i) ~ ( . ,  C(k)) is integrable with respect to ICclk; 
(ii) ~(U, C(k)) -- ÷ for all u ~ R ~, 

where .~& ~Ro ~(u,  C(k))lCdk(du), which is well defined in view of (i). 

Proof Necessity. From the lemma above we have that there exists "to e Sg(.,e(k)) 
such that 

i n f ( ~ ( .  C(k)) ,X)Ro=(~( ' ,C(k)) , lVlk)R"= max Tr['r]=Tr['ro]. (4.40) 
X ~  ~ -re Sg,(..~(i,) ) 

We will be done if we show Xo =,~. Since ~ ( . ,  C(k)) is a quadratic polynomial 
in ( u l , . .  •, un) (and hence locally integrable with respect to fcl(du)), we have that 

IA(q~(U, C.(k))-xo)lVlk(du) for bounded A e  ~n. ~ 0  every (4.41) 

Now if there exists bounded Ao~ ~ such that 

f C(k))-'ro)lfClk(du)>O (4.42) (~(u,  
Ao 

we must have 

(~ ( - ,  C(k)), IVIk)R° > Tr[xo] (4.43) 

which is a contradiction to (4.40). So (4.41) is in fact an equality for any bounded 
A e N". Choosing now an increasing sequence of bounded sets Ai c ~" ,  Ai ~ R ~, 
we have from (4.41) that ~ ( . ,  I~(k)) is integrable with respect to Mk over ~ .  
Therefore, from (4.41), % = IR, ~(u, C(k))l(Clk(dU)a= ÷. This completes the proof 
of  necessity. For the sufficiency we observe that (i) and (ii) imply that for any 
p.o.m. X 

( ~ ( . ,  I~(k)), X)R o -> Tr[÷] = ( ~ ( . ,  I~(k)), I~k)R". (4.44) 
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Then clearly Lemma 4.3 implies that 

(~( .  C(k)), l~Ik)~" = inf ( ~ ( . ,  C(k)), X)R. 

and the proof is complete. [] 

As a consequence we have the following basic necessary and sufficient 
conditions for the optimization problem of this paper. 

Theorem 4.5. Necessary and sufficient conditions for C o ( k ) , . . . ,  Ck_l(k) and ~¢1 k 
to be optimal processing coefficient matrices and optimal measurement at time k are: 

L I. j 
A 

where the distributions of v( k ) are induced by Mk; 

(ii) ~ ( - ,  C(k)) is integrable with respect to ~/lk; 
(iii) ~(U, C(k)) >- ÷ for all u 6 R", where ÷ = Sa" ~(u,  (2(k))~lk(dU). 

Proof Immediate from the above sequence of lemmas and theorems. [] 

5. Concluding Remarks 

We observe that the solution to the optimal linear filtering problem in the 
multiparameter (or vector) case is not as explicit as the solution to the scalar 
case (see [3], equations (13)-(16)). This was expected since the optimization 
problem here cannot be formulated as a quadratic problem (cf. our previous 
remarks on operator moments of measurements). Observe that in the scalar case 
the measurement (which in that case is simple and represented by a projection- 
valued measure) is uniquely defined by its first operator moments. That is why 
the conditions of Theorem 4.5 can be transformed into the convenient form of 
Corollary 1 of [3]. In the vector case, however, the best that can be done generally 
is to derive explicit necessary and sufficient conditions which characterize the 
first and second operator moments of the optimal measurements. Since these 
moments do not determine uniquely the optimal measurement (see also p. 536 
of [16]) there exists freedom in further restricting the measurements to belong 
to certain convenient classes. Such a route has been followed by Holevo, using 
canonical measurements for estimation problems concerning Gaussian states [ 16]. 

We would like to note that although the results of this paper do not generally 
provide an explicit closed form solution for the optimal measurement and optimal 
processing coefficients, they can be used to establish optimality for candidate 
processing and measurement schemes. This approach has been successfully 
employed in similar problems by Holevo in [15] and [17] and by Belavkin in [5] 
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a n d  [6] ( i n c l u d i n g  p r o b l e m s  wi th  n o n - G a u s s i a n  states) .  T h e  ro le  p l a y e d  by  the  

c o n d i t i o n s  o f  T h e o r e m  4.5 in l inea r  q u a n t u m  f i l ter ing t h e o r y  is cen t ra l .  It  is 

t h e r e f o r e  a na tu ra l  c o n s e q u e n c e  to a n a l y z e  t he se  c o n d i t i o n s  in de ta i l  a n d  d i s c o v e r  

cases  tha t  p e r m i t  exp l i c i t  so lu t ion .  This  has  b e e n  d o n e  fo r  G a u s s i a n  s ta t is t ics  in 

j o i n t  w o r k  wi th  H a r g e r  in [4] w h i c h  a lso  i n c l u d e s  a p r ac t i ca l  a p p l i c a t i o n  to an  

op t i ca l  c o m m u n i c a t i o n  p r o b l e m .  

F ina l ly ,  there  is the  q u e s t i o n  o f  i m p l e m e n t a t i o n .  Th is  is a h a r d  a n d  m o s t l y  

u n a n s w e r e d  q u e s t i o n  e v e n  fo r  the  sca la r  case.  F o r  ve ry  few cases  we  do  k n o w  

h o w  to i m p l e m e n t  (wi th  dev ices )  the  o p t i m a l  m e a s u r e m e n t s  w h i c h  resu l t  f r o m  

the  s o l u t i o n  o f  the  p r o b l e m .  In  t he  v e c t o r  case,  we  h a v e  in addition to f ind the  

aux i l i a ry  sys tem a n d  s i m p l e  m e a s u r e m e n t  n e c e s s a r y  to i m p l e m e n t  a p .o .m.  

T h e  o n l y  e x a m p l e  o f  an  exp l i c i t  c o n s t r u c t i o n  a p p e a r s  in [4] a n d  fu r the r  

g e n e r a l i z a t i o n s  in [16]. 

Acknowledgment 

I would like to thank Bob Harger for listening to countless arguments and providing constructive 
criticism which led to improvements of the original version of this paper. 

References 

1. Akhiezer NI, Glazman IM (1963) Theory of Operators in Hilbert Space, vol II. Frederick Ungar, 
New York 

2. Arrow KJ, Hurwicz L, Uzawa H (1958) Studies in Linear and Non-Linear Programming. Stanford 
University Press, Stanford, CA 

3. Baras JS, Harger RO, Park YH (1976) Quantum mechanical linear filtering of random signal 
sequences. IEEE Trans Inform Theory 22:59-64 

4. Baras JS, Harger RO (1977) Quantum mechanical filtering of vector signal processes. IEEE 
Trans Inform Theory 23:683-693 

5. Belavkin VP (1974) Optimal linear randomized filtration of quantum boson signals. Problems 
Control Inform Theory 3:47-62 

6. Belavkin VP (1976) Proceedings of the 4th International Symposium on Information Theory, 
Leningrad, part I, pp 17-19 

7. Berberian SK (1966) Notes on Spectral Theory. Van Nostrand, New York 
8. Dixmier J (1969) Les algebres d'operateurs dans l'espace Hilbertien. Gauthier-Villars, Paris 
9. Helstrom CW (1967) Detection theory and quantum mechanics. Inform and Control 10:254-291 

10. Helstrom CW, Liu JW, Gordon JP (1970) Quantum mechanical communication theory. Proc 
IEEE 58:1578-1598 

11. Helstrom CW, Kennedy RS (1974) Non-commuting observables in quantum detection and 
estimation theory. IEEE Trans Inform Theory 20:16-24 

12. Helstrom CW (1974) Cramer-Rao inequalities for operator-valued measures in quantum 
mechanics. Internat J Theoret Phys 

13. Hille E, Phillips RS (1957) Functional Analysis and Semi-groups. Colloquium Publication. 
American Mathematical Society, Providence, RI 

14. Holevo AS (1972) Statistical problems in quantum physics. Proceedings of 1972 Soviet-Japanese 
Symposium on Probability and Statistics, Vol. 1, pp 22-40 

15. Holevo AS (1973) Statistical decision theory for quantum systems. Multivariate Anal 3:337-394 
16. Holevo AS (1975) Some statistical problems for quantum Gaussian states. IEEE Trans Inform 

Theory 21:533-543 



214 J.S. Baras 

17. Holevo AS (1976) Proceedings of the 4th International Symposium on Information Theory, 
Leningrad, part I, pp 150-152 

18. Holevo AS (1974) The theory of statistical decisions on an operator algebra. Dokl Akad Nauk 
SSSR 218:1276-1281 

19. Jauch JM (1968) Foundations of Quantum Mechanics. Addison-Wesley, Reading, MA 
20. Luenberger DG (1969) Optimization by Vector Space Methods. Wiley, New York 
21. Mitter SK, Young SK (1984) Integration with respect to operator-valued measures with applica- 

tions to quantum estimation theory. Ann Pura Appl (III) CXXXVII:l-39 
22. Parthasarathy KR (1967) Probability Measures on Metric Spaces. Academic Press, New York 
23. Prugovecki E (1971) Quantum Mechanics in Hilbert Space. Academic Press, New York 
24. Rudin W (1966) Real and Complex Analysis. McGraw-Hill, New York 
25. Treves F (1967) Topological Vector Spaces, Distributions and Kernels. Academic Press, New 

York 
26. Varadhan SRS (1968) Stochastic Processes, Courant Institute of Mathematical Sciences, NY 

University Lecture Notes 

Accepted 12 January 1987 


