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Existence,  Uniqueness,  and  Asymptotic 
Behavior of Solutions to a Class of Zakai 
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Abstruct --Conditions  are  given to guarantee  the existence and  unique- 
ness of solutions to the Zakai equation  associated w i t h  the  nonlinear 
filtering of diffusion  processes.  The  conditions permit  stronger  than poly- 
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nomial growth of the  coefficients, and  depend  instead on the  relative 
growth  rates. The results are  derived  adapting,  through a  sequence of 
exponential  transformations,  the  classical existence and uniqueness theo- 
rems  for  parabolic PDFs due to Besala to the  “robust” form of the Zakai 
equation. In this process we also obtain  sharp  estimates  for  the  tail 
behavior of the conditional  density.  Examples,  including  observations 
through a polynomial sensor and estimation of  the  state of a  “bilinear” 
system. are  worked out  in  detail. Our results  are compared to those of 
Fleming and Mitter, Pardow, and Sussmann  who,  among  others,  have 
obtained existence and uniqueness  theorems  for  a more limited class of 
problems by different  methods. 
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I. INTRODUCTION AND SUMMARY OF RESULTS’ 

T HE general nonlinear filtering problem for diffusion 
processes  involves computing the conditional distribu- 

tion of a diffusion x ( t )  given nonlinear observations of 
x (  t )  in additive Gaussian noise. Conditional statistics whch 
exist  and are of interest may  be computed from this 
distribution. If the conditional distribution is absolutely 
continuous with  respect to Lebesgue  measure, then it has  a 
density which, at least formally,  satisfies a stochastic par- 
tial differential equation-the  Duncan-Mortensen-Zakai 
(DMZ) equation. Background information on  this equation 
and other aspects of the nonlinear filtering problem may 
be  found  in the anthology [3]. We are particularly in- 
terested  in conditions for the existence,  uniqueness, and 
representation of solutions to the DMZ equation and in 
the tail  behavior of the resulting solutions.  These are 
important considerations for the numerical treatment or 
small parameter  asymptotic analysis  (see, e g ,  [2 ] )  of non- 
linear filtering  problems. 

When the state process x ( t )  evolves in a  bounded  do- 
main in R“, or  when the state space is unbounded,  but the 
coefficients of the DMZ equation are bounded  and possi- 
bly  degenerate, then a satisfactory existence and unique- 
ness  theory  is  available  [4]-[6].  When,  however, x ( r )  evolves 
in R” and the coefficients of the DMZ equation are un- 
bounded functions of x (but bounded in t ) ,  then existence 
and uniqueness  results are only  available for “mildly” 
unbounded coefficients [ 11,  [7]-[ lo]. In thls paper we prove 
that the nonlinear filtering  problem  is  well-posed  for a 
large  class of systems  with  strongly unbounded coefficients 
(greater than polynomial  growth in x ) ,  and we provide 
precise estimates for the tail  behavior (as 1x1 + co) of the 
conditional density. These results are stated in detail and 
proved  in  Section 11. Among the  examples  covered  by our 
conditions are systems  whose  coefficients  have  polynomial 
growth in 1x1 and the “bilinear” filtering problem.  These 
special  cases are analyzed  in  Section 111. 

Our  approach is to apply the methods of Besala [ 111 for 
classical parabolic PDE‘s to the “robust” form of the 
DMZ equation. Besala’s  theorems are based on  a maxi- 
mum principle and the use of weight functions-standard 
devices  for the treatment of  PDE‘s.  Since the robust form 
of the DMZ equation may be  regarded as a parabolic PDE, 
it is entirely appropriate that it  be  treated by classical 
methods. 

To set the problem, we consider the pair of It6 stochastic 
differential equations2 

d x ( t ) = f ( x ( t ) ) d t + g ( x ( t ) ) d a ( t )  

dy ( t )  = h ( x ( t ) )  dt + d P ( t )  

x(0)=xo,  y(O)=O, O<t<T<co.  (1.1) 

ayounced in [l]. [2].  
’Some of the  results of this paper [when g ( I )  = 1 in (1.1)] were 

(x E R“, E R’”) is treated by similar  methods.  The  general  vector  case 
-Only the  scalar  case is treated here. In [ 181, a class of vector problems 

appears to be open. 

Here a,  f l  are standard R-valued  Wiener  processes, mutu- 
ally independent, and  independent of x ,  which is a  random 
variable with densityp,(x). The  functionsf, g ,  h are smooth 
(f E C’(R) ,  g ,  h E C 2 ( R ) )  and may  grow rapidly as 1x1 + 

co. The filtering problem for ( 1 . 1 )  is to estimate x ( t )  given 
the u algebra = u{y (s ) ,  0 < s G t } .  

Formally, the conditional density of x ( t )  given  is the 
normalization of U(t ,  x )  >, 0 which  satisfies the DMZ 
equation3 

d U ( t ,  x )  = [ a ( x ) U , ( c   x ) +   ~ ( X ) V X ( t >   x )  

+ h ( x ) U ( t ,   x )  dy ( t )  

+ c( x )  U( t ,  X ) ]  dr 

U ( O , x ) = p , ( x ) ,  O < t < T  (1 -2) 

where 

We  have  used the Fisk-Stratonovich  version of the sto- 
chastic calculus in writing (1.2). We shall study this equa- 
tion indirectly by studying its associated “robust” form. 

Introducing 

~ ( t , x ) = e x p [ - h ( x ) y ( t ) l U ( t , x )  (1.4) 

we find (formally) that V satisfies an “ordinary” parabolic 
PDE, pathwise  in y( t ) ,  0 d t < T 

? ( t ,  x )  = ~ ( x ) v ~ , ( t ,   x ) +  N t ,  x ) v X ( t ,   x )  

~ ( 0 ,  X )  = p , ( x ) ,  0 G t < T ( 1  3 )  
+ a t ,  x ) V ( t ,   x )  

where 

A ( x )  = a b ) ,  
B ( r ,  x )  = b ( x ) + 2 . ( x ) h , ( x ) y ( t )  

c(t,4 = c ( x ) + b ( x ) h , ( x ) y ( t )  

+ a ( x ) [ h , . X ( x ) y ( t ) + h ~ ( x ) ~ 2 ( t ) 1 .  (1.6) 

Equation (1.5)  is the “pathwise-robust’’  form of the filter- 
ing problem. We will call  it the “robust”  DMZ equation. 
(See [I21 for a discussion of this equation.) It is the starting 
point for our study. 

For each  “given” path y ( t ) ,  0 G r G T, (1.5)  may  be 
regarded as  a classical PDE. Since  the  process y is equiva- 
lent to a Brownian  motion under  an invertible change of 
measure, we can  assume that the paths y ( t ) ,  0 d t d T are 
Holder  continuous [ 131; therefore, the  coefficients  in  (1.6) 
are jointly locally Holder  continuous in ( x ,  t )  whenever 

’The  paper [12] by Dabis  and  Marcus in [3] has an especially  clear 
derivation. 
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assumption Al) of Section I1 holds.  [Thus, we could let 
f, g, h in (1.1) depend on t as long asf,f,,  g, g,,  g,,, h,  A,, 
h,,, h ,  were jointly locally Holder  continuous in (x, t).] 
Because the transformation (1.4)  is invertible and (1.2), 
(1.5) are linear, existence and uniqueness  results for (1.5) 
translate directly into  corresponding results for (1.2). 

Under various conditions on the relative  growth of f, g, 
h (specifically, on f/g,  (f/g2),, f,, h’, gh,, h,, h,,, etc. 
(see Al)-A3), Bl)-B6) in Section II), we show that (1.5) 
has a fundamental solution (Theorem l), that if the initial 
density p , ( x )  falls off sufficiently rapidly as 1x1 + CQ, then 
(1.5) has a unique solution which  falls  off rapidly (Theorem 
2), and in this  case, that the tail  behavior  may  be computed 
exactly  (Theorem  3).  These results are applied to the  case 
whenf, g, h are polynomials, and to the bilinear case  when 
g(x) = x (Theorem  4) in Section 111. The conditions im- 
posed on f, g exclude the occurrence of “explosions” in the 
x process in an entirely natural way. 

Existence and uniqueness of solutions to (1.5) in the case 
g(x) bounded (essentially g(x) = l), f E C 3 ( R n ) ,  f and of 
bounded, h(x) of polynomial  growth,  and p , ( x )  rapidly 
decaying  have  been  derived  by  Fleming and Mitter [8] 
using a nonlinear transformation leading to an associated 
control problem. In [9] Sussmann treats the case f = 0, 
g = 1, h(x) = x3 using  measure theoretic arguments. He 
also obtains growth estimates on the conditional density. 
Pardoux [lo] has also treated nonlinear filtering problems 
with  mildly unbounded coefficients (f, h have linear 
growth, g  bounded) starting with  methods  somewhat like 
those used  here. The final form of his results is,  however, 
very different from ours. His earlier paper [4] treats the 
case f, g, h bounded using arguments based on coercivity. 
It also contains many other interesting ideas. Michel[6]  has 
analyzed  regularity properties of solutions to Zakai equa- 
tions with smooth f, g, h. Her results address bounded 
f, g, h ,  however, and focus  on  existence of conditional 
densities. Her  methods  are completely different from  ours. 

11. CONDITIONS FOR EXISTENCE AND UNIQUENESS, 
AND GROWTH ESTIMATES 

Our  assumptions  on the coefficients in (1.6) are stated in 
terms of the original functions f, g, h. To state these  suc- 
cinctly, we  will use the following  relative order notation. 

Definition: Let F,G: R + R and 

L =  lim suplF(x)/G(x)l E [ O , C Q ] .  
1x1 + 30 

T h e n F = O ( G ) i f L < c o a n d F = o ( G ) i f L = O .  

the following: 

continuous; 

The coefficients of the diffusion x are assumed  to satisfy 

AI) f E C ’ ( R ) ,  g E C’(R) ,  f,, g,, are locally Holder 

Aq4  g(x)  >, A > 0, Vx E R and some A; 
A3) - /o”(f/g2)(6) dE > M ,  Vx E R and some M ;  

4See, however, the second example in Section 111. 

A4) (f/g2>, = d f 2 / g 4 ) ,  f, = o(f2/g2); and 
A5) The martingale problem for ( f, g) is  well-posed. 
The last condition implies that the stochastic differential 

equation for x has a unique weak solution for all t > 0. A 
sufficient condition for this is the existence of a Lyapunov 
function for the backwards  Kolmogorov equation associ- 
ated with the process x [14].  If the integral in A3)  diverges 
to + 00 as 1x1 + 00, then its exponential could  serve  as the 
Lyapunov function. If the martingale problem is not well 
posed, then the process x may  have  “explosions”  (escape 
times  which are finite with probability one). In this  case 
the conditional distribution of x(t)  given  may  have 
singular components which are not computed by the DMZ 
equation. 

The observation function h is  assumed to satisfy the 

B1) h E C 2 ( R ) ,  h,, is  locally Holder continuous; 
B2) either g’h,,,  (g’h,), = o ( h 2 ) ,  or g’h,,, (g’h,), = 

B3) either gh, = O(h) or gh, = o(f/g); 
B4) either (g’),, = o ( h 2 )  or (g’),, = o(f2/g2); 
B5) one of the two mutually exclusive  cases holds: 

following. 

o ( g 2 h 3  

a) either h = O(f/g) or h = O(gh,);  or 
b)  both f /g= o ( h )  and  gh, = o ( h ) ;  in addition, 

gh,,  g,h = o(h2> 
B6) in case  B5a), 

and in case  B5b), 

1x1 lim + + 00 l[(h/g)(t) dt l=  + 30. 

Remark 1: The growth conditions are relatively  easy to 
understand in the case  when f, g, h are polynomials,  espe- 
cially f (x)  =fox’ ,  g(x) = go(l + x ~ ) ~ ,  h ( x )  = box'. This 
case is  discussed in detail in Section 111. While  many 
systems  with  polynomial  coefficients are covered by 
Al)-B6), the conditions do not permit 

a) too rapid growth of h when g is superlinear ( k  > 
1/2); or 

b) unstable f with g sublinear. 
Nor are cases  like f = O ,  g=1,   h (x)=xs inx  permitted 
(B6)  is  violated), or cases in which h ( x )  is  highly  oscilla- 
tory. 

Remark 2: The conditions Al)-B6) are not necessary; 
different choices of the weight functions used in the proofs 
would  lead to different growth restrictions. In fact, one 
could  consider optimizing the choice of the  weight func- 
tions. 

In the  analysis of the robust equation (1.5) we use 
certain exponential transformations which  have parameters 
that are functionals of the path y ( t ) ,  t 0. To express this 
dependence, we will use a sequence of stopping times 
{tk}z=o, with to = 0 and t k  + + 00 as k -+ 00 which depend 
on the path y ( t ) ,  t > 0. (These are defined in the proof of 
Theorem 1.)  If V ( t ,  x)  is the solution of (lS), then we 
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define 

where 

. .  . 

in case  B5b) 

h ( x )  in case  B5a) 
@ 2 ( x )  = ( ix( h / g ) (  t )  d t  in case B5b). (2.2) 

The  parameters a, /3,,{/3,", y k ,  tk}T+ will be functionals of 
the path y (   t ) ,  t >, 0. (These are also defined in the proof of 
Theorem 1.) 

The function u k ( t ,   x )  satisfies the transformed robust 
equation 

u ~ ( t , x ) = a ( x ) u , k , ( t , x ) + b " ( t , x ) u , k ( t , x )  

+ C k ( t , X ) U k ( t , X ) ,   ( t , x ) E   ( t k , t k + l ) X R ?  

i 
k=0,1,2;.-  

Po(x )exP[+o(x ) l?  k = 0 
u k ( t k , x ) =  u k - - ' ( t , , x ) e x p [ + k ( x ) - + k - ' ( x )  

+ ( y k - ' - y k ) t k ] ,  k > , l  

(2.3) 

where  for ( t ,  x )  E (t,, t,, , ) X  R and omitting the argu- 
ments 

1 
2 a(.) = -g2  

b k ( t , x ) = - 2 a # t + 2 a , -  f +2ah,y 

C k ( t , X ) = a [ ( 1 1 . t ) 2 - ~ ~ , ] - + t [ 2 a h , Y + 2 a , - f I  

+ + h,,Y)+hxY(2ax - f )  
+(a,,- f , -?h2)-y" .  1 (2.4) 

Assumption A2) guarantees that each equation in (2.3) 
and the original  (1.5) are nondegenerate parabolic equa- 
tions. Assumptions A3) and B6) together  with the con- 
straints a > 0, p2 > 0, p2 > I/3;kl, imply that the weight 
functions + k ( ~ )  diverge to + 00 as 1x1 -+ m. The  remaining 
growth conditions serve to identify the dominant terms (as 
1x1 -+ co) in the potential ck( t ,  x )  in (2.3)  and  in the poten- 
tial of the adjoint of (2.3). Assumption B3) permits us to 
select the functions and the constants y k  so that these 
potentials are nonpositive. This in turn permits the use of a 
maximum  principle. 

Under these assumptions we shall  show that the robust 
equation (1.5) has  a  fundamental solution which  may be 
used to construct a  unique solution to the DMZ equation 

within a certain class of functions. To describe this  class, 
we define the constants 

9; = lim supIg(@i)xl/Ch2 + f 2 / g  1 2 1/2 

1x1 -so 

vi = lim inflg($i),l/[h2 + f 2/g2]1/2, i = 1,2. 
1x1 fm 

(2.5 ) 

The  assumptions imply ql, v l  E [0,1] and q2,  v2 E [O,co)  
when  B5a) holds, while q1 = O = v , ,  q 2 = 1 = v 2  when 
B5b)  holds. The  assumption  that either B5a) or b) holds 
implies (v, + v2)  > 0. This will prove to be essential in 
establishing a lower bound  on the unnormalized condi- 
tional density  (Theorem  3). 

Finally, we remind  the reader that a fundumental  sohtion 
of  (1.5) is a real-valued function r( t ,   x ;  s, z )  defined for 
0 < s < t Q T ,  x ,  z E R, which  satisfies the following condi- 
tions: 

a) As a function of ( f ,  x ) ,  r has continuous deriva- 
tives r,, r,, r,, and satisfies  (1.5) in (s, T ) x  R; 

b) If p ( x )  is continuous  and has compact support, 
then 

lim jco r(t ,  x ;  s, t ) P ( t )  d t =  P ( Z ) .  

X + Z  
r J s  - x  

Theorem I :  If AI) -  A5), B I )  - B6) hold, then for each 
Holder continuous path { y ( t ) ,  0 < t < co} of the observation 
process there exist constants a, { / 3 f , y k } ; f _ o ,  BZ and an 
unbounded monotone increasing  sequence of times {tk}T=o, 
to = 0, (which may depend on the path) such that for each 
k >, 0 there exists a fundamental solution Fk(t ,  x ;  s,  z )  of 
(2.3). Then 

T k ( t ,   x ;  s, z )  
= F k ( t ,  x; s, z)exp  [+'(z)- +"(x)+ y k ( t  - s)] 

(2.6) 

is a fundamental solution of the robust DMZ equation (1.5) 
on (t,, t,+ Moreover, f,(t, x ;  s, z )  satisfies the inequali- 
ties 

0 < f,(t, x ;  s, z )  < C J ( t  - s y 2  (2.7) 

for some constant c, and x ,  z E R ,  t E ( t k ,  tk+ I )  and 

/-:Pk( t ,  x; s, z )  dz < 1 (2.8a) 

~ - = p , x ; s , z ) d x d .  (2.8b) 

Theorem 2: Suppose A I ) -  A5), B1)- B6) hold. Let p , (x )  
be  continuous p,(x)  > 0 and ussume that there exist con- 
stants e, > OI i = 1,2, such that 0 < dlq ,  + d2q2 < 1 ,  and 

P , ( x ) ~ ~ ~ [ ~ , ~ , ( x ) + ~ , I ~ , ( x ) I ]  < M ,  V X E  R 

(2.9) 

for some M < m. Then for any constants i ? l ,  o 6; < ei, 
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i = I ,  2, there exists a unique  solution to the DMZ equation 
(1.2) within the class of functions satisfying 

Em s u p ~ ( t ,  x)exp [&+l (x )+  ~,I+,(x)I] = 0 ,  
1x1 + 30 

v t  2 0. (2.10) 

This solution satisfies U( t ,  x )  = U k ( t ,  x ) ,  t E ( tk ,  t k+, )  

U k ( t ,  x )  = e * ( x ) y ( r ) / - : r k ( t , X ;  2 ,  t k ) U k - ' ( t k ,   z )  dz 

UO(O,x)=p, (x)  k=1,2;.. (2.1 1) 

where rk is defined by (2.6). 
Theorem 3: Suppose AI)-   Aj) ,  B1)- B6) hold, and as- 

sume that when  case B5) a) holds with v l  > 0, v2 > 0, that 
- f ( x ) s g n ( x )  and h , (x )sgn(xh(x) )  are nonnegative for 
1x1 sufficiently large.5 Let p , (x)  satisfy the conditions in 
Theorem 2, and  suppose further that there exist M,, > 0, 
KO > 0 such that 

Moexp[ - Ko+(x ) ]  < P,(x)  vx E R (2.12) 
where 

+ ( x >  = + I ( X ) + I + Z ( X ) I .  (2.13) 

Then for any T < co, there exist positice constants Mi, M2, 
K , ,  K, ,  which may depend  on the  path { y (  t ) ,  0 < t < T }  such 
that the solution of the DMZ equation given by (2.11) 
satisfies 

M, exp [ - ~ , + ( x ) ]  < ~ ( t ,  x )  < M,~XP[  - K,+(x)]  
V ( t , x ) E [ O , T ] X R .  (2.14) 

The proofs of Theorems 1 and  2 are based on the results 
of  Besala [ll]. These  provide a very  general  existence 
theory for the Cauchy problem for parabolic equations on 
a half-space with unbounded coefficients. The key  result 
which we shall  use  is the following. 

Lemma I :  (Besala [l l])  Let a ( t ,   x ) ,   b ( t ,   x ) ,   c ( t ,  x )  (real 
valued) together  with  a,, a,,, b, be  locally Holder continu- 
ous in 9 = ( to ,   t , )X   R .  Assume that 

a) a(t l  x )  2 h > 0, V ( t ,  x )  E 9, for some constant h 
b) c( I ,  x )  < 0, V( I :  x )  E 9 
c) ( c  - b, + a,,)( t ,  x )  < 0, V( t ,  x )  E q. 

Then  the Cauchy problem 

u l ( t , x ) = a ( t , x ) u , , + b ( t , x ) u , + c ( t , x ) u  

u ( O , x ) = u , ( x ) ,   ( t , X ) E Q  (2.15) 

has a fundamental solution r( I ,  x ;  s, z )  which satisfies 

o < r ( t ,  x ;  s, z )  G c / ( t  - s)''' (2.16) 

for some positive constant c and 

/ p x I ' ( t , x ; s , z ) d z < l  

/ - x x r ( t , x ; s : z ) d x < l .  (2.17) 

x 

'This last condition is satisfied whenever h ( x )  is a polynomial. 
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Moreooer, if u, (x )  is continuous and bounded, then 

u ( t , x ) = J m   r ( t , x ; t O , z ) u o ( z ) d z  (2.18) 
--3o 

is a bounded  solution of (2.15). 
In addition, we  will need a technical  result  which identi- 

fies the dominant behavior of the potentials of (2.3) and  its 
adjoint. Let 

k - - k -bk+ 
' a d j  - x ax, (2.19a) 

1 
2 

- - ( h2 + f 2 / g 2 )  

c:,, = -g2(+xk - hxY + f / g 2 I 2  

1 
2 (2.19b) 

+ck- k 
' n d j  

= ( a ,  - f +2yahx -2a4()x. (2.19~) 

Note 

ck = c&, + [a(  +Ex - yh,,) - y k  + c f ]  . (2.20) 

Lemma 2: Suppose AI) -  A5), B1)- B6) hold. Let {tk}&, 
to  = 0 be monotone increasing and msume a > 0, Is, > 0, 
P2 > l , 8 f l  for all k 2 0. Then, for i = 0,l 

[ a ( + ~ , - ~ ~ ~ ~ ) + ~ ~ f ( t , ~ ~ - ~ ~ ] ( t ~ ~ ) = ~ ( ~ ~ , , )  (2.21) 
uniformb in t E ( tk ,  t k +  for all k 3 0, and for each Holder 
continuous path of the observation process { y(  t ) ,  t 2 O}. 

Proofi In view  of (2.2),  (2.19),  (2.20) it suffices to 
show that 

axx,fx,(82hx)x~g2h,,~g2(f/g2)x incaseB5a) 

ax,,fx,(g2hx)x,g2~xx,ghx,g,h incaseB5b) 

are all o( c:,,). This is immediate from the definition of c,kS, 
and A4), B2)-B5). (For details, see Appendix I.) Q.E.D. 

Proof of Theorem I :  From Lemma 1 it suffices  to  choose 
the parameters a, P,, {Bf, t k ,  y k > r = o  with to = 0, hn&,mtk  
= + x, so that the potentials ck,  c,kdj are nonpositive on 
(t,, t,, ,)X R for all k > 0. If the potentials are bounded 
above for y k  = 0, then for y k  > 0 sufficiently  large,  they are 
nonpositive. From Lemma 2 the potentials are  bounded 
above whenever c:,, is bounded above. From the triangle 
inequality and the definition of the constants vi, c:,, is 
bounded  above provided 

1 
2 la - 1191 < - 

1 I in case  B5a) 
ID2 + (Pl" - Y)I% < 7 

18, f 1 in case B5b). (2.22) 

The t condition arises  since +,(x) may not be  sign 
definite. 

Recall that g, ,  9, are finite by B3), B5). Let 0 < E < f ~ ,  
and define 

to = 0 

tk+l= hf { I :  I y ( t ) -Y( t , ) l=c} .  (2.23) 
t z tp 
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Since the covariance of the observation process  is nonde- 
generate, it follows that l i q - m f k  = + 00. In case  B5a), 
take (Y = 1, pf = y ( t k ) .  and 0 < p2 < i77, and in case  B5b) 
take a =.fit = 0 and 0 < /3, < 1/q2. Then (2.22) holds, and 
the  parameters y k  may be chosen large enough so that 
Lemma 1 applies. Q.E.D. 

Remark: In some  cases  it is not necessary to let the 
parameters  depend  on the y path. For example, if g ( x )  'is 
sublinear in growth and h is of polynomial  growth  with 
h = O(f/g), then case  B5a) holds, 77, = 0, and we can take 
c ,  = +co. 

Proof of Theorem 2: Let 6, E be constants with 

0 < ~ < - ( 8 , - 8 , )  1 
4 

and define the sequence of stopping times ( f k } ~ = ~  by 
(2.23). Also, let 

a = - + - ( e , + 8 , )  1 1  
2 2  I 

a=p,k=o 
in case B5 b) (2.25) 

and 

~ z " ( t ,  x )  = u k ( t ,  x)exp( ~ [ + , ( x ) +  [ I  + + : ( x ) ] " ' ] ) .  

(2.26) 

Then H k  also satisfies an equation of the form (2.3).  Let E k ,  
E:dj-be the potentials of this equation and its adjoint, and 
let c,kss denote the function in (2.19b)  with +k replaced  by 
J k .  The  assumption (2.9) guarantees that the initial data 
u k ( t k ,  x ) ,  H k ( r k ,  x )  of these equations are bounded pro- 
vided 

a < e , .  a + 6 < d ,  

/ 9 , k ( & ' - y ( t k ) ) < o 2 ,  incaseB5a) 

pZ *(si" - Y ( ' k ) ) + '  G I 
p,kpf<8,,  p2kpf+6<02 incaseB5b) 

(2.27) 

for all k 2 0. As in the proof of Theorem 1, there exist 
parameters y k  such that c k ,  c k ,  &;, E,kd; are nonpositive 
whenever cekS, c',",, are bounded above. A sufficient condi- 
tion for the latter is that there  exist constants A ; ,  i = 1,2, 

0 < A ,  + A ,  < 1, such  that for all k 2 0, 

la - 1177, 4 1 

Ip, k p;l< A , ,  I& f /9: + 61 A ,  in case B5b). 
(2.28) 

These inequalities are satisfied  by Ai = q$,. From Lemma 
1 uk, H k  exist  and are  bounded, U k  is given  by  (2.1 1). Since 
6 > O ,  u k ( t , x ) + O  as Ix I+co.  Applying the maximum 
principle as in [ 151, [ 161, uk is unique in the class of 
functions which tend to zero as 1x1 + co. (The  method of 
[ 151, [ 161 only applies to this  class.) In the original coordi- 
nates this unique class  consists of those functions satisfying 

~ ( t . x ) e x p [ ~ ~ ( x ) - y ~ r - h ( x ) ~ ( t ) ]  + O  

as 1x1 -+ so. (2.29) 

Hence, U ( t ,  x )  is unique in the  class of functions satisfying 
(2.10)  provided 

18, f 6;" > 8, in case B5b). (2.30) 

The choice of parameters (2.24),  (2.25)  satisfies all the 
conditions (2.27),  (2.28),  (2.30) and the result  follows. 

Q.E.D. 
Proof of Theorem 3: The lower bound in (2.14) is a 

simple consequence of the comparison theorem for para- 
bolic equations (see, e.g., [ 161). Suppose w( t ,  x ) ,  wj( f ,  x ) ,  
i = 1,2, satisfy 

w , ( r , x ) G w ( r , x ) < w , ( r , x )  

( T w , ) ( t ,  x )  < (T\v)(t, x )  < ( T 4 ( t ,   x )  

( t , x )  E ( r , s ) X  R (2.31) 

where T = a / &  - I? is a parabolic operator and that 
w. w,, w, 9 0 as 1x1 --f co uniformly for f E ( r ,  s). Then 
w , ( t ,  x )  < w(t, x)  < w,(t, x )  for  all ( t ,  x )  E ( r .  s ) x  R .  

Now  let the parameters a, p,,{p;", f k ,  yk}r=o be defined 
as in the proof of Theorem 2, and let ( r ,  s) be any  one of 
the intervals ( t k ,  t k +  ,), k > 0. Let e be the operator in the 
transformed robust equation (2.3), and define 

for some constants A;, p i  to be  chosen and 

~(x)=~,(x)+[1++:(x)]~' ' .  (2.33) 

Let t :ss( i )  be the function in (2.19b)  with G k  replaced by 
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p.,&x)+ lC/k. Then by  Lemma  1, 

Tw, = - t t s S ( i ) + h j  + o ( e S s ( i ) ) .  (2.34) 

In case  B5a), - t:Ss(l) is bounded above if, for all 1x1 
sufficiently  large, 

I-s!Ax)(f/g2)(P1 +a- 1) 

+sgn(x)h,(P,k - Y + s g n ( w 3 2  +Pl))l 

(2.35) 

Because v l  + v2 > 0,  this is ensured by choosing p,  so large 
that 

(p l  + a- l ) v ,  > 1 if v I  > 0 (2.36a) 

(PI + a  * ( P I  - Y))V2 > 1 if v2 > 0. (2.36b) 

Similarly, in case  B5b), v I  = 0, v2 = 1, and - c“,“,, (1)  is 
bounded  above if y, is chosen so large that (2.36b) holds 
with ~ ( t )  formally  set equal to zero. Also, (2)  is 
bounded  above if y2 = 6 [recall  (2.24)].  Hence, Tw,, - Tw, 
are  bounded above, and there exist constants hi so that 
(2.31)  holds. This implies that (2.14) holds for t E ( t k ,  t,, ,) 
for some constants M:, K,”. The proof  is  completed by 
repeating this argument  for each of the intervals 
( t k ,  tk+ , ), t k  < T and defining 

K,=max(K,k),  ~ , = m i n ( ~ , k )  

K,=min(K,k) ,  M,=max(M,k). (2.37) 

Q.E.D. 

k k 

k k 

111. EXAMPLES 

To illustrate our results and make contact with other 
recent work on nonlinear filtering (e.g.,  [7]-[10]),  we con- 
sider a class of systems  with polynomial f, h. In particular, 
we consider the case of a Wiener  process  observed through 
a polynomial sensor. We also obtain a new  uniqueness 
result for a generalization of the bilinear problem studied 
in [17]. 

Example 1: Polynomial  coefficients. 
Let f, h be polynomials  with f of odd degree and stable, 

1.e., 
2 q -  1 

f ( x ) =   f i x i ,  F A - f  2q- I > 0 
i = O  

S 

h ( x ) =  hjx’, H A h , * O  (3.1) 
j = O  

where  q, s are positive  integers.  Suppose 

g(x)=G(1+x2)r’2,   G>O (3 4 

where r E [0, 00). Our conditions for existence and unique- 
ness and estimates of the asymptotic  behavior of the den- 
sity depend  on whether or not g(x) is  globally Lipschitz 
and  on the degree of h ( x )  relative to  the degree (or 
stability) off( x).  There are two  cases  covered by  Theorems 
1-3.6 

Case I :  r E [0,1], q > r ,  s > 1, q 2 1. 
The restrictions Al)-A5), Bl)-B6) applied here require 

g( x)  to satisfy a linear growth constraint r E [0,1], that f be 
at least a cubic polynomial, q z 2,  when g(x) is of linear 
growth, r = 1, and that h(x) be noncon~tant.~ In defining 
the transformation (2.2) only the asymptotic behavior (1x1 
-, oo) played a role in the proofs of Theorems 1-3. There- 
fore, I l / k ( ~ )  may be defined in terms of the  monomials 

+ , ( X ) = ( F / G ~ ) X ~ ‘ ~ - ” / ~ ( ~ -  r )  

{ 
Hx’, r > l   o r r < l   a n d r + s ~ 2 q - I  

+, (X)= ( ~ / ~ ) x ~ - ~ + ~ / s - r + l ,  
r < l   a n d r + s > 2 q - 1 .  

(3.3) 
Then the dominant behavior of the potentials of the trans- 
formed robust equation (2.3) and its adjoint are char- 
acterized  by the constants 

r + s > 2 q - 1  
r + s < 2 q - 1  

q1 = V I  = F/G (3.4a) 

+ f2/G2))”’ ’ 
r + s = 2 q - 1  

r = l ,   r + s < 2 q - 1  
r = l ,   r + s > 2 q - 1  

r < l ,   r + s < 2 q - 1  
r < l ,   r + s > 2 q - 1 .  

(3.4b) 

Notice  that g ,  + qz > 0. 

satisfies 
Now suppose  that the initial density p,(x) in (1.2) 

P,(.>exP[~l91(x)+~21~2(X)Il  =0(1) (3.5) 
for some  positive constants d l ,  0, that satisfy 0 < 61ql + 
02q2 < 1. Then  from Theorem 2 the DMZ equation has a 
unique solution in the class of functions satisfying 

~ ~ ~ ~ ~ ~ ~ ~ P C ~ l ~ l ~ ~ ~ + ~ 2 l + 2 ~ ~ ~ l l =  4 1 )  (3.6) 

on the parameters q. r,  s are obtained from assumptions A4), BZ)-SS), 
‘In m e  1, gh, = q h ) ,  whereas in case 2, h = o(gh,). The conditions 

using the fact that when &(x), i = 1,2, are asymptotic to monomials of 
degrees pi. then F, = o ( F , )  [resp. F2 = O(F,)] if and only i f p ,  < p z  [resp. 
p ,  < p 2 ] .  Also, the condition s 2 1 satisfies B6), while the restriction that 
f ( x )  is odd and stable is a consequence of A3). 

’This case includes the linear filtering problem when f( x) = ax + b, a 
0, g( x) = 1, h ( x )  = cx + d ;  when a > 0, assumption A3) is violated. 
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for all r 2 0 and 8; E (0, e,), i = 1,2. Suppose in addition, 
that 

MexP[- ~ 1 @ , ~ ~ ~ - ~ 2 l @ , ~ ~ ~ l 1  Q Po(.) (3.7) 

for some  positive constants di, M. Then  from  Theorem  3? 
for any 0 Q t ,  Q t , ,  there  exist constants M,, K, depending 
on the observation path such that 

M ,  exp [ - X , I X I ~ ]  Q ~ ( t ,  x )  Q ~ , e x p  [ - ~ ~ 1 x 1 ~ 1  
(3.8) 

where 

s - r f l ,   r < l a n d r + s > 2 q - l  
P =  ( max[s,2(q - r ) ] ,  othemise.  (3.9) 

Although  it is not covered  in the present case, the 
situation r = 0, f and its first  two  derivatives are bounded, 
and h is asymptotic to a nonconstant polynomial, can be 
easily treated by adapting the arguments in Theorems  1-3. 
In particular, the inequalities  (3.6), (3.8) hold  with p = s + 1, 
and this result  overlaps [8], [9]. For example, i f f  = 0, g = 1, 
h ( x )  = hsxS ,  h ,  * 0, then 

p = s + l  

0 < K, < Ih,l/(s + 1).  (3.10) 

This was obtained by  Sussmann for s = 3 in [9]. 
Case 2: r > 1, q > r + is, s >, 1, q >, 2. 
Here g ( x )  is of superlinear  growth, f (x)  is at least a 

cubic polynomial, and h ( x )  is dominated, as indicated, by 
the dynamics of the  state process. In this  case the asymp- 
totic behavior of the conditional density  is the same as  that 
of the a priori density [of x ( t ) ] .  To see  this,  let G2 = o(G1). 
Thus, the dominant  part (as 1x1 -+ co) of the potentials of 
the transformed robust equation (2.3) and  its adjoint are 
given  by 

C,kss = -g2(x)+j:[+j: -(f/g2)l(x)+-o(f/g')(x). 
1 
2 

(3.11) 

Since 77, = 1, q2 = 0, we can in fact take @ ( X )  = C U @ ~ ( X ) ,  

independent of k. Thus, the  results  (3.6). (3.8) of case 1 

There are two interesting classes of problems with  poly- 
nomial  coefficients not covered here: 1)  when g has super- 
linear growth ( r  > 1) and h is strongly  nonlinear (s >, 2( q - 
r ) ) ;  and 2)  when g has at most  linear  growth ( r  Q 1) and f 
is linear and unstable (i.e., f l  > 0). In these  cases  it  may be 
possible to obtain results  by  selecting  time-varying  weight 
functions more complex than those  used  here. 

Example 2: Bilinear  filtering  problem.  Consider the sys- 
tem 

hold with 8, = 82 = 0 and p = 2(q - r ) .  

d z ( t )  =f (z ( t ) )  dt + z( t )  dcu(t) 

d y ( t )  = h(z( t ) )  dt + d /3 ( t )  

z(0) = z,? y (0 )  = 0, 0 < f < T < 00 (3.12) 

with z, having  density  p,(z), and zor a, p mutually inde- 
pendent as before.  Since z(t) will  eventually be trapped in 
either the  positive or negative  half  space, we shall arrange 
that z(t) E [0, x )  by takingf E C'(0: co) satisfying 

C1) 
\ I f (  2)) Q K(1f z)  for  some X > 0 (3.13a) 
If(0) 2 0 (3.13b) 

and by  taking p,(z) defined on (0,00) and continuous and 
integrable  there. We also  assume that h E C2(0,  x )  with 
h,, h,, locally  Holder continuous (and so. bounded at 
zer 0). 

We impose  the  following  growth conditions on f. h. 
Cl') L(z)  is bounded and locally  Holder continuous 
C2)  limzJO[f(Z)/Z1' 0 
C3)  limz,,lh(z)l/logz = fco 

C4)  lim, +,[h,Z(z)/h5(z)] = 0 
C5)  for  some constants K,, M I .  i = 1,2 

M ,  + K,Izh,(z)I Q lh(z)I Q Mz + K,lzh,(z)l. 

Note that these conditions are satisfied  when f (  z) is affine 
and h(z) is a nonconstant polynomial; we do not  consider 
the case h (z) constant. The assumptions that f ,  h and their 
derivatives are bounded at the  origin are made for  conveni- 
ence only.  They can be relaxed  by introducing more  com- 
plex  growth  restrictions. The other assumptions C2)-C5) 
are essential (to  our method). 

The DMZ equation associated  with  (3.12)  is 

d U ( t ,  z)  = -(z2U)zZ -(fU): - dl + h U d y ( t )  [: 
U(0.  z) = p,( z) ,  ( t ,  z)  E [0, T ]  x [O. m) .  (3.14) 

Because the generator  for the diffusion x in (3.12)  is not 
uniformly  elliptic, our theorems are not directly  applicable. 
If  we make the logarithmic  change of coordinates x = log z, 
then (3.8)  becomes 

dx(t)  = ( e -x f ( e -x ) - -  2 dt + d c ~ ( t )  

dy( t )  = II ( e x )  dt + d & t )  (3.15) 

and Theorems  1-3 can be applied to this  system.  Alter- 
nately, we can change coordinates directly in the DMZ 
equation. Let W ( r , x ) =  U(t , e" ) ,  x E R .  Using  (3.14),  we 
have 

l )  

d W (  t ,  x )  = ( W,, + [3/2 - e--'f( e x ) ]  W' 

+ [ 1 - ~ ( e x ) - ~ h 2 ( e ' ) ] N ' )  1 dr 

+ h (e-') W&( r ) 
W(0,  x )  = p , ( e x ) .  (3.16) 

The methods of Besala [ l l ]  as  used  in the proofs of 
Theorems 1 and 2 can be directly  applied to the robust 
version of t h s  equation. This is the line of attack which we 
shall  take. 
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These  two approaches are inherently different because Because min(v,, v 2 )  > 0 by  C5), the remainder of the argu- 
the robust form of (3.16)  does not "solve"  the filtering ments  in  the proofs of Theorems 1-3 go through, with 
problem (3.15). In fact, (3.16)  does not correspond to any appropriate simplifications due to the dichotomy of  (3.19). 
filtering problem of the form (1.1).  Nevertheless, the proofs Details are given in Appendix 11. This proves the following. 
of Theorems 1-3 go through when the weight functions Theorem 4: Suppose CI)-C5) hold.  Let #, > 0, 0 < 8,  + 
#"(X) are defined  by  (2.2)  with x = logz and q2e2 < 1, and suppose p,( z) satisfies 

+,(z> = -/zf(o/t2& I P O ( ~ ) 4 ~ , ~ ~ ~ [ ~ , ~ ( f ( ~ ) / 5 2 ) d I B , / h ( a ) l ]  

$,(Z> = h ( 4 .  (3.17)  (3.21) 

The transformations for all z E (0, co) and some M ,  > 0. Then for  any di < ei the 

v(t, x )  = w t ,  x)expC- h(e")y(t)l  DMZ equation (3.14) has a unique  solution  in  -the- c l i s  of 
functions  satisfying, for all t 2 0 

u " ( t , ~ ) = V ( t , x ) e x p [ + ~ ( x ) - y ~ t ]  (3.18) 

map (3.16) into  an equation of the form  (2.3)  where a(x)  z+o,33 lim supU(t,  a)exPl- 81Jz(f(5)/52) d5+ d,lh(Z)lJ 
=+  and 

3 
= 0. (3.22) 

bk (x )=  - 4: + y -f(z)/z + yZhz(Z)IZ=ex Moreover, if there  exist  constants M2, di, 0 < di < 9, such 

1 (3.23) 
+ y 2  [Y2h,Z(4+ Yh,,(Z)I then for all t >, 0 the  solution U(t, z)  is asymptotic to 

+yhz(z) [2z- f (z ) l+1  
1 

-f,(z)-  yh2(z)l,=,x. (3.18) 

Note that +"(X) diverges to + co as 1x1 - 00 by  assump- 
tions C2),  C3). In Section  I1  this  was ensured by assump- 
tions A3), B6) which preclude unstable, linear f. Since we 
are considering the general  bilinear problem, we must 
allow +2 to diverge to - co more  slowly than +, diverges  to 
+oo. Also because b,, $I:, in (3.18) are asymptotic to 
linear combinations of [exh,(ex)], and [e-xf(ex)]x, as- 
sumptions  Cl)-C5) ensure that the potentials c", c,kdl (as- 
sociated with the adjoint of the equation for u") are both 
asymptotic to (as 1x1 + 00) 

f2/Z2)],=,. 

a s X " - - c o  

in the  sense of (2.14) in  Theorem 3. 

plies either b > 0 or a > 0 and b = 0. Then 
For example,  when f(z)  = az + b, assumption C2)  im- 

&(z )  = bz-' - b - alogz (3.25) 

and, whenever  (3.21),  (3.22) are satisfied, U(t, z) is asymp- 
totic to 

exp[-lh(z)l-b/z], i f b > 0  
(3.26) 

Finally, we mention two  examples  involving  coefficients 
with rapid growth (faster than  any  polynomial) to which 
our theorems  apply. 

Example 3: f is any stable, odd polynomial, g is a 
constant, and h(x) = exp[(l+  x2)lI2]. 

Example 4: f ,  g satisfy Khas' minskii 's test for explo- 
sions in a trivial manner [14] 

z"exP[-lh(z)ll? i fb=Oanda>O.  

(3.19) lim - p ( f / g 2 ) ( 5 )  d5 = + 00 

Define 1x1'50 0 

V I  = ?I, = W f / Z l / C h 2  + f 2 / g  I 2 1/2 and there is a constant r > 0 such  that h(x) = 0, Yxl>  r. If 
p,(x) satisfies the conditions of Theorem 3, then (2.2), 
(2.14)  show that for all t 2 0 the conditional density is 
asymptotic to  the a priori density as 1x1 -, 03. 

2 10 

= 1  byC2) 

v2 = lim infzlh,(z)l/[h2 + f 2/g2]1/2 E ( 0 , ~ )  

q 2 =  lim supz)h,(z)l /[h2+  f2/g2]1/2~(0,co).  

Z + f W  IV. CONCLUSIONS 

r + + m  Apart  from guaranteeing that a large class of nonlinear 
(3.20) filtering problems with unbounded coefficients are well- 
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posed,  the conditions derived  here are potentially  useful in 
numerical treatment of filtering  problems. The bounds on 
the tail  behavior in Theorems 3 and 4 show that the 
conditional densities in many  problems are rapidly  asymp- 
totic to  zero  as 1x1 + co. This information can be used to 
select and shape the finite domain ( ( t ,  x)  E q) over  which 
discrete approximations to the density are fabricated; and 
it can serve to provide  estimates of the numerical error 
associated  with a given  numerical  technique. Of course, the 
bounds also  identify the class of functions  in whch the 
conditional density  may be found if the initial density  is  in 
the  appropriate class. 

The class of functions in which we have  shown  unique- 
ness  is perhaps "smaller" than one would  like.  We  have 
not, for  instance,  shown  uniqueness in the class of non- 
negative L, functions, the largest  class of densities. This 
limitation is  shared  by the related  work  in  [8],  [9]. For 
further results on this  issue,  see [ 181. 

As mentioned in the introduction the treatment of some 
multidimensional  signal and observation  processes [(x. y )  
E R" x R" in (1.1)]  may  be  accomplished  with a straight- 
forward  modification of our arguments. For example,  the 
exponential transformation to robust form (1.4)  is 

~ ( t , x ) = e x p [ - ( h ( x ) , y ( t ) ) , ~ ] ~ ( t , x )  (4.1) 

and the derivation of the robust equation is standard [3]. 
An  analysis of some  multidimensional  problems  is reported 
in [18]. 

Finally,  having  identified  the proper weight  functions, 
the smoothness  assumptions on f, g, h can be relaxed 
considerably. Thus, the necessary  differentiations can be 
replaced  by  existence of weak  derivatives and  one can 
establish  most of our results in weighted  Sobolev  spaces, 
using  exactly the same  weights  presented  here. 

APPENDIX I 

We  give details of the proof of Lemma  2, and indxate 
the derivation of inequalities  (2.22),  (2.28),  (2.35),  (2.36) in 
the proofs of Theorems 1-3. Throughout we drop the 
superscript k .  

Define 

1 
CAX, t )  = ,g2(4J2- 4,(g2h,y - f) 

c2(x, t )  = - ,s2+,, - k 2 ) , + ,  + p 2 h , , y  

+ ( ~ 2 ) x ~ , ~ + ~ ( ~ 2 ) x , - f x - Y  (1.1.b) 

~ 3 ( ~ ~ ~ ) = , ~ 2 ( + x x - ~ ~ . x , ) - Y  (1.l.c) 

1 1 
2 2 
1 1 

+ -g2(h,) 'y2 - fh,y - -h2  (1.1 .a) 

1 

1 

and note that c I  = c,,,, c =  c, + c 2 ,  cadi = c, + c3. [Com- 
pare (2.4),  (2.19).] Also, c2 is a h e a r  combination of 

( ~ 2 ) , , . f x ~ ~ ( ~ ) ( ~ 2 ~ , ) x . ( ~ 2 + . ~ ) x  (1 .24  

Y ( t ) g 2 h x * ?  g 2 +x.x (I.2.b) 

and c3 is a linear combination of the terms  in  (1.2.b). 
(Here certain terms  in  (1.l.b)  have  been  rewritten  using 
the product rule  for  differentiation.)  Letting F(x) = 

min[h2(x),(f2/g2)(x)],  it suffices for the proof of Lemma 
2 to show that c2 .  cj = o ( F ) .  Those terms  in (1.2) which do 
not involve 4 are o( F )  by  assumptions  A4). B2),  B4). In 
case B5) a), $-y is a linear combination of 

f/gZ1 A,. h ,h/[  1 + h 2 I 1/2 . (1.3) 

Noting that h/[l + h2]'l2 = O(1). the terms in (1.2) which 
do involve 4 are o( F )  by assumptions A4),  B2). In  case 
B5b), g2#rx and (gz+,), are both linear combinations of 
gh,, g,h, and hence are o ( A 2 )  by the additional hypothesis 
in B5b). 

In the proofs of Theorems  1-2, the inequalities  (2.22), 
(2.28)  imply c,,, is  bounded  above as follows.  Define 

M i ( x ) = g ( ~ j ) , / [ h 2 + f 2 / g  2 1 1/2 3 i=1 ,2  

N ( x ) = g [ 1 + ~ : l j ; / 2 / [ h ' + f 2 / g  2 ] 1/2 (1.4.b) 

(I.4.a) 

and note that N(x)= 0 ( M 2 ( x ) ) .  Let ( ~ , j 3 ~ , / ? ~  correspond 
to the generic function +(x) defined  in  (2.2).  When case 
B5a)  holds, c,,, is bounded above if there  exists a constant 
R > 0 such that 

I ( " - ~ ) M , + ( ~ ~ - ~ ( ~ ) ) M , + P ~ N I < ~ ,  foral l Ixl>R.  

(1.5) 

By the triangle  inequality, (1.5) holds  if for some constants 
A , ,  0 < A ,  + A ,  < 1, 

/ a  - lIIM,I < A ,  for  all 1x1 > R 
(1.6.a) 

I P 2 N + ( / 3 , - y ( t ) ) M 2 1 < A 2  foral l Ixl>R.  
(I.6.b) 

Inequalities  (2.22),  (2.28)  follow  by  taking  limits supremum 
in (1.6)  for  various  values of a, PI, &, and noting that B3) 
implies ql, q2 are finite. When  case  B5b)  holds, the analysis 
is  similar,  with MI = 0 and (1.5) replaced  by 

lj3,M2 +P2rUl < 1 for all 1x1 > R.  (1.7) 

The proof of Theorem 3 requires that es,( 1) be bounded 
below  for p ,  sufficiently  large.  [See  (2.34).]  When case B5a) 
holds,  this  follows from the existence of positive constants 
p , ,  R, such that 

I(CL,+~--1)MI+(~:-y)~2+(11. ,+82)NI>1.  

(1.8) 
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If M2 = o ( M , )  [i.e., h = o ( f / g ) ] ,  then v 2 = 0 ,  v1 =1,  and 
(1.8) is  implied by (2.36a).  Similarly, if v I  = 0, then (1.8) 
follows from (2.36b). If both v l ,  v2 are positive  then (1.8) 
follows  from  (2.34),  provided the functions 

(PI + (Y- 1)Ml (1.9.a) 

(P,” - V I M 2  +(PI +/32)N (I.9.b) 

have the same algebraic sign for 1x1 > R .  Because p2 > IP: 
- y(t)l, (I.9.b) has the same  sign as N ( x ) .  Also, (I.9.a) has 
the same sign as M , ( x )  provided p ,  + a - 1 > 0. Since 
- f ( x ) s g n ( x )  and h, (x ) sgn(xh(x ) )  are nonnegative for 
1x1 sufficiently large and 

it follows that for R sufficiently  large, ( M , N ) ( x )  > 0 for all 
1x1 > R. Hence,  (2.36)  implies  (1.8). 

The analysis  when  case  B5b) holds is simpler; since 
M I  = 0, it  suffices to take limits  infimum  in (1.8) with y ( t )  
set formally  equal to zero. [Compare (I.7).] 

APPENDIX I1 

The proof of Theorem 4 differs only slightly from  the 
proof of Theorems 1-3.  We shall indicate those changes 
needed to 1) show # k ( ~ )  diverges to + 00 as 1x1 -, 00 

whenever (Y > 0, P2 > IP,”], 2)  prove an analog of Lemma 1 
for c,,, as defined in (3.19), and 3) select the parameters 

1) Recall the transformation z = exp(x) and the defini- 
tion of $k in (3.17), and note that z --f 0 as x -, - co. By 
C2) there  exists a constant E such  that f ( z )  >, EZ for z E 

(0, E ) .  Hence, 

a, P2?(tk9 P k  Yk>?=:=o. 

J,’f ( W E 2 &  = + 03 (1.11) 

and since h is bounded at the origin, # k ( ~ )  + + 00 as 
x -, - co whenever a > 0. Also, by Cl) there exists a 
constant K such that 

/ J ; ’ - f ( ~ ) / ~ ’ d ~ J ~ K l o g ( z )   f o r z 2 1 .  (1.12) 

Since log( z )  = o( h ( z ) )  as z + + co by  C3), it follows that 
+k -+ + co as x -+ + 00 whenever /3, > I / 3 f l .  

2)  Using the chain rule for differentiation, compute 

#:(x> = ~ ( - f ( z > / Z > + P f z h , ( Z )  

+ f izz(  h , h / [ l +  h 2 1 1/2 )(z)Iz=e. (1.13) 

and let c,k,, be any locally Holder  continuous function 
satisfying  (3.19).  Recall c k ( x ,  t )  in (3.18), and  denote 
c,kdj(x, t )  = ( c k  - b,k)(x, t ) .  To prove ck, c,kdj = o(c,k,,) it is 

sufficient to show  C1)-C5) ensure that 

f , , f h , ,  Zh,, Z2hZ2,f /Z 

are all o(($:)’), while 

213 

(1.14) 

z 2 ( h , ) 2 , h 2 = o ( f ( z ) / z 2 )  a s z 1 o  

f 2 / z 2 = o ( h 2 )  ~ S Z + + C O .  (1.15) 

For example, fh, is bounded at the origin,  while Cl), C5) 
implyfh, = O(h) as z + +GO. But h = o ( h 2 )  as z + + 00 by 
C3), whence fh, = o( h 2 )  as z -+ + co. The  remaining verifi- 
cations are similar. 

3) The proof of Theorem 4 differs from the proofs of 
Theorems  1-3 in the form of the inequalities (2.22),  (2.28). 
(Note  that the present analysis corresponds to case  B5a) in 
Section 11.) The inequality (2.22)  becomes 

a E ( O J )  

l P 2  f (Dl” - Y)IOZ < 1 (1.14) 

while  (2.28)  becomes 

a, a + 6 E (0,2) 

IPZ f (P,” - Y)1772 < 1 3  

I s 2 ~ ( P l k - Y ) + w 7 < 1 .  (1.17) 

Nevertheless,  since v l  = 1, v2 > 0,8, d 1, < 1, the choice 
of parameters (2.24),  (2.25)  proves  Theorem 4. 
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