INFORMATION SCIENCES 17, 153-167 (1979) 153

Chandrasekhar Algorithms for
Linear Time Varying Distributed Systems

JOHN S. BARAS

Electrical Engineering Department,
University of Maryland, College Park, Maryland 20742

and

DEMETRIOS G. LAINIOTIS

Electrical Engineering Department,
State University of New York at Buffalo, Buffalo, New York 14214

ABSTRACT

Generalized Chandrasekhar type algorithms are obtained that are applicable to linear time
varying as well as time invariant distributed systems. Utilizing the framework of J. L. Lions
for quadratic control and the framework of A. Bensoussan for filtering of linear distributed
systems, we analyze the implications of these algorithms.

1. INTRODUCTION

Chandrasekhar type algorithms have recently been developed for filtering in
lumped systems [1-4, 15-20]. These algorithms were initially developed for
linear time invariant systems with finite dimensional state spaces. They repre-
sent an alternative to the traditional Riccati equation approach to linear
filtering, with significant numerical advantages [2, 4].

Lindquist’s derivation [4] of new differential equations, which can be used
to compute the gains needed in the implementation of the Kalman filter,
established that similar algorithms could be developed for linear time invariant
distributed systems. The filtering theory for linear distributed parameter sys-
tems has been rigorously established and is well understood, (cf. Bensoussan
[7}, Curtain and Falb [8], Curtain [9], Vinter and Mitter [10], Balakrishnan
[11-12]). Excellent accounts of quadratic optimal control theory for distributed
parameter systems can be found in the book by Lions [13] and the forthcoming
monograph by Bensoussan, Delfour, and Mitter [14]. The applicability of these
theories is severely hindered by the task of solving an operator Riccati
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equation [9, 14]. The development of alternative methods is therefore very
significant for the useful application of the available theories. The new
Chandrasekhar type algorithms hold promise for significant reduction in the
computational complexity of these problems, particularly in the distributed
parameter case, as was pointed out by Kailath in [2]. Very briefly, these new
algorithms replace the problem of solving a doubly infinite matrix differential
equation with the problem of solving a matrix differential equation which is
infinite in one dimension only. Or equivalently, they replace the problem of
solving a system of partial differential equations in two space variables with
the problem of solving a system of partial differential equations in one space
variable. These new algorithms have been recently developed for linear time
invariant distributed systems by Casti and Ljung [5].

Recently in [15]-[20] generalized Chandrasekhar algorithms were obtained
that incorporate time varying linear finite dimensional systems. In the present
paper we study a nonsymmetric operator Riccati equation with time varying
operators, and derive various alternative equations for the solution. As a result
we obtain generalizations of the results of [15-20] in linear time varying
distributed systems and Chandrasekhar type algorithms.

2. THE NONSYMMETRIC OPERATOR RICCATI EQUATION

We follow the notation and framework of [14] (see also [7, 13]) which is
standard for distributed parameter systems. Let ¥, X be two Hilbert spaces, V'
dense in X with continuous injection i. Denoting by V', X' the duals of V' and
X, and identifying X with X', we obtain the following triple of Hilbert spaces,
where each is dense and continuously injected into the next space:

vix=x5Sv. (1)

We denote by (-, ) the inner product in X and by {-,-) the natural pairing
between ¥ and V. £(X,Y) denotes the Banach space of all continuous linear
maps between the Hilbert spaces X and Y, endowed with the natural uniform
operator topology. For convenience we let also

A(a,b)={(t,5)|a<s<b,s<t<b}. 2

An evolution operator on X is a map A :A(0, c0)—L£(X) with the properties:
A(t,r)=A(t,)A(s,r), t>s>r>0, (3a)
A(t,t)=I(identity in £(X), >0, (3b)

VxeX, (t,5)—A(t,5)x is continuous as a function from A(0, ©0)—X.

(39
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We will need the following spaces, where D denotes the operation of taking
distributional derivatives:

W(a,b;X,V')={y€L*(a,b;X)|Dy € L¥a,b;V")}, (4)
W(a,b; V,X)={y€L¥a,b; V)| Dy € L¥a,b;X)). (5)

Throughout the paper we will make the following assumptions about
evolution operators

A.l. There exists A:[0,T]—£(V,X) which is strongly measurable and
bounded so that for all k in X and all s in (0, 7] the map

t—A(1,5)*k

(where * indicates adjoint) is the unique solution in W(s, T; X, V") of

dy;t’) —A()*y(1)  in(s.T)

y(s)=k. (6)

A.2. For all 4 in V and s in [0,¢), the map
s—A(t,5)ih

is the unique solution in W(0,¢; V,X) of

d’;gs) = —A(s)x(s)  in(0,1),

x(1)=ih. (7)

(A is the same as in A.1.)

These assumptions are satisfied by wide classes of evolution operators
arising in time varying distributed systems [14]. We shall say that the evolution
operator A(t,s) is generated by A(f). Then A.l alone implies that

i*A(t,s)*k=i*k+ftA(r)*A(r,s)*kdr (8)

and that for all 4 in ¥ and s in (0,7]

A(t,5)ih=ih+ ] ‘A(r,5)A(r)hdr, (9)
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and the map r—A(s,5)ik is continuous with a distributional derivative in
L*(s,T;X). On the other hand A.2 implies that :

A(t,s)ih=ih+f’A(r)A(t,r)ihdr, (10)

where we view A(¢,r)ih as an element of V.
We consider now the following nonsymmetric operator Riccati equation in
the space of operator valued functions

WO, T; X, V")={K:[0, T]->L(X)|VhAE X, the X-valued function K(s) belongs
to L>(0,T;X) and IADK:[0,T]->L(V,V’) so that VhAEV,
DK(-)h belongs to L=(0,T;V’) and is the distributional

derivative of K(-)ih}, (1
—% N(t,7)= A*()N(t,7)i + * N(t,7) B(1)
+*[C(1) = N(t,7) D()N(5,7)]i (12)
in (r,7),
N(r,7)=II,

where A,B:[0,T]—£(V,X) and are strongly measurable and bounded;
C,D:[0,T]—L£(X) and are strongly measurable, bounded; C(1)= C(t*, D(t)=
D(H)*, C(t) >0 and D(¢) > 0; IT=I1* 11> 0.

It is straightforward to establish that under the hypotheses made, Eq. (12)
has a unique solution in A (r,T;X, V"), which is self-adjoint and positive
semidefinite. Let now ®(z,7) and ¥(z,7) be the evolution operators generated
by A(f) and B(¢), respectively (see A.1 and A.2). We define the operators
®,(2,7) and ¥,(2,7) on A0, T) as follows:

VA in X and 7 in [0, T), ®%(z,7)h is the unique solution of the equation

y(t,T)=CI>*(t,T)h—[tq)*(t,o)N(o,T)D(o)y(o,T)do, r<t<T, (13)

and ¥%(z,7)h is the unique solution of

z(t,’r)=‘I’*(t,'r)h—ft‘lf*(t,o)N(o,T)D(o)z(o,T)do, r<t<T, (14)

in the space of continuous functions C(r,T;X). It is easy [14] to establish that
®(t,7), ¥y(1,7), defined above, satisfy the properties of evolution operators
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(3), and that for every (¢,7) in A(0,T) and & in X,
@N(z,f)k=q>(z,¢)k~f’ch(o,T)D(a)N(a,T)cp(z,o)kdo (15)

Ya(t,)k=Y¥(t,7)k —ft\I’N(G,T)D(G)N(U,'T)‘I’(I,O)kdo (16)

fT ‘®,(0,7)D(0)N(0,7)®(t,0)k do = f ‘®(0,7)D(0)N(0,7)Dy(1,0)kdo,
(17)

]T ¥ v(0,7)D(0)N(0,7)¥(1,0)k do = f "¥(0,7)D(0)N(0,7)¥(t,0)k do.
(18)

As a consequence now of assumptions A.l, A.2, and Egs. (9) and (10), we have
also that:

For all k in X, s in (0, T}, fin L?(0, T; X), the map

1% (1, 1)k + f ‘®%(1,0)f(0) do

is the unique solution in W(r,T;X,V”’) of

%(1)=[A(t)* —i*N(¢t,7)D()]z(t) + i*f(?) in (7,7),
(19)
z(1)=k,
and for all A in V and r in (0, 1],
Oy (t,7)ih=ih+ f ‘@, (0,7)[A(c)— D(c)N(0,7)i]hdo. (20)

Moreover, for all # in V and 7 in [0,¢) the map

1>®y(2,7)ih
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is the unique solution in W(0,¢; V,X) of

d);(:) = —[A(1)= D(r)N(r,7)]x(r)  in (0,1),
21)
x(t)=1ih,
and
®p(1,7)ih=ih+ f [4(0) = D(0)N(0,7)]®n(t,0)ikdo. (22)

Equations (19)-(22) are also valid for ¥,(z,7), provided we change A(-) to
B(-).

Considering now the nonsymmetric operator Riccati equation (12), we
conclude that equivalently N(z,7) is the unique solution of the equation:

-%(N(z,»r)ih,iﬁ)=(ih,N(z,r)A(t)h”)+(N(t,T)B(r)h,ih')
+(C(1)ih, ik~ (N(1,7)D(t)N(t,7)ih,ik)  (23)
N(r,7)=1I, forallh hinVandtin (1,T),
which implies that for all 4,4 in ¥
(N(t,7)ih,ik )= (ILih,ik)
+fT’{(N(o,’r)ih,[A(o)—D(O)N(o,ﬂr)i]}?)
+(N(0,7)[B(0)— D(0)N(0,7)ilh,ik)} do

+ f ’([C(o)+N(o,T)D(o)N(o,T)]ih,i}?)do. (24)

Utilizing the properties of the evolution operators ®y(¢,7), and ¥y (z,7) [(15-
22)], we obtain from (24)

(N(t,7)ih, ik ) = (TI¥ y(1,7)ih, @y (1,7)iR)
+ f ([C(0)+ N(0,7)D(0)N(0,7)][¥ y(1,0)ih, O (t,0)ik ) do.

(25)
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Therefore we conclude that N(¢,7) is the unique solution in the space of
operator valued functions C(0,7; L(X) with the weak operator topology) of
the following system:

Egs. (15) and (16) together with
(N(t,m)h,h) = (IT¥ 5 (2,7) b, Du(1,7)R)

+ f’([ C(o) + N(G, T)D(G)N(oa T)]

‘I’N(t,o)h,CDN(t,o)h_)do,
Viin[r,T], handhinX. (26)

Conversely one can show (see [14]) that under our hypotheses A.l1 and A.2 if
N(t,7) satisfies (26) then it also solves the nonsymmetric operator Riccati
equation (12). From (24) it follows that YA, A in V,

%(N(t,f)ih,i}f)ll=f= —(ILin,[A()— D(7)ILilk)
—(TI[B(r) — D()ILi]h,ik)
~([C(7) +T1D(r)I1)ih, ik )

= —(ih, TLA(7)h ) — (I1B(7)h,ih)

—(C(r)ih, ik )+ (ILD(7)ILih, ik

d - ’
- E(N(z,f)zh,zh)lm, | 27)
. d . : ,
using (23). So = N(1,7)],_ s an operator in E(V,V’) and
d d
-G Ven| = Nem)| (28)

From (12)

=A*(T)N(7,7)i+i*N(1,7)B(7)

=T

N,(7,7) £ % N(t,7)

+*[C(7)— N(7,7)D(T)N(7,7)]i. (29)
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Utilizing (25), (21), we have that for every h, hEV

%(N(t,'r)ih,ih_) = — (N('r, T)B(T)‘I’N(I,T)ih,@N(I,T)ih_)
— (\PN(t,T)ih, N(T, T)A(T)@N(t,'r)iﬁ)
—(C(ry¥n(t,7)ik, Op(t,7)i)

+(N(r,7)D(r)N(7,7) ¥y (1,7)ih, @y (1, 7)ik),  (30)

and from (26), N(t,¢)=1II. Therefore

d N(t,7)=—OX(t,T)N,(7,7)¥n(L,7), 0<r<t,
dr

(3D
N(t,0) =T,

utilizing (28) and (29). We summarize these results in:

THEOREM 1. Under the assumptions of this section (i.e., A.1, A.2), the solution
N(t,7) of the nonsymmetric operator Riccati equation (12) is also the solution of
the following equations:

diq-N(t’T)= — QX (L, T)N,(1,7)¥N(1,7T), N(t,0)=1],
g;@,"&(t,f) =[A(t)— D(t)N(t,7)i]*®%(t,7), O (r,7)=1,
% M(,T)=[B(t)=D()N(t,7)i]*¥X(7,7) Yy(r,m)=1,

where the interpretation of these operator equations is as in (19) and (30), and
N,(7,7) is given by (29).

We note that the result of Theorem 1 constitutes a generalization of the
Chandrasekhar equations to linear time varying distributed systems. This will
be further demonstrated in the subsequent section. A special case of particular
interest is when N(7,7)=0 (i.e. zero initial condition) [2, 5, 6, 15].
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COROLLARY 1. If N(1,7)=0, then the solution N(t,7) of the operator Riccati
equation is also the solution of the following system of equations:

LN ()= = @ (6r) (1) E(1,7)

and the last two equations of Theorem 1.

Proof. Immediate, since in this case (29) gives N,(1,7)= C(1).
3. APPLICATIONS

A general quadratic optimal control problem for linear time varying distrib-
uted systems is described below (see [14] for details). The state x(¢;s,xq,u) of
the system at time ¢ >s with initial datum x, and control u € L2 (0, c0; U) is
given by

x(t;5,%0,u) = D(1,5) X0+ f ‘©(1,7) G(ryu(r)dr, (32)

where G belongs to Li5(0, 00, 2(U,X)). Since the evolution operator ®(z,s)
satisfies hypotheses A.1 and A.2, the state is the unique solution in
W(s,7; V,X) of

d’t{([’) = A(0)x(1)+ G(t)u(e),
(33)
x(71)=Xxq.
The output of the system is described by
y(1)=C(1)x(1), : (34)

where C belongs to L2.(0, 00, 2(X, Y)). The problem is to choose u to minimize
J@)=(x(r). Lx(m) + [ (X0, X C(1)x(1)
+(u(1), N(Du(1))y} ar, (35)

where L& L(X) and N:[0,7]->£(U) is strongly measurable and bounded;
L=L* N(t)=N()* and N(r)>0. Then it is well known (see for example [14])



162 JOHN S. BARAS AND DEMETRIOS G. LAINIOTIS

that an optimal control exits and has the expression
w*()=— N(0)"'G*()S(t,7)x(£) = K(£,7)x(2)
a.e.in [0,7], (36)
where the operator S(z,7) is the unique solution in W(0,7;X, V") of the

symmetric backward operator Riccati differential equation

2 S(tr)=—A(1)*S(7)i= 1" S(LT)A(D)

—*[CH(HC(1)
(37)
— S(L,T)G(H)N(1)™ ' G*(1)S(t,7) ]i,

S(r,r)=L  in0<t<r.

Then we have the following immediate corollaries:

COROLLARY 2. S(t,7) is also the solution of the system of equations
d
ES(t,T)=(D§(t,T)S,(T,T)(DS(t,T) S, =1L,

2 051120511 [ 4(0) - GON() ' G*()S (1,7,
Os(r,7)=1,
S,(7,7) = A*(1)S(r,7)i + * S(1,7)A(7) + C*(r) C(7)
— S(r,7)G(1)N ~}(1)G*(7)S(7,7).

COROLLARY 3. When S(t,7)= L =0, the first equation of Corollary 2 must be
replaced by

4 51,1y =3(1,1) CH(n) C(N)Ds(17).

Note that the case described in Corollary 3 corresponds to zero final cost.
Suppose in addition that the distributed system is time invariant, [i.e.,
A(H)=A, G(t)= G, C(t)=C] and that N(t)=N. Then we have
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COROLLARY 4. In the time invariant case S(t,7) is the solution to the system
of equations

%S(I,T)-:—®§(I,T)S,(T,T)(DS([,T), S(r,m)=L,
and
%@5(1,7)= —Og(1,7)[A— GN ~'G*S(¢,7) ]
bg(r,7)=1,
S(t,1)y=A*S(r,1)i+i*S(r,1)A+ C*C
= S(7,7)GN ~'G*S(,7).

If in addition the final cost is zero [i.e., S(t,7)=0], then one computes directly the
optimal gain K(t,7) via

% K(t,7)=N"'G*L(1,r)* L(1,7),

d
5 L) =~ L(t, 1[4+ GK(t,7)],
K(r,7)=0, L(r,1)=C,

where K(t,7)eC(X,U), L(t,7)el(X,Y).

Note that the final equations of the above corollary are those obtained by
Casti and Ljung [5]. This special case presents the most important numerical -
savings, since in typical applications U and Y are finite dimensional.

We turn now to distributed parameter filtering or estimation problems. We
follow Bensoussan’s approach [7], and we consider again the distributed
system

% x()=A(t)x(£) + G()&(1),

y(1)=C(1)x(1)+n(1), (38)
x(0) = x,,

where £(¢) and n(¢) represent input and output noise. The triple (x,,¢,7) is
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modeled as a Gaussian linear random functional on the Hilbert X X
L*(0,T; U)X L*0,T; Y) with zero mean and covariance operator

P, O 0

0 Q@) O
0 0 R(1)

G(¢) and C(¢) as in (33) and (34). P,, Q(¢) and R(¢) are self-adjoint, positive
definite, and invertible. Then x(¢) is interpreted as a Gaussian linear random
functional on X (for any ¢). The filtering estimate of x(¢) is denoted by x(¢)
and is given by

dfl'(t[) = A(D£(D)+ P(L,T)CH(NOR(1) " '[2(1) = C()R(D)],
(39)
x(0)= xo,

where x(¢) is to be interpreted as a linear random functional and P(¢,7)
satisfies the symmetric forward operator Riccati equation:

& P(1,7)= A() P(,7) + (L) A*()

+G()Q(1)G*(1)

— P(t,7)C*(t)R ~ (1) C(t) P(1,7),

(40)

P(r,71)=P, t>7.

Then we have the following immediate corollaries:
COROLLARY 5. P(t,7) solves the following system of equations:
d
pa P(t,7)y=—®p(t,7)P,(1,7)P5(2,7),
P(1,1)=P,,
%@p(i,?’) = [A(t) — P(t,T)C*(1)R ~ (1) C(¥) ]<I>p(t,¢),

Op(1,7)=1,
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where
P(r,T)y=A(7)P(7,7)i+i*P(7,7)A*(T)
+G(m)Q(1)G*(7)

- P(7,1)C*(T)R "~ I(T)C(’T)P(T,T).

COROLLARY 6. When P(r,7)=0 the first equation of Corollary 5 must be
replaced by

2 P(1,1)= = @p(1,1) G(1) Q(1) GH(M)BH(1,7).

In the time invariant case, 1.e., A(t)=A4, G()=G, C(t)=C, Q()=0Q,
R(t)=R, we have:

COROLLARY 7. In the time invariant case P(t,T) is the solution to the system
of equations

%P(I,T)=<I>P(I,T)P,(T,T)(D}'§(t,T)
P(r,7)= P,
ifb (t,7)= [A — P(t,7)C*R _'C]CD (¢, 7)
d[ Pl* ’ P 3
Op(r,7)=1,
where
P(r,T)y=AP(1,7)+ P(1,7)A*(T)
+GQG*—P(r,7)C*R~'CP(1,7).

If in addition the initial condition is zero, one can compute directly the Kalman
filter gain operator P(t,7)C*R ~'= K(t,7) from the equations

—%K(i,’r)=L(t,T)QL*(f,T)C*R -

d
- L(t1)=[4 - K(t,1)C]L(t,7),
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where
K(r,7)=0,

L(r,7)=0G,

and

K(t,1)EL(Y,X),  L(t,r)EL(U,X).

We note again that this special case provides significant numerical savings
for typical applications where U, Y are finite dimensional.

Our results are directly applicable to linear hereditary systems, as developed
by Delfour and Mitter [14]. Similar results can be easily derived for other
classes of distributed parameter systems with specific properties of the evolu-
tion operators, using similar arguments. These, together with specific applica-
tions, will be given elsewhere. We would like to note that in the case of 0 final
cost (or initial condition) the results of Corollary 3 (Corollary 6) provide
similar numerical savings with the time invariant case. For example, the
optimal gain for the regulator can be directly computed from

% K(1,r)=— N(t)"'G*(t)L*(t,7)L(1,7)  t<r,

% L(t,7)= — L(1,))[A(t) + G(DK(,7)],
with
K(t,1)=0,
L(r,7)=C(7).
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