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Invariant Subspace  Methods in Linear 
Multivariable=Distributed Systems and Lumped- 

Distributed  Network Synthesis 

Abstmct-Linea multivariable-dhiuted  systems  and  synthesis 
problems  for  lumpeddistributed  networks are analyzed. The methods 
used center  around  the invariant subspace  theory  of Helson-Lax and 
the theory of vectorial  Hardy  functions.  State-space and transfer  func- 
tion models  are  studied and  their  relations  analyzed. We single out a 
class of  systems  and  networks  with nonrational transfer functions 
(scattering  matrices),  for  which  several of the well-known results for 
lumped  systems  and  networks  are  generalized. In particular  we  develop 
the relations  between singuhrities of transfer  functions  and  ‘‘natural 
modes” of the systems, a degree  theory  for i n f ~ t e d i m e n s i o n a l  linear 
systems and  a  synthesis via lossless embedding  of the scattering matrix. 
FinaUy  coprime  factorizations  for this class of  systems  are  developed 
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These  factorizations  play an essential role in the development  and show 
that properties  of  Hardy  functions  are  of  fundamental importance for 
this class of  distributed  systems as properties of rational functions s e  
for  lumped  systems. 

INTRODUCTION 

IF REQUENCY DOMAIN methods in hmped-multivariable 
systems have been  developed in the last few years for  the 
analysis and design of control systems [ 1 1 .  These 

methods provided a clear understanding of the  interrelations 
between  statespace  and  transfer  function models for systems 
and networks  and proved to be extremely useful  in  practical 
design applications [ 821. 

Recently, several researchers, Baras [2]  -[8],  Brockett [31- 
[4],  Dewilde [9]-[16],  Fuhrmann  f171-[23], Helton [24] 
and [25],  have been investigating a similar approach t o  the 
analysis and synthesis of distributed systems  and networks. 
This theory applies to  situations where  energy  considerations 
provide the  setting of a  Hilbert space for  the  state space of the 
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distributed system or  network considered. The major mathe- 
matical tools are the invariant subspace theory  of Helson [ 2 6 1 ,  
Beurling [ 2 7 ] ,  Lax [ 2 8 ] ,  the associated theory of Hardy 
spaces of analytic  functions Hoffman [ 2 9 1 ,  Duren [ 301 and 
general harmonic analysis of operators and  semigroups  in 
Hilbert  spaces of Nagy and Foias [ 3 11. The results obtained 
thus  far include  a  fairly complete parallel development of 
statespace and transfer  function models for systems and  net- 
works  and important synthesis methods.  The  foundations  for 
the development of a  detailed theory, as in the lumped case, 
have been laid and  the subject is growing considerably. 

One of the most valuable advantages of these new investiga- 
tions, is their  potential use in the development of practical 
approximation schemes,  in the design of suboptimal contollers 
and filters,  and  in  the synthesis of distributed systems and 
getworks. Although  these  research efforts  started relatively 
#€cently, we would like to point  out  that  the Russian literature 
contains  many  examples of investigation along similar lines 
(i.e.,relations  between  operator  theory-system theory-network 
theory) [ 3 2 ] - [ 3 7 ] ,  as illustrated  by the recent translation  of 
the  book by LivSic [ 3 7 ] .  

The present  paper is an outgrowth of research on  the subject 
by the  authors  and includes both new results  and short sum- 
maries of known results. It is structured as  follows:  Section I 
contains  some necessary mathematical background and  nota- 
tions.  Section I1 develops the  statespace and frequency- 
domain  theory of linear  multivariable distributed systems and 
is divided in four subsections: one describing statespace 
models; one devoted to  transfer  function models; one describ- 
ing input-output  properties  and a module  theoretic  setting, 
and one analyzing the  relations between  singularities of transfer 
functions  and  spectral  properties of the corresponding oper- 
ators in the space model  (this  part is primarily written by J. S. 
.mas).  Section 111 develops  state-space  and frequency-domain 
synthesis methods  for  lumpeddistributed  networks  and is also 
divided in four  subsections;  one describing the  network under 
consideration;  one providing the  connections with  Section I1 
and the state-space theory of scattering matrices;  one develop- 
ing  a  scattering matrix synthesis through lossless embedding 
and one analyzing transfer scattering matrix synthesis (this 
part is primarily written by P. Dewilde). Finally Section IV 
contains  the conclusions  and  some suggestions for  further 
research. 

I. MATHEMATICAL PRELIMINARIES 
The following spaces will be used in  the paper: 
c" 

H p ( l  < p < = )  

The Euclidean space of complex 
n-tuples. 
The well-known Lebesgue spaces. 
The  standard vector-valued (with 
values in C") Lebesgue spaces [ 3 0 1 .  
The space of functions f analytic in 
the  open right-half complex  plane 
(ORP),  such  that 

The space of functions f, analytic  and 
bounded in ORP. H" is clearly an 
algebra [ 29 ] . 
The space of vector valued functions 
(with values in C") with every com- 
ponent being an  element of H p  

In the above spaces the measure used 

s ~ ~ , > ~ I I f ( ~ + i ~ ) l l ~ ~ ~ ~ < ~ .  
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GXtl The space of m X n matrices  with ele- 
ments in H". 

d H m .  dH;. 8; x n Same as above  with ORP replaced by 
the  open unit disk. 

Let N be  a  Hilbert space and d: (C", N) the Hilbert space of 
continuoushear  operators  from C" intoN with inner  product 

(B1,Bz)=tr(B:Bz) 

H z  (6: (C", N ) )  is the space of d: (C" ,N)-valued analytic  func- 
tions F i n  ORP  such  that 

The  theory of the Hardy spaces H p ,  Hg,  r r n x  ,, is well docu- 
mented [ 2 6 ] ,   [ 2 9 ] ,   [ 3 0 ]  but we summarize  here the results 
which we will  use  in the sequel. First,  it is known  that  func- 
tions belonging to a  Hardy space have nontangential limits 
almost  everywhere (a.e.1 on  the imaginary axis. For a function 
in H l ,  this  limit belongs to L i  (-j=,j=), and for a function in 
H", x n  the limit  belongs to L G  x n  (-j=, j=) and we  will assume 
the  function defined on  the closed right-half plane. It is 
known (a convexity argument)  that  functions in Hf: (1 < p < 00) 
attain  their  norm on the  boundary so that  there is a Banach 
space isomorphism  between the  boundary  functions and the 
Hardy  space. Hence Hf: can  be  viewed as a subspace of 
Lf: ( - j= ,  j=), G X as a  subspace of L z  X : namely that sub- 
space whose elements have an appropriate  analytic extension 
to  the ORP. Often we will call a function F E L f :  (-j=, j=) or 
L ; x n  (-j=, j=) analytic if F is the  boundary value of an 
Hf: function  or H," X,, function.  It will be called conjugate 
analytic if it has  a similar extension  to  the  open left-half com- 
plex plane  (OLP).  Only constant  functions can be both 
analytic  and  conjugate analytic.  Let 3 be the  Fourier  map: 

3: L i  (-00, m) L;  ( - j = , j = ) ; f ( t )  t-+ J f ( t )  ,-jut dl  

3 is a  Hilbert space isomorphism (Plancherel's theorem) and 
3-' is given by 

3-' : ~ f ,  (-j=, j - 1 -  L;  (-=, 00); 

-01 

F ( j w )  b J-, F(jo)eJW'  -. 

The Paley-Wiener theorem asserts that H i  = Y L i ( 0 ,  =), so 
that ana~ytic functions in L;  (-i=,j=) are precisely transforms 
of  functions in Lz (-=, m) which are zero for t < 0. Let Ki .be  
the Hilbert space of conjugate analytic  functions in Lf , ( - j= ,  
jm), then L i ( - j = ,  j=) = K i  @ H t  (direct sum of orthogonal 
subspaces) since L i  (-=, =) = L i  (-00, 0) @ L i  ( 0 , ~ ) .  

In L f , ( - = ,  00) or Li ( - jm ,  j=) we will  use the following 
operators: 

. dw 
2n 

u, left  shift  by 7: u , f ( t )  = f ( t  + 7) 
U- argument sign reversal: o - f ( t )  = f ( - t )  or u-F( jw)  = 

F (-jw). 

For g in Li(-=, 00)) we have that 3u,g = eiw7 3 g  and that 
3 ~ - g  is conjugate analytic if 3 g  is analytic. A linear map 
f :  L i  (-m,=) + L& (-=,=) is said to be translation  invariant 
if fur = 0, f for all 7. Suppose f is a  linear bounded and  trans- 
lation invariant maD from L?,(-=. =) into L?,,,-=. =). The on  the imaginary  axis is dw/2n .  ~ ~~~ ~ ~ I.. . .I'\ 1 I .  ---- 



162 PROCEEDINGS OF THE IEEE, JANUARY 1976 

Bochner-Chandrasekharan theorem [38] asserts (with  an ex- 
tension to  the vector situation)  that f can be  represented 
multiplicatively in  the  transform  domain: 

Namely if b ( t ) =  fa(?)  and A = 3 a , B =  3 b ,  then B(jw) = 
S ( j w ) A ( j w )  where S(jw) is an m X n matrix, S E L:x,(-jm, 
jw) and the  norm of f equals IIS 11 L R  X , . 

If moreover f {L,?(O, =)) C L&(O, m), then S is analytic 
and has an extension to  the ORP, as described earlier. In case 
f is contractive (i.e., has norm Gl) ,  then 1,- $(jw)S(jw)> 
0 a.e. w. ($( jw)  is the Hermitian  conjugate of S(jw)). 

$ ( jw )  is conjugate analytic if S( jw )  is analytic. An analytic 
matrix  function  with  unitary values on  the imaginary  axis is 
called an inner function. A function cp E H" is inner if 
Iq(jw)l = 1 a.e. w (e.g., ( p  - l) /(p + 11, e - P ) .  A  subspace 
f C H i  will be called an invariant subspace if it is closed and 
G f C f for all G E H". Because of an approximation  theo- 
rem we will have that is an invariant  subspace if and only if 
either 

or f C f for all t 2 0. The Beurling-Lax theorem 
asserts that  any invariant  subspace R C HZ has the  form 
ril = U * H E  where UEH,"xk,k~n,andU(jw) isanisometry  
a.e. w. We will say that $I hasfull range if k = n .  In the  latter 
case, functions  in ril span C" a- and U(jw) is unitary. A 
matrix A E ~ x ,  such  that AH: = H i  (where the overbar 
indicates  closure) is called outer.  Any function g E has a 
factorization g = el with cp inner  and g l  outer. These func- 
tions can be factored  further and we have that [ 291 

q ( p ) = c o b ( p )  .s(P) 

with co a constant, b a Blaschke product containing  all the 
zeros { p i )  of cp in  ORP (p"i is the  complex conjugate of p i ) ,  
and s a singular part: 

where r > 0, and 1.1 is a finite singular positive measure on  the 
jw axis. Notice that  inner (respectively outer)  functions are 
generalizations of the all-pass functions, respectively minimal 
phase functions, of the lumped-network theory. 

Two functions Fl E r , x k ,  Fz EH",xl havea common  left 
inner (or lossless) divisor (CLLD) if there exists an inner  func- 
tion U E  H", X , such  that Fl = UF, , F2 = UF4. V will be  the 
greatest  common  left inner (or lossless) divisor (GCLLD) if 
V =  UW for  any  other CLLD U. Now suppose that  the  matrix 
[Fl , FZ I has full  rank m a.e. Then,  the GCLLD exists and has 
the following geometric  interpretation: it is the  unique  modulo 
a constant  unitary  factor  from  the right  inner function defined 
by  the smallest right invariant subspace of H'f, which contains 
both F I H ~  and FzHT (i.e., FIHTc  VF2HT). F 1 ,  F2 are left 
coprime if their GCLLD is I,. Similarly Fl E ff& ,, 
F2 E H;"x, have a common right  inner (or lossless) divisor 
(CRLD) if Fl = Fs U,  Fz = F6 U for  some  inner  function 
U E ,. V will be the greatest  common right inner (or loss- 
less) divisor (GCRLD) if .V = WU for  any  other CRLD U. 
F1, F2 are right  coprime if their GCRLD is I,. For  an inner 
function U E H;x , we can  define its  determinant  det U which 

is a scalar inner  function with the  property [ 261 

(det U ) H i  C UH;. 

The  structure of U is very much  determined  from  properties 
of det U. We will need also the following  result [ 1 1 1, [ 121 : 

Let AEH",xk,  BEH",xl have a GCLLD U E T , X ~ .  Then 
there  exist sequences of matrices { M i )  in H F x ,  and {Ni} in 
H;"x ,,, such  that 

lim ( A M j +  BNi) = U 

the limit standing for  either column wise L2 ( d o / (  1 + 0')) 

convergence on  the imaginary  axis or (weaker)  uniform  con- 
vergence on  compact subsets of the  ORP [ 1 1  ] .  

Potapov [32] has studied  an even larger class of functions. 
Let 

i-ba 

We will say that a matrix  function A ( p )  is J-contractive in the 
ORP if for all p there  one has 

J -  ZJA >o. 
Because of the  indefinite  metric  introducted  by J, we have that 
A need not be analytic in the ORP. A can have both poles and 
zeros in the  ORP,  yet  they  cannot be arbitrarily distributed. 
There is a matrix closely related to A which is actually  analytic 
(belongs to  q p + , ) x  ( p + q )  and contractive,  namely: 

A1 = ( A P -  Ply-1 (P- A P l )  

where 

(supposing the  matrix  formed  by  the p first rows and Columns 
in A nonsingular  which will always  be the case in the Sequel). 
For  J-contractive  functions which are J-unitary  on  the imagi- 
nary axis Potapov  has  obtained  factorizations similar to the 
Blaschke part-singular part  factorizations of inner  functions. 

We terminate  this preliminary  section with a note  on semi- 
group  theory. Let F (?), t > 0 be a  family of bounded opera- 
tors on X with  the  properties 

F ( t ) F ( s ) = F ( t + s ) ,   t , s > O  

lim F ( t ) x = x  
t'O 

where the limit is in the  norm of X sense. Such  a family& 
called a CO semigroup of  bounded  operators on X. If we let 

F ( h ) x  - X 
A x  = lim 

h-bo h 

for  those x for which the  strong limit  exists, we have defined  a 
closed linear operator  on  and  its domain 9 ( A )  (which is 
dense). An A so de f i ed  is called the infinitesimal  generator of 
the semigroup  and we write F ( t )   = e A r .  The Hille-Yosida 
theory [39j completely  characterizes CO semigroups and  their 
generators. 

11. LINEAR MULTIVARIABLE-DISTRIBUTED SYSTEMS 
In this  part of the  paper, we analyze statespace  and 

frequency-domain  models  for linear  multivariable constant- 
distributed systems. The  distributed systems we have in mind 
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include  systems governed by certain classes of partial differ- 
ential  equations.  The  theory may seem at first abstract,  but  it 
has two  important advantages: i) it allows the parallel analysis 
of statespace and transfer  function models in some detail; 
ii) it is in all aspects  a natural generalization of the well-known 
state-space  and transfer-function  theory of linear constant 
lumped  systems. It is i) that permits the development of an 
elegant and  intuitively clear decomposition  theory, which  re- 
flects  many  desirable, from  the engineering point of view, 
properties.  Both i)  and ii) provide,  in ow opinion,  the basis 
for a systematic development of approximate models  which 
could be utilized in suboptimal design for various  practical 
applications. We restrict our attention  to  distributed systems 
that have a  state-space representation,  with  the  state space 
having the  structure of a  Hilbert  space.  Such  systems arise 
Yery naturally in various problems of continuum mechanics, 
linear  viscoelasticity,  linear wave propagation, distributed  net- 
works  and  linear  diffusion (heat  conduction,  etc.) when energy 
constraints are  present.  This restriction is justified, on  one 
hand, by the plethora of distributed systems  steming from 
practical  applications that are  included in this class, and  on  the 
other  hand,  by  the  rather detailed analysis that  one can de- 
velop for these  systems. 

In addition to their  potential use in design, (a very good 
instance of this is described in Section I11 of this  paper),  the 
methods described  here can eventually lead to a satisfactory 
(from  the  implementation  point of view) treatment of linear 
filtering theory  for  distributed systems via spectral factoriza- 
tion  or  innovations and the development of efficient compu- 
tational algorithms for  the design of suboptimal filters  and 
suboptimal controllers. The reason for this, is that  the  mathe- 
matical tools used here are the same with those  developed  by 
Hold [ 401, Wiener [ 411, Massani [42],  Kolmogorov [43] - 
1451, and  Krein [46],  [47]  for  the now classical filtering 
theory of stationary  time series with nonrational spectra. 

II. I .  Statespace  Models 
The state-space  models that we analyze  are mainly of the 

form 

dxO= A x ( t )  + B u ( t )  
d t  

Y 0 )  = Cx(t )  (11.1.1) 

where x ( t )  E T, a  Hilbert space, A is a possibly unbounded 
operator  on 3 which  generates  a strongly  continuous semi- 
group of bounded  operators  on T [39] ,  u ( t )  € % a finite- 
.dimensional  Hilbert  space (which we will identify  with C") 
and y ( t )  E 3 a finitedimensional Hilbert  space (which we will 
identify  with em). The derivative is usually considered  in the 
distributional  or weak sense [39]. This is equivalent to con- 
sidering the integral form of (11.1 . l ) ,  

y ( t )  = CeA(r-ro)x( to)  + C&(r -7 )Bu(~)   d r  (11.1.2) 

whereby d" denotes  the semigroup  generated by A (and is a 
generalization for  distributed systems of the  wellknown transi- 
tion  matrix of lumped  systems).  The reader will certainly 
recognize that in applications A will often  take  the  form of a 
linear  partial  differential operator  on a domain S2 of some 
Euclidean space [48]  or  the  form of an integral operator  [561. 
W-e will denote  by 9 ( A )  the  domain of the  unbounded  oper- 

ator A and by L(T1, T2)  the space of all continuous linear 
operators mapping the Hilbert  space xl into  the Hilbert space 
7.2. In  (11.1.1) B E L ( 3 , T )  and C€L(X,!j). Typical input 
functions  for  this  type of systems  are  square  integrable 
)-valued functions. 

By the usual arguments on linearity and  time invariance, the 
input-output description of such systems  in the  time domain 
is completely described by  the weighting  pattern: 

T ( t )  = C 8  'B (11.1 3)  
which is an m X n matrix valued function. Clearly the zero- 
initial condition response is given by 

y ( t ) = j '  T ( t - T ) u ( T ) d T .  (11.1.4) 

By the use of Laplace transforms  the  input-output description 
of such systems in  the  frequency  domain is characterized by 
the properties of the transfer  function: 

t 0  

?( p )  = c (PI - A ) - b  (11.1.5) 

which is the Laplace transform of T .  Caution should  be exer- 
cised in  interpreting (11.1.5) here, because it is only valid in 
certain regions of the  complex  plane, since it involves non- 
rational elements (compare  with  the  lumped case). The  oper- 
ator (PI - A)-' is theresohent  operator [39] of the  operatorA . 

Considering the triple of operators ( A ,  B ,  C) we will say that 
they  form a reguhr  realization of the weighting pattern T 
whenever A generates  a semigroup, B ,  C are bounded  and 
(11.1.3) holds. The system theoretic  interpretation of this is 
well known. T represents input-output relations while ( A ,  B ,  
C) an actual dynamical  model.  It is also important t o  consider 
cases where the  operator C may be unbounded. We consider 
such a class here. The triple ( A ,   B ,  C )  is a balanced  realization 
when (11.1.3) holds  but  now  the range of B is included  in the 
domain of A while C is linear and A-bounded  [57] (i.e., 
9 ( A )  C 9(C) and I I C x l l y ~ k l l l A x l l ~  + k211xllx for some posi- 
tive constants k t ,  kz and all x E 9 (A)) .  Note that in the case 
of a  balanced  realization B is  bounded  but C is not necessarily. 

Representative  examples of various types of realizations 
(systems) that usually arise in practical  applications may be 
found  in [ 21, [48],   [49],   [53].   The physical distinction 
between regular and balanced realizations is as follows. When 
the  controls are distributed (i.e., are  applied in the whole 
spatial  region) and  the observations  are also distributed  (typi- 
cally a weighted average) the resulting  realization is regular. 
Whenever the  controls are distributed  but  the observations  are 
restricted on  the  boundary of the spacial region the resulting 
realizations  are often balanced. We would like to  point  out 
that our framework  includes hereditary differential  systems 
[541-[561.  For  further discussion of balanced versus regular 
realizations we refer  in  particular to [2] . 

Although balanced and regular realizations can describe quite 
different physical situations,  the classes of input-output rela- 
tions  they characterize  coincide,  as the following theorem 
indicates. 

Theorem II.I.1: Let T be an m X n matrix weighting pat- 
tern.  Then T has a  balanced  realization if and  only if it has a 
regular realization. Moreover the infinitesimal  generators  in 
both realizations can be taken to be the same. 

Proof: This is an easy generalization of Baras and Brockett 
[3,  Theorem 31 (see also [8]). 

In the  effort  to choose simplified models one defines as 
usual a  realization ( A ,  B ,  C) to be reachable if B*eA*'x = 0 
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for r 2 0, (the asterisk  here denotes  adjoint) implies x = 0, and 
observable if C&'x = 0 for t 2 0 implies x = 0 (in case of a 
balanced realization this must be  true  only  for all x E TI (A)j. 
A  realization is canonical whenever it is reachable  and observ- 
able.  Although this  concept is a  particularly  useful one in the 
analysis of lumped systems, this is not so for  distributed sys- 
tems, as we shall see later in this part of the paper. Neverthe- 
less  given a  realization  (regular or balanced) it is an easy matter 
to obtain a  canonical one.  This is described in  the following 
theorem which we give without proof  since it is a  straight- 
forward generalization of previous results,  Balakrishnan [58],  
Baras [5 1 .  

Theorem 11.1.2: Let ( A ,  B ,  C) be a regular realization of a 
matrix weighting pattern T with  state space . Let 9l be the 
orthogonal complement  in of the subspace kc = { x  E x ;  
C&'x = 0 for t 2 0) and PM the associated orthogonal projec- 
tion. Let be the  orthogonal  complement  in of the sub- 
space R l  = {x E kc, PM B*e A"x = 0 for t 2 0) and let Pn be 
the associated orthogonal  projection.  Then {Pn A I R ,  Pn B ,  
CPn } is a  canonical regular realization for T, with state  spacen. 

It  can  be easily shown  that  the associated balanced (regular) 
realization to a regular (balanced)  realization is canonical 
whenever the regular (balanced) realization is [ S I .  This 
theorem  therefore provides also a reduction  for balanced 
realizations. 

The  importance of canonical  realizations  in lumped systems, 
stems primarily from  the so called state-space  isomorphism 
theorem [ 591 and  its various consequences. This result states 
that any two canonical  realizations of the same weighting pat- 
tern are similar, that is they differ  only  by  a  choice of basis in 
the  state space. To  date however no such  satisfactory  result  in 
the  theory of state space  models for  distributed systems  has 
been discovered. The  intuitive reason is  that canonical realiza- 
tions  do  not precisely capture  the intrinsic properties of the 
distributed system. For a complete  and detailed discussion of 
the  current  status of this  important problem,  examples, coun- 
terexamples and special cases, we refer the reader to Baras 
et  al .  [4]. We give here  a  fairly general version of the  state 
space  isomorphism theorem  for  the class of systems we con- 
sider,  which is of importance  for  the rest of this part of  the 
paper.  Consider the reachability and observability  Grammians 
for (11. 1.1) 

FV(tl) = I" e% B*eA*r  dt  
0 

M ( t l )  = 1" &*'C*C&'dt. (11.1.6) 

Following  Helton [24], we say that a  system ( A ,  B ,  C) is 
exactly reachabZe if the limit as t l  goes to infinity of W ( t 1 )  
exist  as  a bounded  and  boundedly invertible operator  and is 
exactly  observable if the limit as tl  goes to infinity of M ( t 1 )  
exists as a bounded  and  boundedly invertible operator, (see 
also in relation Balakrishnan [58, p.  1091 ). The following 
theorem ([4, Theorem 51) is the  continuous  time version of a 
result originally due to Helton for discrete time systems [24]. 

Theorem 11.1.3: Let ( A ,  B ,  C) and (F ,  G, H) be two reach- 
able (respectively  observable)  realizations of the same weight- 
ing pattern which  are  also exactly observable (respectively 
exactly reachable). Then  the  two realizations  are  similar, i.e., 
there exists  a bounded  and  boundedly invertible operator P 

such  that 

P A = F P   P B = G   C = H P .  

Notice that  the  requirement of exact  observability has a very 
intuitive  interpretation.  It expresses the  property  that  the 
initial condition  (or  state) be determined  asymptotically in  a 
stable way,  from  the knowledge of the  input and output 
histories. 
11.2. Vectorial  Hardy  Spaces  and  Transfer  Function  Models 

The main question  studied in this  section, is the  character- 
ization of matrix weighting patterns  that  admit regular 
realizations. 

The  first result in this  direction is rather  elementary,  but  it 
provides explicitly the  limitations imposed on  the weighting 
pattern when it admits  such realizations. For various  results 
of this type see also Baras and Brockett [ 31, Fuhrmann [ 171 
Baras [2],  Helton [24], and Balakrishnan [60].  The  theorem 
that follows is a  straightforward  generalization of Baras and 
Brockett [3, Theorem 41 and we omit  the  proof. 

Theorem 11.2.1: Let T be an m X n matrix weighting pat- 
tern.  Then if T admits a regular realization it is continuous 
and of exponential  order (i.e.,  each  element of the  matrix is 
like that). A  sufficient condition  for  the existence of a regular 
realization is that every element of T be locally absolutely 
continuous  and  that  the derivative of T be of exponential 
order. 

This theorem expresses time  domain  properties implied by 
the existence of a regular realization. To  obtain a  more  satis- 
factory  theory we need to explicitly  work in the  frequency 
domain. 

Theorem 112.2: Let T be a matrix weighting pattein  which 
is continuous and such  that  the Laplace transform T is ana- 
lytic. * sufficient conditionhfor T to have a regular realization 
is that T has a factorization T ( j w )  = C( j w ) * B  (jo) a.e. on  the 
imaginary axis,  where C E Hz(L(Cm ,N)) (or C E K2(L(Cm , N ) )  
and B E HZ (L(C", N ) )  (respectively B E K z  (L(C", N ) )  where 
N is an auxiliary  Hilbert space. 

Proof: We follow Baras [8] .  To  produce a regular realiza- 
tion, consider as state space the space H z ( N ) ,  as G the 
operator 

G:C"---tX;(Gu)(jw)=B(jw)u 
as eFr  the semigroup 

e  Frx = pH ( iwtx * N  

where f & ( ~ )  is the projection from L2 ((-jm, j - ) ;  N) onto. 
H 2 ( N ) ,  and M,jwt is  the  operator "multiplication by eiwt. 
Finally as H consider the  operator 

POD 

ClearlyGEL(C",~),HE~(~,Cm),~deF'isaC~-semigroup. 
To complete  the proof observe that T is actually in HA X",  so 
that we have, pointwise: 

e i w ' C ( j w ) B ( j w )  udw 

OD 

= I e'"'?( jw) u d o  = T ( f ) u ,  for all u E C". 
2n -OD 
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In  the  other case, i.e.,  when C E K 2  (J(Cm, N)) and B E K Z  
(L(C", N ) )  the  proof is similar and  utilizes K 2 ( N )  as state 
space. 

We produced  a  realization  whose  dynamics  are  described  by 
the  translation  semigroup;  indeed  by  use  of  Fourier  transforms 
we can easily see that eFt is just  the  semigroup of left 
translations, 

e Fr 
f(o) H f (o  + t ) ,  for t 2 0 

on L z ( N ) .  This translation  realization plays  a fundamental 
role in this  part of the  paper. 

The  discussion that follows has two aims.  On  one hand, we 
want t o  indicate  under  what  additional  assumptions  the  factor- 
ization  condition of Theorem 11.2.2 becomes  also  necessary. 
On the  other  hand, we would  like to  investigate  relations 
between  this  factorization  condition  and  qualitative  properties 
of the  system. 

We observe  first that  Theorem 11.2.2 is a  generalization of 
Theorem 11.2.1. Indeed the sufficient  conditions of Theorem 
11.2.1 imply  that  after  multiplication  by  a  proper  exponential 
factor, T and ( d / d t ) T  are in L z ( J ( C " ,  e")). Therefore if in 
addition T(0)  = 0 we have the  factorization 

? ( j w ) = ( ( l   + j w ) - l ~ " ) * ( l - j w ) ? ( ~ w )  

where the auxiliary  Hilbert  space i sN  = C" . In case T ( 0 )  # 0, 
the  problem  can  be  reduced to'  the previous one, and  solved 
using the above factorization  for  an  auxiliary weighting 
pattern. 

Let us suppose  now, that we know a  priori that T comes 
from  a regular  realization  which is dissipative, in the sense that 
the  operator A is dissipative, i.e., 

( A x , x ) + ~ , A x ) < o ,  fo rxE$(A)  

and  globally  asymptotically  stable,  in  the  sense that 

lim I) e A ' X l l X  = 0 
2+- 

for all x E x ,  (the  norm  and  inner  product here  are those of 
x ) .  In this case following [52] ,  we consider the new norm 
Ilxll& = - ( A x ,   x )  - ( x ,   A x )  for x E $(A) .  Then  for x E 9 (A) ,  
&'x E $ ( A )  for t 2 0 and 

IleArxll& = - 2  Re (eA'x, A d ' x )  = - - I( #rxlli . d 
d t  

Therefore, 

That is, if  we let N denote  the  completion of 9 ( A )  under  the 
new norm,  then  the  map 

~ : r - ~ ~ ( ~ ) ; x ~ h ( o ) = e ~ ~ x  

is an  isometry.  Moreover, 

PeA'x = eF% 

where eF' is the  left  translation  semigroup on L z  ( N ) .  Since P 
is an  isometry  its  range R(P)  is closed, in  fact  it is a  left  trans- 
lation  invariant  subspace of L 2 ( N ) ,  which we denote  by x 1. 

So P as  a  map  from x to fK1 = R(P) has a bounded inverse. 
Therefore, we obtain  a regular  realization  with  state  space x , ,  

eFr = left  translation  semigroup, G = PB and H = CP-'. Apply- 
ing Fourier  transforms 3, we get  a  regular  realization with  state 
.space Xz  =3X (a subspace of H z ( N ) ) :  

eFlrxz  =PHz(NIMeiurXz 

G I  = 3PB:C" - H 2 ( N )  

H 1   = C P - ' 3 - ' : H Z ( N ) - C m  

Then  there  exists B 1  E Hz(&(C",  N ) )  such that 

(G1u)(jw)=Bl(jw)u f o r a l l u E C "  

and C1 E H 2 ( L ( C m ,   N ) )  such that 

1 -  
HI X = - C : ( j w ) x ( j ~ )  dw fot all X E HZ (N) .  

2n I. 
Therefore, 

?GO) = CT(jw)B1 ( jw) a.e. 

which is clearly  a factorization of the  type  appearing in Theo- 
rem 11.2.2. 

In another  direction,  suppose  that  a  matrix weighting pattern 
is square  integrable  and  has  a  reachable  and exactly observable 
regular  realization  (see  Section 11.1). 

The  operator 

H T : L ~ ( O , ~ ) - L & ( O , ~ )  

DD 

( H T u ) ( t )  = 1 T ( t  + o)u(o) do (11.2.1) 

which is well defined and  bounded  under  our  assumption, is 
the Hankel operator associated to  T ,  and is the generalization 
of the  standard Hankel matrix of lumped  systems [591. Con- 
sider  the range R ( H T )  of the Hankel  operator. Clearly i t  is 
invariant  under  left  translations.  Then  a  realization of T is 
given  by 

state space X = closure  of R ( H T )  = R ( H T )  

eFr = left  translation  semigroup  on 31 
(Gu) (o)  = T(a)u  

Hx = x (0). (11.2.2) 

It is easy to  show  that  our  assumptions imply that 
H € L ( X ,  Cm), [58, p. 1091. Therefore  theaboverealization 
is clearly  a  regular  realization. Now C*eFLrx  = 0, t 2 0, implies 

JI- ? ( o ) x ( o - t ) = O ,  fo ra l l t>O 

(?is the  Hermitian  conjugate of T ) .  Therefore, 

DD 1 ?(t + ~ ) x ( r )   d r  = 0, for all t 2 0 

which  implies x 1 R ( H T )  and  thus x = 0. That  is  this realiza- 
tion is reachable. 

Similarly it is easy to  see that 

Lm eF8'H*HeFf  dtx = x  

and,  therefore, this realization is exactly  observable. More- 
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over by Theorem 11.1.3 all reachable and  exactly observable 
realizations of T  differ from  the  one described above by a 
similarity transformation. ' Applying Fourier  trFsforms in 
(11.2.1)  we have the Hankel  operator associated to  T 

H+:Hj  - H k  

H+u^ = P  ,M+o-u" (11.2.3) 
Hm 

where [M+u^l (io) = ?(jw)u^(jw) (i.e., multiplication by T ) .  
We also obtain  the following  realization  in H& . 

A 

state space x = R ( H ? )  
eArx  = P ~ M  j w t ~  

e 
( B u ) ( j o )  = P(jw>u 

x ( jw)  do. (11.2.4) 

T h e n ~ c e ~ E . L ( C n , ~ ) a n d C € . L ( x , C m ) a n d ~ C ~ ~  i t i s  
straightforward to show  (exactly as in  the previous dissipative 
case) that we have a factorization ?( jw)  = F 1  (jw)*F2(jw) 
a.e. as described in  Theorem 11.2.2. The auxiliary  Hilbert 
space is finite  dimensional.  Summarizing we have the following. 

Theorem  112.3: Let f be a  transfer function  matrix. If 
either 

a) f has  a dissipative and  stable realization, or 
b) T is in H L  x n  and has  a  reachable and  exactly observable 

realization 

then ? (io) = C* ( j o ) B ( j o )  a.e. where B E HZ (E(Cn, N ) )  and 
C E Hz (.L(Cm, N ) )  and N is an auxiliary  Hilbert space. 

The realization  described in (11.2.2) or (11.2.4) will be called 
the restricted  translation  realization (or  restricted  shift realiza- 
tion).  Let us okserve that  one can formally  consider this reali- 
zation  for  any T E H g  X,,. Then however, the realization is 
neither regular nor balanced. We note also that  the factoriza- 
tion of Theorems 11.2.2. and 11.2.3. is akin but a little  different 
than  the coprime factorization of Section 11.4, in  that  it re- 
quires the  factors to have elements in H Z .  This is intrinsic to 
the  continuous  time case, while in  the discrete time case none 
of the  latter difficulties arise since d H w  c d H 2 .  

113. Invariant  Subspaces  and  Modules 
We saw at several instances in the previous sections how  in- 

variant  subspaces appear naturally in  the analysis of state- 
space or transfer function models. The purpose of this  section 
is to make this  more  explicit,  and  then to utilize the  natural 
tools of invariant  subspace theory  to develop a number of 
important results. If the weighting pattern T i s  an  element of 
L& X n  (0,001 n L; X n  (0, 00)) it is quite clear that  the  input- 
output map fz of the system (11.1 . l )  is a  linear continuous 
map 

fx : L i  (-=, -) - L& (--, 0) (11.3.1) 

which commutes  with  translations 

fx  0, = 0,fz 
andiscausai,i.e.,fz(LZ,(O,-))CL~(O,W). 

Conversely suppose  that we are given a  linear continuous 
map fx between L i ( - m ,  m) and Lh (-00, 00). In order for fz  
to be  the  input-output map of a  causal, time  constant  system, 
fx must commute with translations  and fx ( L i  (0, m)) C 
L& (0,m). Then in the  Fourier  domain,  the  input-output  map 

fz A = A 3jz 3-l is described by (Bochner-Chandrasekharan 

fz :J5; (- jw, io) - L& (- jw, j w )  

; z f i = h = ? 3 0  

theorem [ 381 ): 
A 

where T E H i x n .  

map. 

A 

A  useful and equivalent description is given by the restricted 

f :n==; ( - - , o ]  --~&[o,=)=r. 
Kalman used f (621 in his development of the  module  theory 
of linear, constant finite-dimensional  discrete-time  systems. 
This theory can be extended to  the  present  setting. Following 
K h a n  [62] ,  recall that  the map f is defined as follows: 
for w € 52 

f(w)(t)  =fz(o)(t), 0 
= 0, t < 0. (11.3.2) 

Let 0: be  the  operation of left  translation by t ,  followed  by 
restriction on [ 0, m). Then 

4.f =for (11.3.3) 

Clearly in the  frequency  domain f = ST' is described by 

f ;K; =a+l?=H& 

A 

A h A 

f = P  M + .  
A 

(11.3.4) 
H:, 

Therefore, we have the following commutative diagram (11.3.3) 

8-f; 7 

Mejut 1 A 1 %AMe w r (11.3.5) 

si b f  

where as usual Meiwt is multiplication by e iwr .  Clearly 52 ad- 
mits  a module  structure  with  the ring being K".  The scalar 
multiplication is 

A 

Similarly r admits a  K"-module structure where the scalar 
multiplication is defined by 

A 

h m T = P  
Hh 

Let 

(11.3.7) 

x W )  = - 1 +jo 

j w -  1 



clearly x E K - .  Then  it follows from Nagy-Foias [ 31  p. 1421 
(relations between  semigroups and cogenerators) that  the 
above diagram commutes if and  only if the following diagram 
commutes: 

6-F F 
(11.3.8) 

B-i: f 

Since K- is the  bounded pointwise a.e. closure of polynomials 
in x [29, p. 1071 we conclude  that (see also [ 141): 

Theorem 11.3.1: The restricted input-output  map of a l inee  
multivariable distributed system  in  this class (i.e., (11.3.1)) f ,  
is a  K--homomorphism (in  the  frequency domain and with 
scalar multiplications  defined  as in (11.3.6),  (11.3.7)). 

It follows from diagram (11.3.5) that  the  set of Nerode equiv- 
alenceAclasses of f is isomorphic  with  the  quotient module 
fi/Kerf.  Thus  the following corollary. 

Corollary 11.3.2: The "natural" state  set  fi/Ker? of a  linear 
multivariable distributed system  in  this class, admits  the  struo 
ture of a  K--module. 

Other  module  structures  on  input  and  output spaces have 
been defined  by  Kamen [65]  and Kalman-Hautus [85]  in a 
way appropriate  to  the topologies  considered  by  these authors. 
The detailed  results available about  the  structure of the 
Banach algebras H O0 and HFx (and  therefore K" and K z X k )  
[ 291 , [ 301 m+e possible a  detailed structural analysis for this 
class of distributed  systems [ 641 . 

It  is often  helpful  to consider together  with  the given system 
x, defined  by the  map f~ the dual  system E* which  has 
input-output map 

fx* = u-f$u- 

fx  :L& (--03, -03) - L ;  (--03,-) (11.3.9) 

where fg is the Hilbert  space adjoint of fx. It is easy to show 
@at 2 * is a-linear time  constant system  with transfer  function 
$(-jw) = u-?(jw). It  is trivial to see that if ( A ,  B ,  C )  is a 
regular realization for fx then (A *, C*, B*)  is a regular realiza- 
tion for fx *. However, no  such  complete  duality  exists for 
the  other  typzs of realizations we discpsed  in  Section  IKl. 
Moreover if T E H k x ,  fl H J x ,  and F(jw) = C*(jw)B(jw) 

we have im-mediately that U- T E H i  X n H;Xm and 
A 

u-T(jw) =B*(-jw)C(-jw) = [(u-B)*u-C] ( iw)  

and clearly u-B E K2 (L(C", N ) )  while u-C E K2 (L(C", N)).  
That is duality is built in  the  factorization  condition of Theorem 
11.2.2. Finally let us denote by f, the  restricted  map of fx* 
(see (11.3.2)). 

Using the Hankel operator H j .  associated with f (y T )  
11.2.3), we describe  now two  natural realizations of f (or 
) (see [62 J for  the correspondiiig constructions in the 

lumped case). We have from (11.3.5) the following commuta- 
tive diagram for Hi.: 

h 

A 

b 
A 

From  the diagram it is cleT  that = Ker(Hp) is a  right in- 
variant  subspace of H,' and )r = Range (HF? is a  right invari- 
ant subspace of H A .  So to every input-output map  in  this 
class (11.3.1) (or  transfer  function) we have naturally associ- 
ated  two right  invariant  subspaces. The  orthogonal comple- 
ments of these subspaces  are left invariant  subspaces and  are 
the  state spaces of the realizations we proceed  now to describe. 
xhe first is given in (11.2.4) and has as state spzce R (H?)  = 
?l C HA . Recall that  this is regular whenever T is in H A x n  
and has an  exactly observable and reachable  realization,  in 
which case (11.2.4) is similar to any  other  such realization. In 
that case the  natural way to construct  the second realizatio_n 
is via duality.  Towards this end observe that HT=  Ho-+. 

Therefore, we construct (11.2.4) for  u-?and  then  take adjoints: 

E" Cm 

n 

* 

(11.3.1 1) 

In  the above diagram d " ,  B ,  C are as defined  in (11.2.4) but 

for u-T now. This second realization described by (11.3.1 1) 
has clearlyAdual properties to those qf (11.2.4). So it is regular 
whenever T E H A  x n  has an  exactly reachable and observable 
realization. Moreover it is itself exactly reachable and observ- 
able and  by the state-space isomorpFsm  theorem  (Theorem 
11.1.3) any  other such  realization of T is similar to (11.3.1 1). 
In  the  context of shift  realizations for discrete  time  systems, 
Fuhrmann [ 181 has obtained specific conditions  for a realiza- 
tion to be reachable, exactly reachable, observable or exactly 
observable.  These conditions  apply  here as well, and we refer 
the reader to [ 181 for details. 

From  the Beurling-Helson-Lax theorem, there  exist two 
functions Q, €HG X k ,  E HFxk' ,  such  that Q , ( j w ) ,   Q ; ( j w )  
are isometries a.e. on t$f ima$nary axis,  which  describe the 
right  invariant  subspaces ?l and 8 as 

A 
... 

5 = Q,H; 

iii = Q ; H : ~ .  (11.3.12) 

We note  that  in general k d m ,  k' < n. So to every  transfer 
function $' in this class we associate quite  naturally  two iso- 
metric analytic functions Q,  and Q;. The  importance of 
these two  functions will  be demonstrated in the  nextFction. 
Note  that these functions  are  uniquely associated to T ,  mod- 
ulo  constant  unitary  factors. 

11.4. Generalized  Singularities of Transfer  Functions  and 
Spectral  Analysis 

In  this  section, we single out a class of linear  multivariable 
distributed systems for which  a  fairly  detailed frequency do- 
main and  statespace  theory can be developed. In  the analysis 
of systems Like (11.1.1) any available information  about  the 
spectral  properties of A (i.e., eigenvalues etc.)  considerably 
facilitates the analysis. A very popular  method when A is 
self-adjoint with  pure-point  spectrum (i.e., only eigenvalues) 
is via modal analysis (that is eigenfunction  expansions). 
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Modal analysis (when  applicable) not  only facilitates the de- 
sign but clarifies completely the  internal  structure of the 
system  and  provides extremely useful and meaningful  approxi- 
mations, via truncation.  Quite  often  control laws based on 
approximate knowledge of the  natural modes, behave satisfac- 
torily [66 ] .  From  the  input-output  point of view the perti- 
nent  information  about  the naturalAmodes of the system is 
included  in the  analytic behavior of T .  So when modal analy- 
sis is not applicable, it is clear that state-space  models  which 
have operators A with  yectral  properties faithfully  represent- 
ing the singularities of T are quite desirable and useful. Such 
studies were initiated by Baras and  Brockett [3 ] .  See also 
Fuhrmann [ 231 and Baras [SI ,  [ 61, [ 81. One of the  impor- 
tant  properties  for  the class of systems we mentioned  in  the 
beginning of this section is that these  systems do have such 
models, and  moreover  this property is generic for models that 
are "minimal" in a  certain sense. 

In applications the  transfer  function ? will be  certainly 
analytic  in the O W  but it will have also analytic  extensions 
to pzrtions of the OLP.  Only  pathological  examples will lead 
to T which hzve the imaginary axis as a natural  bcpndary. 
We will let u ( T )  denote  the  set of nonanalyticity of TASince 
we are  considering nonrational  transfer  functions, u ( T )  will 
contain not only  poles but also essential singularities, branch 
cuts. We denote by u(A ) theAspectrum of the  operator A  in 
the realization ( A ,  B ,  C )  of T.  It is a well-known fact  with 
many  important consequences  in the l\mped systems theory, 
t ha i in  every canonical  realization of T ,  u(?), i.e., the poles 
of T ,  coincide with u(A),  i.e., the eigenvalues of A ,  multiplic- 
ities counted [59] . That this is not so in  distributed systems 
has been demonstrated by counterexamples in Baras and 
Brockett [ 31 , Baras [ 21 , Fuhrmann [ 171. Here is another  one 
from [ 61 : Consider the  equation describing the  temperature of 
a  long bar, along the surface of which heat transfer  takes  place 
to  the environment 

The initial condition is x(0, z )  = 0 and  the  boundary condi- 
tions are x ( t ,  0) = u ( t )  (the  control), lim x ( t ,  z )  = 0. The 

output is the  temperature  at  the  point z = 1. The weighting 
pattern is 

I +- 

and  the  transfer  function ? ( p )  = where we choose the 
branch which gives Re (6) > 0 whenever Re p > 0, and  the 
branch  cut is along the negative real axis .  Then  the following 
realization: 

X = L * [ O , m )  

eA*= left translation  semigroup  restricted on [ 0,m) 

d 
d t  

b = T - - T  

" 
cx = g ( t ) x ( t )   d t ,  whereg(t) = e-t 

is canonical. However a(A)  = closed LP while a(?) = 
{ X E R ;  - m < h b -  1 ) =  {branch  cut  from  -1  to -m} . Fol- 

lowing Baras and  Brockett [3]  wehwill say that a  realization 
is spectrally r p i m a l  u(A)  = u(T), for some analytic  con- 
tinuation of T (since T  may have more than  one  analytic con- 
tinuation). Here for simplicity we assume that  the resolvent 
set p ( A )  is connected. 

The reader  should realize by  now that whatever properties 
one can discover for  the  restricted translation  realizations 
(11.2.4)-(11.3.1 l) ,  will hold  for a quite general class of dis- 
tributed systems with reasonable  properties. 

The classAof systems we have in  mind  are those  with  transfer 
functions T which give rise to  functions Q,,  Q;, which are 
square  matrices, i.e., k = m ,  k' = n in (11.322). Tkat is systems 
for which the right  invariant  subspaces ?I and !I are of full 
range. In this case ̂ both Q, and Q;, are inner functions.  The 
transfer  functions T that have this property have also several 
other  important  properties which we proceed to describe, 
Such functions have been studied by Baras [ 31 -[ 81, Dewilde 
[ lo] ,  Douglas et aZ. [67] ,  Douglas and  Helton [25] , Fuhp 
mann [ 21 1 .  An m X n matrix valued function F is meromor- 
phic of bounded  type in  OLP [25] if it has the form F = G / g  
where G E K ; x n  and g E K - .  We can always take g to be 
inner, i.e., Ig(ju)l  = 1.  A function H in HZ x n  has a meromor- 
phic  pseudoconfinuafion of bounded  type in OLP [25] ,  if 
there exists an F which is meromorphic of bounded  type  in 
OLP and  such  that 

R e p +  0- R e p + O C  
lim F ( p ) u =  lim H ( p ) u ,  for a.U u E Cn. 

This notion  is a quite useful  generalization of the classical ana- 
lytic  continuation  concept  for  functions H that  cannot be con- 
tinued analytically  in  OLP. Moreover the singularities of the 
pseudo-continuation provide  a  useful substitute  for  the singu- 
larities of H in  such a case. Now we have a transfer  function 
9 such  that 

R ( H f ) =   ( Q r H k  1' 
N ( H + )  = Q;H', (11.4.1) 

Q, and Q; are uniquely  determined  modulo a copstant  unitary 
factor  from  the right. 

From (11.4.1) it follows that 

So &P M + K i  C K h  and 
H m  

Therefore, Q,O.u)?(ju) =&(ju) for some P, E HGX, , .  
Thus 

Th(jw) = Q,(ju)F,(ju). (11.4.2) 

Moreover, it is easy to show that if we require Q,, P, to be right 
coprime, t h e e  factors are unique  modulo  constant  unitary fac- 
tors. Now P, E K ; x n  and  let qr = det Q,. Then  there exists 
U, E H;xm such  that 

Q,U, = q r I m ,  fir  E K g x m ,  and g, E K" 

and so Q, has the m_eromorphic pseudo-%ontinuation of 
kopded  type (MPBT) U,/q",, and,  therefore, T has th:MPBT 
U,P,/s",. The remarkable fact is that conversely if T  has  a 
MPBT, then  the Q, associated with R(H+)' is inner, see [81, 
[ l o ] ,  [2  1 1 .  Now if ? has a MPBT, the  transfer  function of 
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:he dual system clearly has one.  Indeed if G/g is the MPBT for 
T ,  let G1 ( p )  = G ( - p ) ,  g1 ( p ) = g ( - p ) ,  and then clearly Gl/gl  

is a MPBT for a-T (the  transfer  function of the  dual  system). 
But  then by duality 

x 

p(-iw> = Q ;(io> 4 W )  
- 

and so 
?(/a) =';(-jw)&(-jw) 

and by defining Fl( jw)  = P;( - jw)  and Q l ( j w )  = G;(-jo) we 
have the  factorization 

T( jw)  = F ~ ( i a ) Q ~ ( i a )  (11.4.3) 

where the  factors  are  unique  up to a unitary  factor, if we re- 
quire PI and Ql to be left coprime. We summarize (see also 
{8] ,  [ 101,  [21]) as follows. 

Theorem 11.4.1 : The following are equivalent: 
f is such  that R ( H + ) l  = Q,HA with Q, inner. 
? is such  that N ( H +  ) = Q;H,' with Q; inner. 
? has a meromorphic  pseudo-continuation of bounded 

. _ _ _  

system theory  result. Moreover we shall see in  Section 111 of 
this paper how these considerations lead to a  satisfactory 
degree theory. To proceed we need the following well-known 
result, Moeller [ 681, Lax [52].   The spectrum of the infinites- 
imal generator of the semi-group 'multiplication by eiwr' re- 
stricted to the  left invariant  subspace (Q,H;)' consists of: 

a)  the  points p in OLP where Q,(-E)  has nonnull kernel. 
b) the  points  on  the imaginary axis through which Q,  can- 

N_ow the  meromorphic  pseudo-continuation of ? is 
&Pr/Fr where 4r = det Q,. So the poles of the MPBT coincide 
with the zeros of 4", in OLP which  in turn  czincide  with  the 
points {p  E OLP :?,(-E) = 0 )  = { p  E OLP: Q,(-P) has non- 
null  kernel}  and with multiplicities counted. By straight- 
fhonvard generalizations from [8] ,   [52,  p. 721 we deduce  that 
T has an analytic continuation  through a point in the imagi- 
nary  axis if and  only if Q,  does. So we have: 

Theorem 114.2: For  any  strictly noncyclic transfer  function 
? the restricted translation realizations (11.2.4)-(11.3.1 I )  are 
spectrally  minimal. 

Note that  in practice,  where the  continuation of f will be  a 

not be continued analytically to OLP. 

t Ipe  in OLP classical continuation, these translation models capture  the 1: admits a left coprime factorization ?(io) = concept of modes" quite More gener- 
Pl(jw)QIGw) where Q I E H F x n  and is inner and ally for  transfer  functions  that satisfy the  factorization con- 
pA EH,"x m . ditions of Theorem 11.2.2 one can obtain a  spectrally  minimal 

admits a left "prime factorization ' ( j w )  = realization,  by  applying the  reduction  procedure of Theorem 
Qw)Al(-jw) where A I  E H ; x n ,  Ul inner in HgXm.. 11.1.2 to  the translation  realization  produced  in  Theorem 

admdts a right "prime T ( W ) =  11.2.2. The necessary arguments  are  straightforward general- 
Qr(jw)'r(jw) where ', ' H r x m  and ' H ; x m  and izations of the arguments used in Baras [ 51, [ 61 for  the scalar 5 inner. case. 

a right coprime factorization T ( j w )  = Much more work is needed in  order  to utilize the full strength 
A,(-jo)U;l ( - jw)  where A, E and E HFx n of invariant  subspace methods  in  the  structural analysis of 
and  inner. 

Note also that  modulo  constant  unitary  factors these factoriza- 
tions are  related via 

P l ( j ~ )  = & ( - j ~ ) ,  Ql(jw) = U ; ' ( - ~ O )  

Q , ( j w )  = U j ' ( - j ~ ) ,  P,(jw) = &(-jo). (11.4.4) 

So in  particular N ( H + )  = U,Hi in (11.4.1), for  such transfer 
functions. 

Such  functions are  in the  center of the new theory  and have 
been given various names in the system theoretic  and  network 
literature.  Thus Baras [3],  [8]  and  Fuhrmann  [21],  [22] 
called them strictly noncycZic motivated  by the work of 
Douglas er al. [ 671 for  the scalar case, while Dewilde [ 101 - 
[ 121 called them roomy motivated  by the "full-range'' prop- 
grty of the  two  important invariant subspaces. We will use in 
. h i s  paper  either  terminology, and keep in  mind that  they 
represent the same properties. Moreover we would  like to 
emphasize that all properties in Theorem 11.4.1 are at  the 
input-output level. 

It is clear from  the above that  two  natural  state spaces for 
the restricted translation realizations are  determined  from  the 
inner  functions Q, and U,. The  structure of these inner  func- 
tions  on  one  hand provides the  spectral analysis of the corre- 
sponding  semigroups and  on  the  ot2er  hand  determines  the 
singularities of the  transfer  function T .  It is this property  that 
will allow us t o  demonstrate  that  the  restricted translation 
realizations (11.2.4)-(11.3.11) are spectrally minimal if ? is 
strictly noncyclic. By that  weFean  that   the singularities in 
the closed LP of the MPBT of T coincide  with the  spectrum 
of the infinitesimal generator A in  these  realizations. Thus we 
have an elegant generalization, for this class, of the  lumped 

linear  multivariable  systems. We believe that this approach, 
being closely related to tQe harmonic analysis of operators 
in Hilbert  spaces has all the necessary ingredients to provide 
a complete generalization of the fine structure  theory of 
lumped systems. The reader  should compare  the connec- 
tions between Jordan normal forms  and  rational  matrix 
properties (McMillan-Smith canonical form) and structure 
of lumped systems [ 11,  [59],  [62]  with  the  connections 
between Jordan models of operators  and  properties of HEXm 
functions which  underline the  theory  presented  here.  For 
some more  complex problems, e.g., series parallel connections 
of infinite dimensional  systems, frequency domain conditions 
for  controllability  and observability for discrete  time  systems 
we refer to  Fuhrmann [ 181-[  201 . 

111. LUMPED-DISTRIBUTED  NETWORK SYNTHESIS 

In this part, we will apply  the invariant  subspace theory as 
developed in Section I ,  and  part of the L 2  system theory as 
developed in  Section 11, to  the  problem of fiiding  network 
realizations for a scattering  matrix S and a transfer scattering 
matrix E z l .  We will show that synthesis techniques of the 
Darlington type are available in  the case that these  scattering 
matrices are  roomy. In contrast  to  Section 11, we  will not re- 
quire  that a  realization is available, so that our systems input- 
output transfer function may be any H E X , ,  function. Only 
those  results which relate to an  input-output description will 
be used. In  Section 111.1, we put  the  scattering  matrix 
theory in an L 2  systems context and in  Section 111.2,  we in- 
troduce  the main  systemic properties of the scattering matrix 
which will be used in the  two  later sections. In  Section 111.3, 
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3” - b 1  -1 
”1 - - - a2 

b2  
e ,  ( t )  n n 

- 
~ 

a2 = 0 a 1  = e ,  
b2 = 3 2 1  a1 

Fig. 1. A  transfer  scattering  matrix. 

an Oono-Yasuura type synthegis for  roomy  scattering matrices 
is discussed and a  key theorem ‘which  shows that a roomy 
scattering matrix can  be embedded  in a lossless one  without 
alteration of the generalized degree is shown. In  Section 111.4, 
we deduce a  Darlington type synthesis for a transfer scatter- 
ing matrix  and discuss the practical  consequences. The main 
tool used is coprime  factorization.  The main  results  are that 
one can obtain a spectral  factorization,  an Oono-Yasuura 
synthesis,  a Belevitch synthesis  or a  Darlington  synthesis by 
determining coprime  factors. 

III.1. Networks,  N-ports,  and System Theory 
Cascade synthesis in  the  context of network  theory, always 

refers to synthesis of so-called n-ports.  Let u i ( t )  and ii(t) be 
the voltage and  current respectively for  the irh port of the 
network. These are real-time functions,  but  for use in later 
developments we  will allow u i ( t )  and ii(t) to be complex. 
The energy absorbed by the  network  in an interval ( t  1 ,  t z )  
is given by 

r2 

8 ( t l ,  t z ) =  Re(Tu)dt (111.1 * 1) 

whereby 7 is the Hermitian  conjugate of the  vector  i,  and 
“Re”  denotes real part. 

We will assume a  “creation” time T = --oo for  the  network 
and  restrict all inputs  to belong to wme L z  space. We will 
say that  the  network is passive if b(T, t )  > 0 for  any t > T 
and  any possible pair of (physical) input  vectors u ( t ) ,  i (  t). 

Suppose a “physical” voltage source is connected to each 
port consisting of an “ideal” source ei(t)  and a series resistor 
of 1 a. Then, defining a = ( u  + i)/2 and  b = (u  - i)/2, we have 
that 

tl 

8 ( r l , t 2 ) = ~ l f *  [ ; j a - g b ]   d t  (111.1.2) 

whereby a depends only on  the source voltage. The first term 
in (111.1.2), j’? i‘ a dt,  is obviously the maximal amount of 
energy the given sources  can possibly deliver to any n-port 
connected to them. It  is physically clear that,  once we have 
connected the sources, and  hence assigned an  a(t),  any real 
network will respond with a  certain u ( t )  and  i(t)  and  thus  with 
a b(t).  Therefore, any  physical network defines  a map 

a ( t ) W  b(t). (111.1.3) 

Moreo_ver if the  network is passive, we will always have 
j-y b b d t  < j-> a“ a dt,  that is a passive network defines 
something  like  a bounded  map in some L z  space. Thus  the 
mathematical framework: 

(i) input space = output space = L i  (--OD, m) with 
(ii) The n-port defining a  map: 

5 : L i  (-00, m) - Ln( -=,a). 

The assumption about quadratically bounded response to a 
quadratically bounded  input  is  justified by our  interest  in pas- 
sive synthesis. The variety of networks  the framework will 
produce justifies this limitation. 

From now on all maps 5 defined by networks will be linear 
time invariant  (i.e., 5 u7 = 0,5), bounded  and causal (i.e., 
5 L i  (0,m) C L& (0,m)). Such a network is passive if and  only 
if the  norm llSll< 1. 

Quite  often  one  is  not  interested in  synthesizing  a whole5 
but only part of it. The  situation is depicted  in Fig. 1, where 
we have split  the  ports themselves into n input  ports  and 
m output  ports.  Let u1, il  denote  input voltage and  current 
vectors, and u s ,  i2 output voltage and  current vectors. Like- 
wise, if we terminate  the  output  with  unit resistors and  apply 
inputs as before we have 

a1 = f ( u l  + i l ) = T e l  1 

a2 = 3 (u2 + iz) = o 
b2 = i ( u z  - i 2 ) = u 2 .  (111.1.4) 

So that  the relationship between  output voltage and  source 
voltage is given by the map 

$21 :Li(-m, =)-Lm 2 ( -m,co) 

a1 F b 2  (111.1.5) 

which we will require  to be  linear time invariant bounded  and 
causal. If the  network  that  produces SZl is passive, clearly 
l lSZ1 11 < 1. A very common way to realize Szl in electrical 
engineering, is to make it a part of a network which is lossless 
( F i g .  1). (Only the case m = n is physically interesting  in this 
case, see e.g. [91,  [691.  Thus 

h n  
n n  

5 =  1:: 3 ::: (111.1.6) 

where 5 is lossless, i.e., for all inputs a ,  we have as much 
energy in  the  output as in the  input 

ll5all = Ilall. (111.1.7) 

This means  (with 5* the  Hilbert space adjoint of 5 )  that 

5 * 5 = identity. 

Such an 5 will be called a lossless embedding  for 5 21. Neces- 
sary and sufficient conditions  for this to happen have been 
derived by Dewilde [ 101, Arov [701, Douglas and  Helton 
[ 251 . Once  a lossless embedding  is  obtained, it is known  that 
the resulting 5 can be,  in a sense to be described later,  synthe- 
sized as a  cascade of lossless sections, thereby generalizing the 
Belevitch synthesis [ 7  1 ] , which itself is a  generalization of the 
synthesis of Darlington [ 721 . Also, the  techniques used in  the 
sequel allow a straightforward  deduction of a synthesis  akin to 
and  more general than  the Oono-Yasuura synthesis [ 731. 
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The  operators 5 and szl just described will be commonly 
called scattering  operators  (for obvious physical reasons) if 
they are contractive (Le., if 1 1  511 < 1 or I( 5 2 1  ( 1  d 1). Their 
characterization  in the  frequency domain is well known 
(see also Section 11.3): 

.* 
5 2; (-Po, j") - L:, ( -Po,  j") 

A W )  b B W )  = ( S b ) ( j o )  = S(io)(3a)( iw)  
= S ( j o ) A  ( jw)  (111.1.8) 

by the Bochner-Chandrasekharan  theorem [38] ,  where 
S E H R  X n .  S will be called the  scattering  matrix. 

111.2. Systems Theory of a Scattering Mam'x 
The main  purpose of this subsection is to  produce a  system 

theoretic description of what we will call the  natural  state 
space of the  scattering  matrix S, and to establish the connec- 
tion  with  Section 11. The  assumption  on  the  scattering  opera- 
tor 5, imply  that it can  be  considered  as an  input-output  map 
in the class described in  Section 11.3 (i.e., (11.3.1)). Therefore, 
all the results of Section 11.3 apply here. We collect the most 
important  ones  for  the synthesis problem.  The  kernel of the 
Hankel operator associated with S 

H~ :H;  - H; 

W s A  Xiw> = P S W ) A  (-io) (111.2.1) 

is % C H i .  It will be called the nullspace of S in  the sequel. I t  
is a  right  invariant  subspace. Its  complement fl, as we saw 
in 11.3 is quite a natural  state space for  the system induced by 
5. The  importance of transfer  functions  which have meromor- 
phic pseudo-continuations of bounded  type in OLP was dis- 
cussed in detail in  Section 11.4. Scattering matrices with  this 
property  are also extremely  important  for synthesis and have 
been analyzed in [ 71 , [ l o ] ,  [ 111, [ 701, [ 251 . We call them 
strictly noncycZic or  roomy  (Section 11.4). From  Theorem 
11.4.1  we have the following very important  factorizations  for 
such scattering matrices 

Hm 

S(jw)=A,(- jo)U;'(- jw)  

S (io) = Uil (-jw)A l ( - j ~ )  (111.2.2) 

where the first is the right coprime  factorization,  and  the 
second the left coprime  factorization  and U,, VI are lossless 
in H ; X ,  and H E  x m  respectively, and characterize the  state 
spaces of the  two canonically constructed realizations in Sec- 
tion 11.4. In  particular 

a = U,H;. (111.2.3) 

Theorem 111.2.1: Let S ( j o )  be roomy  and consider the 
factorizations (111.2.2). Then  det U, = det VI. 

Proof: An elementary proof is given in [ 111, [ 121. A 
proof based on  the Nordgren theory is in [ 221 . 

This theorem  is crucial for  two reasons: 1) because it allows 
an  extepsion of the  finite dimensional  degree theory  to  infinite- 
dimensional systems  and  networks  and  2) because it allows for 
practical embedding algorithms. The first point will be dis- 
cussed to close this  section while the  second will be in  the  next 
subsection. 

We will now develop our degree theory  for an m X n roomy 
system.  Since all information  about  the  natural  state space of 
5 is contained in the  matrix U, (or Ul)  it  will be enough  to 
develop  a degree theory  for U, and we will identify  the degree 
of U,  with  the degree of 5. For a lossless matrix  function U a 
,ood measure for  the  complexity of U is  obtained by  consider- 

A 

ing det U. To see that,  let .!fn be the multiplicative monoids 
of n X n inner  matrix  functions. We will call 6 :3,, -+ Tl a 
degree map if the following conditions are  satisfied: 

(i) 6: . ! fn-+ .! f1  and6(1 , )=1  

(ii) i f U = U I U z ; U 1 , U z  E Yn t h e n 6 ( U ) = 6 ( U l ) . 6 ( U z )  

(111.2.4) 

where cp is a lossless scalar (cp E TI) and  ln-l  the  unit n - 1 
matrix.  The main property is (ii) which  says that 6 is a  monoid 
homomorphism. It  is not difficult to prove [ 111 that 
det U = 6(U) (Note  that this  does not work for a general 
n X n matrix A !). It is well known in classical network  theory 
[69]  that  the degree of a finite  (rational) lossless matrix is 
equal to the degree of its  determinant.  The degree map  ex- 
tends  this  property to roomy  matrix  functions. 

For synthesis  purposes, it is necessary to  look a  bit more 
closely to  the  analytic  structure of U and its  determinant cp. 
Typical lossless matrices and  functions are as follows. 

1) So called Blaschke factors: 

2aou u" 
U = l n - -  

P + F o  P + G o  
P - Po 

cp=- (111.2.5) 

where a0 = Re PO > 0, u is an n-vectorwithunitnorm ( c u  = 1) 
and PO is a zero in  the  ORP. 

2) So called singular factors: 

with either 7 = kp  or 

7 =  
k ( l  - P *ioo) (111.2.7) 

P - iwo 

u an n-vector with u"u = 1, joo a point  on  the imaginary axis, 
and k > 0 a positive constant.  The  theory of Riesz-Herglotz- 
Potapov [ 31 I ,  [321,  [761 asserts that  any lossless matrix U 
and  its  determinant cp can be viewed as the limit of a  sequence 
of products of the  two  types. More precisely any U decom- 
poses as 

where UB is an (eventually infinite)  product of Blaschke fac- 
tors, cpB = det UB, and all poles in  the  OLP (zeros in  the O W )  
are  represented  according to their  multiplicity; Us is a product 
integral of elementary  factors (limit of a finite  product of 
elementary  factors in the sense of [ 321 ) and 

cps = det Us = e-pr exp [ - 1: dp(t)  (111.2.9) 1 
where p(t)  is a finite singular measure on  the jw-axis. Note 
that cps is analytic wherever Us is and conversely. 

111.3. ScatteringMatrix  Synthesis Through Lossless Embedding 
In this subsection, we will attack  the synthesis problem  from 

an "Oono-Yasuura" point of view, i.e., we will try to embed a 
given n X n scattering matrix S ( jw)  in a 2n X 2  n lossless one, 
and then synthesize the lossless 2: by means of a Riesz- 
Herglotz-Potapov factorization.  The  ability to embed S in a 
unitary is dependent  upon  the accomplishment of two 
steps:  (i)  First ,an analytic zzl has to be determined so that 
2z1 = 1, - SS (spectral  factorization). (ii) Second the 
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matrix 

(11.3.1) 

has to be embedded  in  a  unitary (lossless) one.  Moreover 
operations  (i)  and (ii) have to  be executed  in  a  minimal  fash- 
ion, i.e., without increasing the degree  of the system. 

It is  a  well-known fact in the  theory of  multiplicative  opera- 
tors  (for  an  excellent discussion,  see, e.g., [26, ch. lo]),  that 
step  (i)  can always be executed. This point has also been  ex- 
tensively  discussed in the  theory of resolution  spaces [ 831, 
[ 841.  The  proof of this is usually  "existential," i.e., it shows 
the  existence of a  spectral  factor ZZl,  but does not give an 
algorithm to actually  compute the  factor. We will accept  the 
existential  statement  here  and show  how to deal  with  the 
spectral  factorization  in  the  next  subsection. 

In this subsection,  we will concentrate  on  point (ii) and 
show that our coprime  factorization  theory provides  an  em- 
bedding if and only if S is roomy. 

Also, we will indicate how  coprime  factorization  potentially 
yields  an  algorithm to  compute  the embedding. First  a  few 
observations  about Z21. 

Let 

221 2 2 1  = 1, - s"S (111.3.2) 

be a  spectral  factorization  for 1, - 3s. We can always  sup- 
pose that 2 2 1  is  outer,  for  any  inner  factor in E21 cancels, in 
the first member of  (111.3.2). 

Now,  let S be an n X n, not identically  singular  scattering 
matrix,  and  let,ZZl be an  outer  spectral  factor, as  given by 
(III.3.2).  Let f be the nullspace of S as  defined  in  the pre- 
vious  section. 

TheoIem 111.3.1: The nullspace G1 of S lays  in  the null- 
space l1 of Z Z l .  The two coincide if and  only if S itself is 
outer. 

Proof: We have F E $, if and  only if S (-jw)F is ana- 
lytic.  But if S(- jw)F is analytic,  then, by  (111.3.2), so is 
Z 21 ( - j w ) ~ 2 1  ( - j w ) ~ .   his implies that ~ 2 1  ( - j o ) ~  is also 
analytic. For, su_ppose not,  then  there is G I  conjugate  ana- 
lytic, so that & l ( - f o ) G 1  is analytic. It follows that 
G1 (-jw)lZZl H: and, since 2 2 1  is outer  and G1 (-jw) ana- 
l tic, G1 = 0. This  shows fi 1 C $;. If S is outer,  then also 

It  follows  that $1 is the nullspace  of the  matrix (111.3.1). 
Suppose  now  that S is roomy,  then we have  shown that  the 
generalized  degree of  (111.3.1) is equal to  the generalized 
degree of S. A right  coprime  factorization for (111.3.1)  gives 

d; c $ 1 .  Q.E.D. 

(111.3.3) 

and (111.3.3) is of course  roomy  together withS. 

trivial constant  unitary  factor)  for (111.3.3) is given by 
Theorem 1.1.3.2: The  left  coprime  factorization (UP to a 

(111.3.4) 

where Z is the minimal lossless embedding  for S with  outer 
& I .  It follows  that Z has  the same  generalized  degree as S. 

h o o f :  Let 

be  a left  coprime  factorization  for 

We have,  because  of (111.3.2) that 2 l l A l l  +221A21 = 1,. 
It  should be remarked  that  the  left  coprime  factorization origi- 
nates  in  the  dual system  (see  Section 11.4). Translating the 
notation used there we have 

0-u;' -2 

(111.3.5) 

Hence 

[:::I 
has to  be  considered  conjugate  analytic_(we  are  proving  it is 
actually  constant). We thus have that 0-Z and 

are  left  coprime  and  thus  there  are  sequences Mi EH,"x 2n 

and Ni E HZ X 2n such that 

(the limit representing  one or  the  other  type of convergence 
mentioned  before:  see S~ction_ I). 

Premultiplying  with [ A  11, Azl  I gives 

[ i l l ,  A s 1  I = O M i  + [$11, 2 2 1  I Z u 3 i I  
t + -  

= lim { o-Mi + [s, 221 ] o-Ni}. (111.3.7) 

The right-hand  side  is  by  necessity  conjugate analytic,  and so 
is thus  the  left-hand side. The result is that 

i + -  

[:::I 
is a  matrix  which is both analytic  and  conjugate  analytic, 
hence  constant. 

Moreover,  since (111.3.3) and (111.3.4) are  coprime  factor- 
izations  for 

we have  by  Theorem 111.2.1, that  det U, = det  and  hence 
the  embedding of S has the same  degree as U,, which is the 
degree of S. This  proves the  theorem. 

Because of Theorem 111.3.2 it follows that an  embedding  of 

reduces to  a  simple  coprime  factorization.  This  result  provides 
for an  alternative  approach to  the (very  difficult)  Oono- 
Yasuura [73] synthesis  technique  and  in  fact,  produces  both 
an  alternative  proof  for  their result and  a  synthesis algo- 
rithm, the main lines of  which we want to  discuss  now. 
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INPUT 

OUTPUT 

When 

--- 

-- 
__- 

Fig. 2. The  network  resulting from a  factorization of X. 

is rational,  then it can have only a f i i t e  number of poles in 
OLP. A Blaschke factor, 

2ao uii 
1zn - - 

P + F o  
(111.3.8) 

can be extracted  from  it,  with  reduction of degree if [9 ] ,  
[ 131 : 

1) -Eo is a  pole of S; 
2) the vector u is chosen  according to  the following rule: 

suppose 

is a Laurent expansion at - 30, and 

is a  Hankel matrix based on  the sequence A I ,  , A , ,  0, * * - 
then  the vector [ u ,  0, * * , 01 is in the columnspace of H ,  
or else, there is a 2nZ vectory  such  that 

We can hence recursively determine a  sequence of Blaschke 
factors B 1 ,  Bz , - * * , Bs (6 being the degree of S) until we ter- 
minate in  a constant  matrix, so that 

It suffices to represent 

with A constant  unitary  and  the  embedding  (together with  a 
factorization) is given by 

Z = B 1  ' B z   . * * B g   * A .  (111.3.12) 

n 
open 
clrcuits 

S r T  Fig. 3. Two cascaded  sections. 

Network  realizations for (111.3.12) are well known [ l o ] ,  and 
result in  the  structure pictured  in Fig. 2.  It should  be noted 
that this structure is impractical  since it is not a cascade re- 
alization for S in the  true sense. For  that reason, we  will 
not pause any longer on this case and  only  indicate  how  the 
theory generalizes for  infinite  structures. In the  next  section, 
the cascade case will  be discussed. 

Suppose  now that S is roomy  (but  not identically singular). 
Z then consists of a Blaschke part  and  a singular part  the 
degree of which is represented by (det Z>B and (det X)'. 
There are good physical reasons to suppose that S, and fol- 
lowing Z21 and Z are meromorphic, this being a  result of con- 
siderations about Maxwell's equations; and we wiU restrict  the 
discussions to  that case (this restricts the singularities on  the 
jw-axis to the  point m, but  any  other  point would be treated 
similarly but would result  in  nonphysical transmission lines). 

By the Riesz-Herglotz-Potapov factorization, we have 

2 = Bi . J e-p a ( t )  (111.3.13) 
i= l  

where Bi are Blaschke factors, M ( t )  is a monotonically in- 
creasing family of nonnegative  Hermitian functions and the 
sign 

J O  

indicates  a "product" integral, limit of a product 

(111.3.14) 

where AiM = M ( t i + l )  - M(t i ) ,  the limiting procedure is to be 
seen as a  Stieltjes  integral,  and tr  [M(t)] = t .  Following Bele- 
vitch [ 7 1 1,  it can easily be seen that  the  network resulting 
from  this product decomposition is of the  type depicted  in 
Fig. 2, Nj standing for  either a  first- or second-degree network, 
a transmission line,  or  an  elementary section of a transmission 
line,  and  the  circulator being the circuit  element which realizes 
the  factor  decomposition. In circuit theoretical practice one 
is usually asked to synthesize a transfer scattering matrix 
x Z l  and  not a  scattering matrix S ,  and we  will devote the  next 
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Subsection to  that case. Also, in the  next Subsection we  will 
indicate  a method to obtain  the  spectral  factor by  coprime 
factorization. 

111.4 Transfer  Scattering  Matrix  Synthesis  and  Determination 
of  the  Spectral  Factor 

In this  subsection, we  will first discuss methods to determine, 
by  coprime factorization,  the spectral factor E21 out of S 
for a roomy system. The idea  behind the  method is closely 
related to  the idea of cascade synthesis. First,  suppose a loss- 
less realization  has been found  for S, terminated in n unit re- 
sistors. The Czl of the realization  (which is called the transfer 
scattering matrix) is related to S by 

gzl x 2 1  = 1 - s"s (111.4.1) 

and is thus a  spectral factor  for 1 - s"S. 
Next, suppose we have a cascade realization for S ,  consist- 

ing of two cascaded sections  (Fig. 3). Then S is uniquely de- 
termined  by N and S '  and  not by the in the section 
N'.  Hence, if we succeed  in  providing  a recursive method  for 
the  extraction of lossless cascade sections out of S, and  this 
should  be possible without previous  knowledge of Z21, then 
Zz1 will be obtained as the global transfer  scattering matrix 
of the cascade. This procedure, in network terms, is known 
as the Belevitch synthesis [ 691, [ 7 11 , and we  will attack it 
from a different  point of view,  namely  coprime factorization. 
A cascade synthesis for 2 (Fig. 3) coincides with a  factoriza- 
tion of the transmission matrix 0 given by: 

(111.4.2) 

or,  with P = 1, 4 On, Pl= 0, 4 1, and .=[p. 3 
0 = (P + P'AC) (PAZ + P1)-'. (111.4.3) 

Our problem can thus be formulated as follows: find a 
"minimal" (i.e., of least degree) factorization of 0 from S 
without previous knowledge of There is an additional 
difficulw here which we did not  encounter in  Section 111.3: 
E;:, and hence @ is not necessarily analytic in the sense de- 
fined  before  and  moreover, @ need not belong to H;, X Zn. 
Our  coprime factorization  theory was explicitely stated in the 
context of H" theory  and we  will have to  extend it. The 
characteristic property of 0, corresponding to  the  property 
that Z is a  scattering matrix, is the following (fix p E ORP 
and let -indicate Hermitian  conjugation). Let J = r n  0 -1, "1  (111.4.4) 

then 

6 J O  - J = (% AP + P1)-' ( Izn - 2 X )  (PAX + P1)-' 
(111.4.5) 

so that, in the ORP we have that 

&e- J 2  0 (111.4.6) 

or [ 321 @ is J-expansive  in the ORP. 

Moreover, if X is lossless, and  hence unitary a.e. on  the 
imaginary  axis, we have that 0J@ - J = 0 a.e. on  the imaginary 
axis. For lack of a better  name, we will call a 0 deduced  from 
an analytic scattering matrix X ,  passive and  one deduced from 
a  conjugate analytic  one, antipassive. As in  Section 111.3, it 
will not be necessary to work on  the  total  matrix 0 but  only 
on matrices of the  type: 

w 

.-[=;:I s 2;; (111.4.7) 

which we will call passive (or antipassive) according to whether 

1," 1 (111.4.8) 
LL21J 

may be considered  a  contractive analytic  (or conjugate  analy- 
tic)  matrix. As is the case for lossless matrices, there is a  par- 
tial  ordering available for  J-unitary matrices, so that a J- 
unitary, passive 0 1  is a  right  multiple of a J-unitary @2 if and 
only if 61J@1 > &JO2 a.e.  in the ORP, for we have, with 
O1 = @ 3 @ 2 ,  that OIJOl - J = &(&J@3 - a02 + (&TO2 - 

so that &J@3 - J >  0 in theORPif &J@l 2 &JQz in the 
ORP. Also, if and O2 are J-unitary and passive, and 
&J@1 = &J@2 a.e. in the ORP, then 0 1  = 02, for if Q3 = 
010;' is such that &J@3 - J = O z n  a.e. ORP then  its  cor- 
responding & has the  property  that & & - I z n  = O z n  a.e. 
in the ORP and hence is constant. 

Given a 2n X n matrix [ A S  A 5 1  which has the  prop- 
erty  that 

- 

w 

(111.4.9) 

is antipassive, it makes  sense, as with the previous coprime 
factorization, to wonder  whether  there is a "smallest 0" 
with  that  property. In other words, whether  there is a  co- 
prime factorization  for 

[ ""3 as Q [ ,@ J-unitary and [A! ' ]  antipassive. 
-421 -421 A21 

An application of Zorn's lemma  reduces the proof of the 
property to: let O1 and 0 2  be  as  in (111.4.9), then so is their 
greatest common left J-unitary divisor. We will not need the 
property in this generality, although we conjecture  it to be 
true. We will say that 8 is the  left  J-unitary  cofactor of 

1 '4211 

if indeed it is the  unique passive J-unitary  factor  (unique ex- 
cept for a  trivial  right constant  J-unitary  factor of course) 
which left divides any  J-unitary passive factor 0 1  for  which 

is antipassive. The basis of our algorithm is then given by: 

the left J-unitary  cofactor  for 
Theorem 111.4.1: Given an n X n scattering  matrix S, then 

(I, - is,-' 
[S(L - i W 1 ]  

(111.4.10) 
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is the  matrix 0 whose corresponding 2 is a minimal lossless 
embedding for S.  

Proof: We have 

where ZZl is the  outer  cofactor  for S. It is clear that 

0-1 [::I = [ 3 (111.4.1 1) 

is antipassive so that  the 0 obtained  from  the minimal embed- 
ding with  outer E21 satisfies the  requirements  for being a 
factor.  It will be the cofactor if we proof that,  for 0 1  such 
that 

is antipassive and whose corresponding 
there is a J-unitary passive 0 3  such  that 

0 1  =0.03. 

(111.4.1 2) 

(Zl)21 is outer,  then 

(111.4.13) 

Of course, O3 = @-lo1 is  well defined,  the  question being 
whether  it is  passive. Clearly we have 

so that,  denoting 

pad  the corresponding unitary 

we have 

Since (111.4.14)  is supposed to be  antipassive, it follows that 
021Z21 has to be analytic. Since Z21 is outer, 0 2 1  has to be 
analytic as well. Also, 022 has to be analytic as a product of 
two  analytic  functions.  From  the  fact  that el = W3, we 
deduce: 

Z1 is analytic  and  such  that (Z1)zl is outer, so that we can 
deduce  that: 

i) uZ1 (1, - Zz2 ull )-' is analytic  and  outer; 
021 (1, - 2 2 2  011 I-' Z22 u12 is analytic; 

iii) Z1zoll(l, - Z22u11)-l isanalytic; 
iv)  Z12(1,, - 011 Z22)-l u12 is analytic. 
At this point we have to use two  properties of outer  func- 

a)  Suppose A = BC is analytic  and  either B or C is outer, 
tions ( A ,  B ,  and C are n X n square  matrices): 

then B and C are  analytic. 

To see this  suppose that B is outer.  Then, (see Section I )  
there is a  sequence Mi of analytic  functions  with  limi+- . 
MjB = 1,. It follows then C = limi+,MiA must be analytic. 

b) Suppose that B and C are  analytic matrices and  that B 
and C are outer.  Then BC has to be outer. Indeed  a matrix 
A is outer if and only if its  determinant is outer. 

From i) and b) it follows that u21( 1, - Z22011)-' is ana- 
lytic and outer, so that 

021 = T(1n - Z Z Z O I I )  (111.4.1 6 )  
with T outer.  It follows that 1, - Zz2 011 and also 2 2 2  011 are 
analytic.  From (iii) we have that Zlzoll is analytic as well. 
From (ii) Z22alz is analytic because u21( 1, - &2011)-' is 
outer  and we have that 
Z12012 = Z12(1n - 011 Z22)-l012 

- Z12011(1n - Z22011)-1 Zzz012 
is  analytic because of ii) and iv). 

Now, Z12 and ZZ2 belong to a  minimal  embedding of S, 
so they have to be  right coprime,  for otherwise X12 = Zi2 U, 
Zz2 = Z;2 U with Z;2 and Z;2 analytic  and 

would be a  minimal  embedding with smaller determinant  and 
hence with smaller  (generalized) degree. 
Thus, there are Mi and Ni such  that lim ( M J  12 + = 

1, and it follows that 

011 = lim(MiZ12u11 +NiZ22011) 

I+- 

i + m  

012 = !im(MiZlz~lz  +NiZ22012) (111.4.17) 
I + -  

are analytic. This proves the  theorem. 
Corollary 111.4.2: In  order  to  obtain a  spectral factor X21 

for S and  an embedding, it is enough to  produce a  coprime 
factorization  for (111.4.10) with a  left J-unitary  cofactor. 
Note that  the existence and uniqueness of the  cofactor is as- 
certained  by  the  theorem. 

Theorem 111.4.1 solves in principle the synthesis  problem 
for  roomy scattering  matrices. In practice,  however, it does 
provide for a new algorithm in the  rational case, but experi- 
ences quite a few difficulties  in the  nonrational case. We 
will first discuss how  the algorithm goes in the  rational case 
and  then proceed to a discussion of practical  consequences in 
the  nonrational case. 

a)  The rational  case: We have to  produce  an  outer Z21 
out of (111.4.10)  as requested  by the minimality of 8. Poles 
of (111.4.10) in  the OLP and on  the imaginary  axis  are  what is 
known as transmission zeros. In fact,  without loss of gener- 
ality, we may suppose S outer  to  start  with, in which case the 
poles of (111.4.10) are exactly transmission  zeros (for  an ex- 
tensive discussion of transmission properties, see [9 ] ). Two 
types of factors can occur, according to whether  the trans- 
mission zero is in the OLP or  on  the axis. In  the  fust case it 
is of type [.9] : 

2 a 4 u a  
1 z n  - - 

P -  P o  
, % = R e p o ,   i i J u = - l ,  % < O  

(111.4.18) 
for a  transmission zero  in  the OLP and  in  the second case: 

I z n  +- , r >0 ,  ZJu = 0 (III.4.19a) 
rUZJ 

P - iwo 
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for a transmission zero on  the  jo-axis, with 

l zn  + pruiiJ, r > 0, i iJu = 0 (III.4.19b) 

for  the zero at  infinity.  Type (111.4.18) results in what is 
known as a  Darlington section, (111.4.19) as a Brune section. 

From a  numerical point of view one has to  determine  the 
point  po  or joo and  the vector u for each  section extraction. 
This is done  exactly as described in Section 111.3, formulas 
(III.3.9)-(111.3.1 l ) ,  taking care of the  extra  conditions in 
(III.4.18)-(III.4.19). We have for  example; with 

that 

[ I  (1 - S*S)-' 
S( 1 - S*S)-' 

d 5 3  6 .-p + - p 2 + 6 p  
2  2 1 I J i p r  + -p2  - d T P  1 5 -p4 - - 

4 4  P + 1  = 2  2 

I - 2 6 p Z  + 2 6 p  -p3 + 2p  2 

6 6  p - 2 4 p + 2 6  - p 4 - - p 3 - - 2 + -  
lTp3 - 2 1 1 5 

4  2 q P  ; P I  

so that  there is a  transmission  zero of degree two  at  infinity. 
Extracting  two Brune sections produces: 

5 2 6  6 
3 3 TP 1 + - p  0 --p - 

0 1 0  0 

2 6  4  2 

fi 2 1 

-p 0 1 - - p  --p 3 3 3 

3 p  0 --p 1---p 
3  3 

- - 
0 - 6 0  2 

1 0  0 0  

0 0 1 0  

0 -2 0 6  . - 

procedure is now: 

We have obtained at the same time  an embedding, a cascade 
synthesis and a  spectral factorization. 

b )  The general  case: Again, we restrict ourselves to  the 
physical case whereby the  functions considered  are a! mero- 
morphic. A complete description of a meromorphic  J-unitary 
factor is given by Potapov [32 ] ,  whereby an  infinite  number 
of sections of type (111.4.18) and (111.4.19) may occur  (Dar- 
lington and Brune  sections) and  an essential  singularity  at m 
is represented  by  a factor of the  type: 

8 s  = $ - p  (r)  (111.4.20) 

whereby E ( t ) J  is a monotone increasing family of Hermitian 
matrices  and t = tr [ E ( t ) J ]  . Note  that a  Brune  section of type 
(111.4.19)  is a special case of (111.4.20), with E ( t )  = uiiJh(t) 
( h  being the Heaviside step  function). In general E ( t )  will 
have a continuous  part  and a stepfunction  part.  Approximat- 
ing E ( t ) J  by  means of a step  function, we can approximate 
the integral (111.4.20) by a finite cascade of sections of the fol- 
lowing types: 

e 'rpu'J, r > 0, iiJu = f 1 (II1.4.21a) 

e p*J = 1 2n + rpuiiJ, r > 0, iiJu = 0. 

(III.4.21bJ 

The  factor (111.4.2 la) is simply the transmission matrix of a 
uniform transmission line together with  some  connecting  cir- 
cuitry (ideal transformers  or  gyrators). Depending on  the sign 
in (III.4.21a) we have either 

erpuGJ = l z n  - uGJ+  epuiiJ, iiJu = 1 

(III.4.22a) 

or 

e-'?'ui' = l zn  + uiiJ- e-TuiiJ,  iiJu = - 1 
(III.4.22b) 

so that 0' becomes  a  polynomial matrix in p ,  e'l p ,  * * r, 
e'np for some real ri .  Thus, we can assert that a cascade 
consisting of a finite  number of sections,  each either a Darling- 
ton, Brune, or transmission  line  section of type  (III.4.21a) 
realizes a Z;: and an SZC;: which are  polynomial in p and 
some e powers. We will call such matrices off ini te   type.  Fol- 
lowing  (as yet unanswered) questions immediately arise: 

1) Suppose xi: of finite  type, is it  true  that  the  correspond- 
ing SZi: is also of finite  type,  or else, what are  the 
conditions  on  for  this to be  the case? 

2)  Suppose  that  both 2;: and SZ;: are of finite  type, is 
it true  that os is also of finite  type? And if so, what is 
an algorithm to  obtain 8' out of (III.4.10)? 

Part of the problem is that,  although may be of finite 
and  the spectral factor,  obtained  for instance as the rest of the  type,  it is not  true  that (111.4.10) or S is of finite  type. 
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No good, practical  criterium of degree reduction of (111.4.10) 
is available, although some attempts which  work in individual 
cases are shown  in [ 1.51. It is possible to generalize the  pro- 
cedure for  the  rational case to fit this  case, but new diffi- 
culties arise mainly in connection  with  the existence of the 
factors. 

CONCLUSIONS 
We have represented an analysis of linear distributed sys- 

tems and networks, using the unifying theory of invariant sub- 
spaces and  Hardy functions. Thus in Section 11, we analyzed 
state space models and transfer functions and their interela- 
tions. We saw that  for  a fairly large class of systems the well- 
known relation  between  natural  modes  and poles of lumped 
system theory generalizes in a  natural way. We believe that 
the  theory presented  here provides the  fundamentals  for  the 
development of a detailed frequency domain analysis of dis- 
tributed systems  in  Hilbert spaces with potential applications 
to design (exact  or  approximate) similar to  the  one presented 
in Rosenbrock [ 1 ] , [ 821 , The  concept of spectral  minimality 
plays a  fundamental role in relating time domain (state space) 
and  frequency domain analysis. We have also indicated how 
a  module  theoretic analysis on  the lines of Kalman [ 6 2 ]  can 
be generated using the  methods presented here. We empha- 
sized the role played by functions which have meromorphic 
pseudo continuations of bounded  type in some left half plane 
(strictly  non cyclic or  roomy  functions). 

In Section 111 we have analyzed lumpeddistributed  networks 
and provided various  synthesis methods. In addition we have 
established the relation between  state realizations  and  fre- 
quency domain analysis of scattering  matrices. When the 
scattering matrix is roomy  a  complete lossless synthesis can 
be derived using representation formulas of Potapov,  at least 
‘in principle. In the case of scattering  matrices which are not 
roomy,  no lossless embedding  exists and hence no generalized 
Darlington or Oono-Yasuura  synthesis. Through coprime 
factorization of a suitable matrix directly derived from  the 
scattering matrix we obtained spectral factors as well as a 
lossless embedding  in a minimal  fashion.  This  procedure 
provides a new and very practical  algorithm for spectral  fac- 
torization in the case of rational matrices. We also developed 
a  natural generalization of the degree concept  for  nonrational 
matrices. 

Throughout  the paper we have used coprime factorizations 
of transfer  functions  or scattering  matrices which are roomy 
(strictly  non cyclic).  These factorizations should  remind the 
reader of the  factorizations  for  lumped systems in Rosen- 
brock [ 1 ] . We believe that  they will prove to be an  important 
tool in analysis of such diverse problems as quadratic cost 
problems (implementation of controllers),  distributed filtering 
theory  (spectral  factorization)  and stability of distributed 
systems and  networks [ 8 1 ] . 

An important direction for  further investigation, is the de- 
velopment of practical  algorithms for these factorizations and 
their use in the development of a  systematic  approximation 
theory of distributed systems  and networks, based on de- 
composition  into subsystems. 
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