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Mobile Ad Hoc Networks are infrastructure-less networks consisting of wireless,

possibly mobile nodes which are organized in peer-to-peer and autonomous fash-

ion. They are ideal for use in scenarios such as battlefield operations, disaster relief

and emergency situations where fixed infrastructure is not available for communi-

cations and rapid deployment is important. This environment provides substantial

challenges for routing. The highly dynamic topologies, limited bandwidth avail-

ability and energy constraints make the routing problem a challenging one.

The Swarm Intelligence paradigm is derived from the study of group behavior

in animals such as ants, bees and other insects and has been used to solve various

hard optimization problems such as the travelling salesman problem and has re-

cently been used in solving the routing problem in static computer networks with



encouraging results. These algorithms have proved to be resilient and robust to

topology changes.

In this thesis we take a novel approach to the unicast routing problem in

MANETs by using swarm intelligence-inspired algorithms. The proposed algo-

rithm uses Ant-like agents to discover and maintain paths in a MANET with

dynamic topology. We present simulation results that measure the performance

of our algorithm with respect to the characteristics of a MANET, the varying

parameters of the algorithm itself as well as performance comparison with other

well-known MANET routing protocols.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 Mobile Ad hoc NETworks (MANETs)

Ad hoc networks (MANETs) are infrastructure-less, autonomous networks com-

prised of wireless mobile computing devices. All the nodes in the network have

the same capability to communicate with each other without the intervention or

need of a centralized access point or base-station. The mobile nodes or devices

are equipped with wireless transmitters and receivers. These antennas could be

omni-directional resulting in a broadcast medium or highly directional resulting in

a point-to-point network. Due to limited transmission range of wireless interfaces,

these networks are multi-hop networks i.e., a node may have to relay a message

through several intermediate nodes for the message to reach the destination. Thus

every node is a router as well as a host in a MANET. The arbitrary movement

of the nodes in such networks results in highly dynamic or ad hoc topologies. A
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MANET can thus be considered as a dynamic multi-hop graph. Lower capacity

of wireless channels as compared to wired links, coupled with effects of interfer-

ence, fading and noise reduce the effective available bandwidth for communication.

Thus bandwidth is at a premium in MANETs. Moreover, since the mobile devices

are dependent on batteries for their operation, these networks are also energy

constrained.

MANETs are attractive as they provide instant network setup without any

fixed infrastructure. The ease and speed of deployment of these networks makes

them ideal for battlefield communications, disaster recovery, conferencing, elec-

tronic classrooms, etc.

1.1.2 Routing in MANETs

1.1.2.1 Routing in MANETs

Routing in Mobile Ad Hoc Networks is a difficult problem due to the bandwidth

and energy constraints and rapidly changing topologies. In Mobile Ad Hoc routing,

each node acts as a router and a number of nodes cooperate. Routing is multi-

hop, so that data packets are forwarded by a number of nodes before reaching the

destination from the source.
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1.1.2.2 Challenges in Mobile Ad Hoc Network Routing

Some of the important factors that make routing in Mobile Ad Hoc Networks with

wireless links challenging are:

• Frequent Topology Changes

All nodes in a MANET are mobile, this means that the topology is dynamic

and routes that existed may not exist some time later due to the movement

of the intermediate nodes. The presence of stale or out-dated routes results

in large packet losses [27]. To alleviate this problem, the protocol should be

resilient to topology changes. Reactive protocols that try to mend discon-

nected paths incur large control overhead [27] and yet packets are lost during

the reconstruction phase. Proactive protocols constantly update their routes

but the constant overhead generated proves to be expensive in cases where

the movement among the nodes is limited.

• Frequent and unpredictable connectivity changes

MANETs are expected to be used in hostile environments such as battlefields

and emergency operations. As such, any routing protocol should not only

be able to deal with frequent topology changes but also with unpredictable

connectivity changes for instance due to changing weather patterns or varied

geographies. Wireless links behave unpredictably in these situations.

• Bandwidth constrained, variable capacity links

3



MANETs use wireless links which offer limited bandwidth for transmission.

Further, these links maybe of variable capacity. This presents one of the

most important challenges to any routing protocol - keeping the bandwidth

usage to a minimum even while responding reactively to changes in topology

or proactively maintaining routes. Further, this also presents challenges in

terms of the optimization of network routes in the MANET environment.

1.2 Contributions

This thesis presents a new, dynamic, adaptive routing algorithm for mobile ad hoc

networks inspired by the swarm intelligence paradigm [4]. Swarm intelligence al-

gorithms have been thoroughly investigated in the past for dynamic problems such

as the Travelling Salesman problem and even the routing problem in communica-

tion networks. Their performance has been found to comparable or better than

existing algorithms. Further, in the MANET environment, Swarm Intelligence al-

gorithms, due to their distributed and emergent nature, provide robustness under

tough operating conditions and resistance to router state corruption.

A routing scheme is proposed that exhibits emergent behavior. This behavior is

based on a type of learning algorithm, similar to AntNet [6], which provides natural

resistance to the corruption of routing table entries. The algorithm uses Ant-like

agents, forward and backward ants, as routing packets that explore available paths

to a destination in the network through a number of nodes. These agents deposit
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pheromone or a ”goodness value”, a probability distribution for taking a certain

next hop to reach the destination. The agents reinforce good routes and reduce the

goodness value of routes which do not perform well based on certain criteria; e.g.

delay or number of hops. This is similar to the behavior of ants in nature when

they forage for food as a colony. The communication between the ants is through

the environment (pheromone, a chemical in this case). Global information, that is

a complete route, emerges from local information, that is, the goodness value of a

certain next hop for the packets destination.

We evaluate and quantify the overhead, delay, goodput and throughput of these

algorithms. Based on trade-off curves, we suggest a range of operating values

for various parameters that characterize a MANET vis-a-vis mobility speed and

algorithm parameters.

1.3 Organization of the Thesis

The rest of the dissertation is as follows. Chapter 2 introduces the swarm intel-

ligence paradigm and previous work on routing in communication networks using

swarm intelligence heuristics. In chapter 3, some of the existing routing protocols

for MANETs are discussed. Chapter 4 introduces a unicast, swarm intelligence

based routing algorithm for MANETs. Chapter 5 introduces a dynamic adaptive

routing algorithm based on the swarm intelligence paradigm which uses a flooding-

based approach for route discovery. In chapter 6, the important parameters of the

5



algorithm are discussed, and chapter 7 presents the simulation methodology and

the results. Chapter 8 concludes the dissertation.
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Chapter 2

The Swarm Intelligence paradigm

2.1 Swarm Intelligence heuristics for solving hard optimiza-

tion problems

Several animal species, such as bees and ants use communication via the environ-

ment. Many ant species have trail-laying trail-following behavior when foraging:

individual ants deposit a chemical substance called pheromone as they move from

a food source to their nest, and foragers follow such pheromone trails. As an emer-

gent result of the actions of many ants, the shortest path between two or more

locations (often between a food source and a nest) is discovered and maintained.

This process of emerging global information from local actions through small, in-

dependent agents not communicating with each other is called Stigmergy. This

property is used in algorithms and heuristics to solve various NP-hard problems.

Several such approaches and problems are discussed in [4]. The following sections

briefly discuss some such approaches for solving problems such as the travelling

7



salesman problem (TSP) and the routing problem in communication networks.

2.1.1 The Travelling Salesman Problem

Since the interaction of Ants in the natural environment produces and maintains

shortest paths between a food source and a nest, the first natural application was

to a path optimization problem, the travelling salesman problem (TSP) [8], [7].

The TSP is a very difficult NP-hard problem, has been studied and was found to

be easily adaptable to the ant colony optimization metaphor. The Ant Colony

System [7] was an important contribution by Dorigo and Gambardella towards

solving the TSP using Swarm Intelligence paradigm.

2.1.1.1 Ant System

Dorigo and Gambardella [7] proposed algorithms based on the ant colony metaphor

for solving the Travelling Salesman Problem. The underlying idea in this approach

is to use a positive feedback mechanism, similar to the ants in nature which lay

a pheromone trail which is followed by other ants. A ”virtual pheromone” or

”goodness value” allows good solutions or parts of a good solution to be reinforced.

Care has to be taken to not reinforce some of the good solutions too much, so

that they do not stagnate. To avoid this, negative reinforcement is built into

the algorithm with a time scale, similar to the evaporation of the pheromone in

the case of foraging ants. This time scale should be long enough for cooperative

behavior between the ants to emerge. Ants that explore good paths and perform

8



well influence ants that are sent out later more than the ants not performing so

well.

The Traveling Salesman Problem: In the TSP [8], the goal is to find a closed

tour of minimal length connecting n given cities. Each city must be visited once

and only once. Let dij be the distance between cities i and j.

The problem can then be defined on a graph (N, E) where the cities are the

nodes N and the connections between the cities are the edges between the set of

nodes E. The distance matrix need not be symmetric.

In the Ant System algorithm, ants build solutions to the TSP by moving on

the problem graph from one city to another until they complete a tour. During

an iteration of the AS algorithm each ant k, k=1,...,m, builds a tour executing

n = ‖N‖ steps in which a probabilistic transition rule is applied. Iterations are

indexed by t, 1 ≤ t ≤ tmax, where tmax is the maximum number of iterations

allowed.

Each ant goes from city i to city j depending on:

• Whether or not the city has already been visited. Each ant carries a memory

or tabu list. This grows with a tour and is then emptied at the end of each

tour. The memory is used to define the set Jk
i of cities that the ant still has

to visit when it is on city i. At the beginning, Jk
i contains all cities except

the originating city. Visiting the same city more than once is avoided using

the memory.

9



• The inverse of the distance ηij = 1
dij

, is also called visibility. Visibility is based

on strictly local information and represents the desirability of choosing city

j when in city i. It is used to direct the ants’ search.

• The amount of virtual pheromone trail τij on the edge connecting city i to

city j. Pheromone trail is updated on-line and is used to represent the learned

desirability of choosing city j when in city i. Thus, the pheromone trail is

emerging global information. The pheromone is adjusted during problem

solution to reflect the experience acquired by the ants while problem solving

as feedback.

The transition rule, that is, the probability for ant k to go from city i to city j

while building its tth tour is called the random proportional transition rule and is

given by:

pk
ij(t) =

[τij(t)]
α[ηij(t)]

β

ΣlεJk
i
[τil(t)]α[ηil(t)]β

(2.1)

α and β are two adjustable parameters that control the relative weight of pheromone

trail τi,j(t) and visibility ηi,j. If α = 0, the closest cities are more likely to be se-

lected. If β = 0, then the pheromone gets reinforced rapidly. This will lead quickly

to optimal routes.

After the completion of a tour, each ant k lays a quantity of pheromone ∆τ k
ij(t)

on each edge (i, j) that it has used depending on how well the ant has performed.

At iteration t (an iteration is over when each ant has completed a tour), ant k lays

∆τ k
ij(t) on edge (i, j):

10



∆τ k
ij(t) = Q/Lk(t) if (i, j)εT k(t), (2.2)

∆τ k
ij(t) = 0, otherwise (2.3)

where T k(t) is the tour done by ant k at iteration t, Lk(t) is its length, and Q is a

parameter (chosen to be of the order of magnitude of the optimal tour length by

running a simple heuristic like the nearest neighbor heuristic).

For good performance of this method, the pheromone needs to decay, or all the

ants end up taking the same route eventually with the solution possibly converging

to a non-optimal. Pheromone decay is introduced by introducing a parameter of

decay ρ, 0 ≤ ρ ≤ 1. The resulting pheromone update rule is then given by:

τij(t) ← (1− ρ) · τij(t) + ∆τij(t), (2.4)

where ∆τij(t) = Σm
k=1∆τ k

ij(t), and m is the number of ants. The initial amount of

pheromone is a small quantity, τ0.

The total number of ants is an important parameter which influences the quality

of the solution produced significantly.

Table 2.1.1.1 shows a performance comparison in terms of the number of it-

erations of the Ant System heuristic with Tabu Search and Simulated Annealing

performed in [7]. AS performs as well as Tabu search and significantly better than

Simulated Annealing.

A number of experiments by Dorigo and DiCaro [7] showed that the population

11



Best tour Average Std. Dev.

Ant System for TSP 420 420.4 1.3

Tabu Search 420 420.6 1.5

Simulated Annealing 422 459.8 25.1

Table 2.1: A performance comparison of Ant Systems against Tabu Search and

Simulated Annealing for the TSP

of solutions generated by AS does not converge to a single common solution. The

algorithm produces a new, possibly improved solution with each iteration. This

is interesting and promising for dynamical problems because it tends to avoid the

algorithm getting trapped in local optima.

2.1.2 Applications of Ant Algorithms to Communication Networks

A desirable feature of Ant algorithms is that they may allow for increased efficien-

cies in the case when the problem under consideration involves spatial distribution

and time-varying parameters. Thus, one of the first problems to be investigated

for applicability was the routing problem in communicatin networks. This problem

is both dynamic and distributed.

The problem to be solved by an ant routing algorithm is to direct traffic from

sources to destinations maximizing performance while minimizing costs.

12



Avg. call failures Std. Dev.

Shortest path 12.57 2.16

Mobile agents 9.19 0.78

Improved mobile agents 4.22 0.77

ABC 1.79 0.54

Table 2.2: A performance comparison of Ant-Based Control with standard algo-

rithms for call routing in Telecommunication networks

2.1.2.1 Ant Based Control for Telephone networks

Schoonderwooerd et al. [10] proposed an adaptive routing algorithm based on the

use of many simple agents, called ants, that modify the routing policy at every

node in a telephone network by depositing a virtual pheromone trail on routing

table entries. The ants’ goal is to build routing tables, and adapt them to load

changes in the telephone network so that performance is optimized. Performance

here is measured by the rate of incoming calls which are accepted. A phone call

is either accepted or rejected at setup time depending on the network resources

available. A performance comparison of Ant Based Control (ABC) performed well

as compared to existing routing algorithms for telecommunication networks [10].

2.1.2.2 AntNet: Routing in Communication Networks

DiCaro and Dorigo [6] introduced an adaptive routing algorithm based on ant

colonies that explore the network with the goal of building routing tables and

13



keeping them adapted to traffic conditions.

Some unique aspects of this work are as follows:

• The algorithm is designed for operation in both connection less and connection-

oriented networks.

• Ants collect information which is used to build local parametric models of

the network status. These models are used to compute reinforcements to

change the probabilistic routing tables.

• Most importantly, the algorithm has been tested on a packet-switching net-

work model [6] and was found to perform well against well-known exisiting

algorithms in terms of throughput and delivery delays.

Since this work is an important inspiration for our work, we discuss this in

detail here.

Consider a network with N nodes where each node i is characterized by its

number of neighbors ki and by a routing table Ri = [ri
n,d(t)]ki,N−1. The entry ri

n,d(t)

in the routing table of node i represents the probability at time t of choosing node

n (which is a neighbor of node i) as the next node to move to when the destination

is node d. ri
n,d(t) is then the desirability of going through n when trying to reach

d from i. There are two data structures at each node:

• The routing table as described above and,
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• A set of estimates for trip times from the current node i to all other nodes

d. This entry consists of the average trip times µi→d to go from node i to

d and the associated variances σ2
i→d. This table of entries is denoted by

Γi = {µi→d, σ
2
i→d}. Γi is akin to a local picture of the global network’s status

at node i.

Further, the algorithm uses two types of agents (or ants) to collect and dissem-

inate information:

• Forward ants Fs→d, that go from source node s to destination d. They travel

at the same priority level as data packets, therefore they experience the same

traffic loads collecting information about the state of the network.

• Backward ants Bd→s that go from destination nodes to source nodes. They

have a higher priority than both forward ants and data packets as they are

required to backpropagate information as soon as possible.

The algorithm can be described as follows:

• Forward ants Fs→d are launched at regular intervals from every node s to a

randomly selected destination d.

• Each forward ant selects the next hop among the not yet visited neighbor

nodes following a random scheme. The probability of choosing a node is

made proportional to the desirability of each neighbor node.
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• The identifier of each visited node i and the time elapsed from its launching

time to its arrival at this ith node are pushed into a memory stack Ss→d

carried by the forward ant.

• If an ant visits a node it has already visited, a cycle has occured. The ant’s

stack is destroyed and it is not allowed to contribute to the pool of knowledge.

• When the ant Fs→d reaches the destination node d, it generates a backward

ant Bd→s. The stack of the forward ant is transferred to the backward ant.

• The backward ant takes the same path as that of the corresponding forward

ant in the opposite direction. At each node i along the path it pops its stack

Ss→d to know the next hop node. When it arrives at a node i, the backward

ant updates the routing table Ri and the table Γi:

– Γi (the local statistics at intermediate node i) is updated by using the

values stored in the stack Ss→d(t). The times elapsed in arriving at

every node f on the path i → d are used to update the means and

variances at the node. An important point to be noted here is that only

the subpaths that have a smaller trip time than the existing mean in

the model are used to update Γi, while all the trip times are used at

the source node s. Poor trip times are not used since they provide an

incorrect estimate of the time required to reach a certain destination or

intermediate node. Using trip times at node i obtained by ants routed
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between source s and destination d allows the maintenance of a local

picture at node i for destination d at no extra cost.

– The routing table Ri is changed by incrementing the probability ri
i−1,d(t)

associated with the neighbor node i − 1 and the destination node d,

and decreasing by normalization the probabilities ri
n,d(t) associated with

the other neighbor nodes, n, n 6= i − 1, for the same destination.The

proabability ri
i−1,d(t)is increased by the reinforcement value as follows:

ri
i−1,d(t + 1) = ri

i−1,d(t) + r · (1− ri
i−1,d(t)) = ri

i−1,d(t) · (1− r) + r (2.5)

Thus, the probability ri
n,d(t) will be increased by a value proportional

to the reinforcement received and to the previous value of the node

probability (small values are increased proportionally more).

The probabilities ri
n,d(t) for destination d of the other neighboring nodes

n to node i receive a negative reinforcement,

ri
n,d(t + 1) = ri

n,d(t) · (1− r), n 6= i− 1. (2.6)

Every discovered path receives positive reinforcement. Thus, not only

the assigned value r plays a role, but also the ant’s arrival rate plays a

role. This policy rewards paths that receive either high reinforcements

independent of their frequency or low and frequent reinforcements.
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The algorithm is first run on a network with no traffic for a limited period of time

before it starts to control the network to build the routing tables and initial paths.

Routing data packets: Each node holds a buffer in which incoming and outgoing

packets are stored with a different buffer for each outgoing link. Packets at the

same priority level are served on a first-in-first-out basis and high-priority ants

(backward ants) are served first. It is important to note that not only forward

ants, but also data packets are routed probabilistically. This has been shown to

improve the performance of AntNet [6].
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Chapter 3

Routing Algorithms for Mobile Ad Hoc Networks

A number of routing protocols have been proposed for operation in Mobile, ad hoc

networks. Most of these can be classified into one of the following categories:

• Reactive protocols ; eg., AODV, DSR

• Proactive protocols ; e.g., DSDV

• Hybrid protocols ; e.g., ZRP

• Location-based protocols ; e.g., LAR

We briefly discuss some of these protocols here, in particular, AODV, DSR and

DSDV, which have recently become quite popular. Further, other protocols have

also been proposed based on Hierarchical, Geographical and Power Aware schemes.

Broch et al. [2] and [27] present in-depth performance analysis of common routing

protocols AODV, DSR, TORA and DSDV.
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3.1 Reactive protocols

Reactive, or on-demand, protocols have separate route discovery and maintenance

processes. The discovery process is only triggered when a route is needed for a

destination. The maintenance process is started when a node notices a link that has

gone down. Broken routes are then deleted and a new discovery process is initiated.

Reactive protocols therefore attempt to minimize the routing overhead required

and in the process may face substantial delays for transmitting data packets.

3.1.1 Dynamic Source Routing

Source routing [14] refers to the technique where the packet itself contains the

complete sequence of nodes that it is to traverse. The key advantage of source

routing is that intermediate nodes do not need to maintain up to date routing

information to forward the packets that they need to route. The Dynamic Source

Routing protocol (DSR) [14], [2] uses two mechanisms - route discovery and route

caching for routing.

Route discovery allows any node in the ad hoc network to dynamically discover

a route to any other node in the network, whether directly reachable within the

wireless transmission range or reachable through one or more intermediate hops

through other nodes. A node initiating a route discovery broadcasts a route request

packet which may be received by those nodes within its transmission range. The

route request identifies the node, referred to as the target of the route discovery,
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for which the route is requested. If the route discovery is successful, the initiating

node receives a route reply packet listing a sequence of network hops through which

it may reach the target. In addition to the address of the original initiator of the

request and the target of the request, each route request packet contains a route

record that accumulates a record of the sequence of hops taken by the route request

as it is propagated through the ad hoc network during this route discovery. Each

route request packet also contains a unique request id, set by the initiator from

a locally maintained sequence number. In order to detect duplicate routes, each

node in the network maintains a list of the < initiator address, request id >

(< IA, RREQID >) pairs that it has received on any route request.

When any node receives a route request packet, it goes through the following

steps:

1. If the pair < IA, RREQ ID > for its route is found in the nodes lists of

recently seen requests, it discards the route request packet.

2. Otherwise, the packet is checked to see if the node is listed in its route record.

If it is, the packet is discarded.

3. Otherwise, the node checks to see if it is the target. If it is, it sends a route

reply packet to the initiator.

4. Otherwise, it appends its address and re-broadcasts the request.

Discarding already received request packets and request packets in which the
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node is already contained, but is not the target, is intended to enable protection

against loops. Route reversal is the preferred mode of returning a discovered route

to the source node. However, an attempt to support unidirectional links is to allow

for a route discovery of a specific type to be made by the destination node when a

simple route reversal is not possible [14].

Route maintenance in DSR is built around caching discovered routes. There

is no periodic checking of routes in DSR. This makes it very light on complexity,

but it will definitely need enhancement if there are elements of QoS support that

require some knowledge of the network topology.

3.1.2 Ad Hoc On-Demand Distance Vector (AODV)

The Ad Hoc On-Demand Distance Vector algorithm is designed to enable dynamic,

self-starting, multi-hop routing. AODV is a combination of the Dynamic Source

Routing (DSR) and Destination-Sequenced Distance Vector (DSDV) algorithms.

It combines the Route Discovery and Route Maintenance mechanisms of DSR with

the hop-by-hop routing of DSDV. As long as the endpoints in the communication

connection have valid routes to one another, AODV does not play a role. It is

intended for an ad hoc network whose links are frequently changing. As such, it

can be termed to be a reactive protocol which works on demand. There are three

message types defined by AODV for its operations:

• Route Request
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• Route Reply

• Multicast Route Activation

These are UDP/IP messages. A node broadcasts a Route Request (RREQ)

when a new route to a destination is needed. This destination can include either

a single node or a multicast group. The RREQ message contains a Hop Count,

which is the number of hops from the sources IP Address to the node currently

handling the request. It also carries Broadcast ID, a sequence number identifying

the particular RREQ when taken in conjunction with the sources IP address.

Sequence numbers are used to select the chosen route by allowing the most recent

information to be used. An RREQ contains a Destination as well as a Source

Sequence Number. Given the choice between two routes to a destination, the

requesting node always selects the node with the greatest sequence number. Each

node receiving an RREQ caches a route back to the source node. If the receiving

node has already received an RREQ with the same Broadcast ID and destination,

it silently discards it. However, if the RREQ is new to the receiving node, it

rebroadcasts the RREQ from its interface using its own IP address in the IP header

of the outgoing RREQ. If the receiving node does have a route to the destination,

the Destination Sequence number for that route is compared to the Destination

sequence number field of the incoming RREQ. If the Destination Sequence number

held by the node is less than the Destination Sequence number of the RREQ, the

node rebroadcasts the RREQ as if it did not have a route to the destination. On
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the other hand, if the node does not have a route to the destination, and the nodes

existing destination sequence number is greater than or equal to the destination

sequence number of the RREQ, the node generates a Route Reply.

The Route Reply message (RREP) contains the Hop Count and the Lifetime,

the Lifetime being the time for which the nodes receiving the RREP consider the

route to be valid. A RREP is unicast back to the source node if the receiving node

has a fresh route to a destination.

AODV allows for the formation of multicast groups whose membership is free

to change during the lifetime of the network. AODV supports multicast commu-

nication consisting of multicast trees. These are trees containing all nodes that

are members of the multicast group, and all nodes that are needed to connect to

the multicast group members. When a node receives a Multicast Route Activation

(MACT) announcing it as the next hop, it will send its own MACT announcing

the node it has chosen as the next hop, and so one up the tree. This continues

until a node that is a part of the multicast tree is traversed once more.

For route maintenance, AODV requires nodes to transmit periodic HELLO

messages. Alternatively, AODV briefly specifies an option that allows for the

use of only lower level methods (physical/link layer) for response detection. This

variant has been branded as AODVLL (AODV Link Layer).
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3.2 Proactive Protocols

Proactive protocols attempt to maintain routes to all nodes in the network at

all times. Further, route information is exchanged periodically or at topological

changes. This ensures that the latency is low when data traffic is required to

be sent. However, this might lead to high consumption of bandwidth, leading to

inefficient performance in terms of overhead, as well as high consumption of other

network and computing resources.

3.2.1 Highly Dynamic Distance-Sequenced Distance Vector Routing

Protocol

DSDV [16] is a hop-by-hop distance vector routing protocol that requires each

node to periodically broadcast routing updates.

Each DSDV node maintains a routing table listing the next hop for each reach-

able destination. DSDV tags each route with a sequence number and considers

a route R more favorable than R′ if R has a greater sequence number, or if the

two routes have the same sequence number but R has a lower metric. Each node

in the network advertises a monotonically increasing sequence number for itself.

When a node B decides that its route to a destination D is broken, it advertises

the route to D with an infinite metric and sequence number 1 greater that the

sequence number for the route that has just broken. This causes a node A routing

packets through B to incorporate the infinite metric in its route calculations until
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it receives and advertisement for a route to D with a higher sequence number.
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Chapter 4

A swarm intelligence based unicast algorithm for

MANETs

In this chapter, we describe a routing algorithm for Mobile Ad Hoc Networks

based on the swarm intelligence paradigm and similar to the swarm intelligence

algorithms described in [6] and [11]. The algorithm uses three kinds of agents

- regular forward ants, uniform forward ants and backward ants. Uniform and

regular forward ants are agents (routing packets) that are of unicast type. These

agents proactively explore and reinforce available paths in the network. They

create a probability distribution at each node for its neighbors. The probability or

goodness value at a node for its neighbor reflects the likelihood of a data packet

reaching its destination by taking the neighbor as a next hop. Backward ants

are utilized to propagate the information collected by forward ants through the

network and to adjust the routing table entries according to the perceived network

status. Nodes proactively and periodically send out Forward regular and uniform

ants to randomly chosen destinations. Thus, regardless of whether a packet needs
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to be sent from a node to another node in the network, each node creates and

periodically updates the routing tables to all the other nodes in the network.

The algorithm assumes bidirectional links in the network and that all the nodes

in the network fully cooperate in the operation of the algorithm. The algorithm

assumes the existence of the IP layer and is independent of the MAC layer.

4.1 The Operation of the algorithm

4.1.1 Initialization and beaconing

Initialization is carried out at each node by establishing the identities of the neigh-

boring nodes. Each node sends out single-hop ’Hello’ (beacon) broadcast messages

with its ID. All the receiving nodes that get this message add the sending node

to their neighbor list. This neighbor list is then used to build routing tables and

to update routes when a change in the topology occurs. All links are assumed to

be bidirectional. Therefore, if a node A has a node B in its list of neighbors, then

node B also has A in its list of neighbors. Hello messages are sent out periodically

with an interval of HELLO INTERV AL seconds.

4.1.2 Bootstrapping of the routing tables

The initial bootstrapping of the routing tables is done at a node when the first

forward ant is being sent out to a certain destination.
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At this time, there are no routing table entries (i.e. no probabilities for next

hops) for that particular source-destination pair. The creation of the first forward

ant at a node for the source-destination pair causes the routing table entries to

be initialized with probabilities 1/n for each neighbor as the next hop for the

respective destination, where n is the number of neighbors of the node where the

routing table is being established.

The uniform probabilities assigned to all the neighbors indicate that nothing

is known about the state of the network. These probabilities are then adjusted

by backward ants, when backward ants from the destination are received at the

source node.

4.1.3 The Routing Table

The routing table at each node is organized on a per-destination basis and is of the

form (Destination, Next hop, Probability). It contains the goodness values for

a particular neighbor to be selected as the next hop for a particular destination.

Further, each node also maintains a table of statistics for each destination d to

which a forward ant has been previously sent, the mean and the variance, (µsd, σ
2
sd)

for the routes between source node s and destination node d.

The routing tables then contain the following data structures:

• The probability (goodness value) of taking a next hop f at a node n , P n
fd to

eventually reach a certain destination d. These values are used by the forward
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ants when they are routed from node to node based on the probability value

at each node.

• The mean and the variance, (µnd, σnd) at node n to reach destination d.

Consider the simple network topology depicted in figure 4.1. In this example,

2

6
7

5

4

1

Figure 4.1: An example of topology with varying connectivity

nodes 4, 5, 6 and 7 are within the transmission range of node 2. Node 1 can be

reached through nodes 5 or 7. Then, the routing table probabilities at node 2 for

destination 1 look as follows when initialized:

Here,
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Destination Node 1

Neighbors (µ21, σ
2
21)

4 0.25

5 0.25

6 0.25

7 0.25

Table 4.1: Initialization of the routing table at node 1

m∑

i=1

P 1
ni = 1, (4.1)

where P 1
ni is the probability of taking node i as the next hop at the current node

n for destination node 1 and µ21 and σ2
21 are the mean and the variance at node 2

for node 1.

4.1.4 Forward Ants

Each node periodically sends forward ants to randomly chosen destination nodes

throughout the network. At the time of creation of the agent, if a routing table

entry is not present at the node for that particular destination, a routing table

entry is created. This is also true of the forwarding of ants at intermediate nodes.

Each forward ant packet contains the following fields:

• Source node IP address
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• Destination node IP address

• Next hop IP address

• Stack

• Hop count

Hence, the next hop of the forward ant is determined at the sending node and

the forward ant is sent in unicast fashion. That is, though the forward ant is

received at all the neighboring nodes, it is accepted (at the MAC layer) only by

the node to which it has been addressed.

The stack of the forward ant is a dynamically growing data structure that

contains the IP addresses of the nodes that the forward ant has traversed as well

as the time at which the forward ant reached these nodes.

Forward ants are routed on normal priority queues, that is, they use the same

queues as normal data packets. As such, forward ants face the same network

conditions (queuing and processing delays, network congestion) as data packets.

Forward ants therefore contain information regarding the route that they have

traversed.

4.1.5 Routing the Forward Ants

The forward ant is routed at each node according to the per-destination probabili-

ties for the next hop in the routing table at the current node. Thus, the forwarding
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of the forward ant is purely probabilistic and allows exploration of paths available

in the network. As such, these agents are forwarded according to the current

network status and hence take the network status in to account.

These agents are henceforth referred to as Regular Ants, similar to [11] to

distinguish them from Forward Uniform Ants which are described underneath. As

mentioned earlier, the forward ants (both regular and uniform) maintain a stack

containing the IP addresses of the nodes that they have been through. When a

forward ant is received at a node, it checks to see if it has previously traversed the

node. If it has not previously traversed the node, the IP address of the node and

the current time are pushed into the stack of the ant. In case the node IP address

is found in its existing stack, the forward ant has gone into a loop. As such, the

forward ant is not allowed to contribute to the pool of information regarding the

state of the network and is destroyed.

4.1.6 Uniform Ants

Since forward regular ants are routed uniformly, and the resulting backward ants

reinforce the routes, this can lead to a saturation of the probabilities, that is the

probabilities of one (observed to be the best) route go to 1 and the probability

of the other routes goes to 0. As a result, new routes never get discovered. In a

dynamic situation with the possibility of breakage of links and mobility of nodes,

this means that the algorithm is unable to adapt to changes in the network.
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To make the algorithm fully adaptive to mobility and topology changes, we

introduce another set of ants, called uniform ants. These are similar to the agents

proposed in [11]. X % of the time, instead of creating regular ants, each node sends

out uniform ants. These are created in the same manner as regular ants, however

they are routed differently. Instead of using the routing tables at each node, they

choose the next hop with uniform probability. If the current node has n neighbors,

then the probability of taking a neighbor as the next hop is 1/n. This is in contrast

to regular ants which prefer taking next hops with higher probabilities more often.

Uniform ants explore and quickly reinforce newly discovered paths in the net-

work. Further, they ensure that previously discovered paths do not get saturated.

4.1.7 Backward Ants

When a regular or uniform ant reaches its destination, it generates a ’Backward

Ant’. The backward ant inherits the stack contained in the forward ant. The

forward ant is de-allocated. The backward ant is sent out on the high priority

queues. This ensures that backward ants are propagated in the network quickly,

so that they can update the information regarding the state of the network without

delay.

The purpose of the backward ant, as already mentioned, is to propagate in-

formation regarding the state of the network gathered by the forward ants. The

backward ant retraces the path of the forward ant by popping the stack, making
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modifications in the routing tables and statistic tables at each intermediate node

according to the following learning rules:

1.

Pfd ← Pfd + r(1− Pfd) (4.2)

Pnd ← Pnd − rPnd (4.3)

Probability Pfd is the probability of choosing neighbor f when the destination

is d and decrementing by normalization the other probabilities Pnd , which

is the probability of choosing neighbor n when the destination is d.

r is the reinforcement parameter.

2.

Pfd ← (Pfd + r)

(1 + r
(4.4)

Pnd ← Pnd

(1 + r)
(4.5)

Once again, probability Pfd is the probability of choosing neighbor f when

the destination is d and decrementing by normalization the other probabili-

ties Pnd , which is the probability of choosing neighbor n when the destination

is d.
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In both the above cases, the reinforcement parameter, r can defined as a function

of some metric or a combination of metrics, e.g. delay or the number of hops.

r =
k

f(c)
, k > 0 and f(c) is monotone function of the metric (4.6)

The backward ant also updates the existing estimates of the forward trip time at

the source node as well as intermediate nodes. The trip time of this backward ant

is used to update the statistics.

The mean and the variance, (µkd, σ
2
kd) are updated using the following update

rules:

µkd ← µkd + η(ok→d − µkd) (4.7)

Where µkd is the mean of the ant trip times at the current node, k, to the desti-

nation node, d. η is a constant, ok→d is the trip time of the ant from the current

node k to the destination node d.

and

σ2
kd ← σ2

kd + η((ok→d − µkd)
2 − σ2

kd) (4.8)

Where σ2
kd is the variance of the ant trip times at the current node, k, to the

destination node, d. η, ok→d and µkd are the same as above.
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4.1.8 Changes in routing tables due to node mobility

When a node or nodes enter into the transmission range of a node, this creates

the possibility of there being new available routes to a destination that was either

reachable by a longer route or previously unreachable. The detection of a newly

moved node is through the beaconing mechanism. The Hello messages broadcast

by each node give information regarding the availability of a node as a next hop.

Suppose a node A moves into the neighborhood of a node B, then the IP address

of A is added to the list of neighbors of B and vice versa. Node B then adjusts

its routing table to include A with a small probability. So, if node B has existing

routes to nodes d1, d2, ..., dm, it adds A as a next hop with a small probability for

each of d1, d2, ..., dm. Thus, the probability of a forward ant taking A is,

pA = δ, δ ¿ 1 (4.9)

and the probability of the other nodes, n, n 6= A becomes,

pi = pi − δ

N
(4.10)

where N was the number of B’s neighbors before A entered its transmission range.

The sum of the probabilities remains 1. i.e. Σipi = 1.

This allows the exploration of new routes through node A from node B by

regular ants. If new and efficient routes are found with node A as an intermediate

node, they are quickly reinforced and can be utilized for routing data packets.
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When a node A leaves the transmission range of a node B, A is removed from

B’s routing table. That is, for all destinations for which B has routing probabilities,

A is removed from the routing table, The probability of taking A as the next hop

is made 0 for all destinations from node B.

pi = pi +
pA

N
(4.11)

where N is the number of neighbors of B after A leaves its transmission range,

and,

pA = 0 (4.12)

The probability distribution is then normalized for all the other nodes, so that the

sum of the probabilities is 1, i.e.
∑

i pi = 1.

4.1.9 Routing Data packets

Data packets are routed based on the maximum probability at each intermediate

node from the source node to the destination node. As such, local information

(next hop probability at an intermediate node) is used in such a way that global

information (a complete route between the source and the destination) emerges

from it.
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4.2 Algorithm parameters and other issues

The unicast routing algorithm proposed here has three key parameters:

• The rate at which forward regular and uniform ants are sent. The frequency

with which forward ants are sent determines how quickly the algorithm dis-

covers new paths, reinforces existing paths, destroys unavailable paths and

adapts to new network topologies. While sending out too few ants does not

allow the algorithm to adapt to network changes, sending out a large num-

ber of ants creates substantial overhead, a particularly difficult issue in the

MANET environment, where there might be severe constraints on bandwidth

resources.

• The percentage of forward and uniform ants. Forward ants mainly reinforce

the existing, previously discovered routes. Uniform ants, on the other hand,

discover new previously unavailable routes. Regular ants ’reinforce’, while

uniform ants ’explore’. Hence, the percentage of uniform ants is an important

parameter. If no uniform ants are sent, the probabilities converge and the

routes are saturated, leaving no scope for exploration and adaptation.

On the other hand, if too many uniform ants are sent, the probability values

oscillate to a large extent, so that the routing tables do not reflect the network

status accurately.

• The update function and reinforcement that are used by the backward ants to
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reinforce the routing probabilities at each node. These parameters together

determine how quickly the algorithm adapts to changes in the network topol-

ogy and connectivity.

4.2.1 Broadcast vs Unicast in the MANET environment

Wireless data transmission offers several challenges and opportunities for routing.

One of the advantages it offers is the inherent broadcast capability, that is, all the

neighbors of a node receive (at the MAC layer) each data packet transmitted by

the node. However, the algorithm proposed above does not take advantage of this

inherent capability of the wireless environment, and though it is well suited for the

wired environment, we note that this algorithm leads to high overhead inefficient

route discovery in the wireless environment. As the number of nodes increases, the

number of ants required to find a path to the destination also increases rapidly,

leading to very high overhead, high delays as well as high packet losses.

Figure 4.2 shows a comparison of the goodput required for AODV and the

unicast algorithm described above. Even for a low mobility speed of 1 m/s, the

overhead required is very high for the unicast algorithm.
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Figure 4.2: Goodput comparison of AODV and the unicast swarm based algorithm

for 20 nodes in an area of 500m X 500m for speed of 1 m/s.
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Chapter 5

The Probabilistic Emergent Routing Algorithm

5.1 The Probabilistic Emergent Routing Algorithm

This chapter presents an algorithm for routing in MANETs inspired by the Swarm

Intelligence (SI) paradigm. A routing scheme is proposed that exhibits emergent

behavior. This behavior is based on a type of learning algorithm, similar to one

described in AntNet, that provides deterministic forwarding of message packets

by creating multiple routes at source nodes for destination nodes. This provides

a natural resistance to the effects of corruption of routing table entries. As such,

the algorithm exhibits robustness.

Route discovery in the algorithm is done by two kinds of agents or ants - for-

ward and backward. These agents create and adjust a probability distribution at

each node for the node’s neighbors. The agent packets, or Ants are of a relatively

small (variable) size. The probability associated with a neighbor reflects the rel-

ative likelihood of that neighbor forwarding and eventually delivering the packet.

Further, multiple routes between the source and the destination are created.
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Our algorithm assumes bidirectional links in the network and that all the nodes

in the network fully cooperate in the operation of the algorithm. The algorithm

assumes the existence of the IP layer and is independent of the MAC layer.

5.1.1 Initialization and beaconing

Initialization is carried out at each node by establishing the identities of the neigh-

boring nodes. Each node sends out single-hop ’Hello’ (beacon) broadcast messages

with its ID. All the receiving nodes that get this message add the sending node

to their neighbor list. This neighbor list is then used to build routing tables and

to update routes when a change in the topology occurs. All links are assumed to

be bidirectional. Therefore, if a node A has a node B in its list of neighbors, then

node B also has A in its list of neighbors.

Beaconing is thus used to signify the presence of neighboring nodes and to

indicate their spatial, temporal, connection, and signal stability. Further, it is used

to make updates to routing tables and maintain their accuracy.

Hello messages are sent out periodically with an interval of HELLO INTERV AL

seconds. A good value of HELLO INTERV AL, derived through extensive sim-

ulations has been found to be 1 second, [2] and [27].

Some MAC protocols like MACAW and 802.11 [26] provide explicit link layer

acknowledgements. Several refined versions of protocols such as AODV and DSR

use this MAC layer feedback for maintaining routing tables accurately. This pro-
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duces efficiencies in terms of the number of control packets sent per data packet.

Our algorithm, however, does not use explicit MAC layer RTS/CTS signalling

mechanism currently.

5.1.2 Bootstrapping the routing tables

Routing tables at each node are of the form (Destination, Nexthop, Probability).

Thus, at a node n, the probability of taking node f as the next hop to route a

data packet to destination d is stored as P n
fd. The routing table at a node for a

particular destination is established when a backward ant is routed to the node

from the destination. Hence, the node at which the routing table is being created

is either the source of the forward ant (and the destination of the backward ant) or

an intermediate node along the path used by a forward ant to reach the destination

node from the source node.

Hence, the routing table is initialized when it is known by the current node

that a path to the destination d exists by taking a certain next hop f and that this

path has been previously discovered by a forward ant. The initialization of the

routing table is done by incorporating all the neighbors of node n in the routing

table. Each node is assigned an initial probability 1/N , where N is the number

of neighbors of node n. The routing tables are then modified to give a higher

probability to the node that the backward ant just came from, as discussed in

section 6.1. This learning rule provides the node from which the backward ant just
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arrived a higher probability than the other neighbors, establishing a path toward

the destination.

Further, each node also maintains the structure (µnd, σ
2
nd) for each destination,

that is, the mean µnd and the variance σ2
nd of the delays of the routes from node

n to destination d as perceived by the ants that have traversed a route to the

destination. On the receipt of the first backward ant, the value of the time taken

by the ant to travel to the destination from the current node, Tn→d is assigned to

the mean, µnd and the variance, σ2
nd is assigned a value of zero. Modifications to

(µnd, σ
2
nd) are made upon the arrival of later backward ants based on the learning

rule as discussed in section 6.1.

The routing table and the table of local statistics at each node can be visualized

as in figure 5.1.
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Figure 5.1: The routing table and local statistics table maintained at each node.
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5.1.3 Forward Ants

To carry out the process of Route Discovery, Forward Ants or agents are used. The

Forward Ants are somewhat similar to the Route Request packets used by AODV

[18] and DSR [14] routing protocols, but have some subtle differences.

A forward ant is sent from a source node to a destination node to find a set

of routes between the two nodes. Further, forward ants collect information about

these routes. The first forward ant is created at a node s when the node has a data

packet to send to another node d for which it has no record of an existing route.

Forward ants are then sent to the destination periodically to maintain and optimize

available routes, as well as discover new routes. As mentioned in section 5.1.2, the

node s would not have a record of a route to destination d until a backward ant

has passed through it or if it was the destination of a backward ant generated at

node d.

Each forward ant contains the IP address of its source node, the IP address

of the destination node, a sequence number, a hop count field and a dynamically

growing stack. The structure of the forward ant packet is as shown in 5.2.

The stack contains information about the nodes that the forward ant traverses

and the times at which these nodes have been traversed, ie. (NODE ID,

NODE TRAV ERSAL TIME). Thus, each element of the stack contains the

IP address of a node and the time at which the forward ant is received at the

node. The hop count field is set to the network diameter (defined as the minimum
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Destination address

Source address

Seq no. Hop count

Stack

Figure 5.2: The structure of forward and backward ant packets

number of hops required to move from any node in the network to any other node)

and it is decremented each time the forward ant is received at an intermediate

node.

When a node does not have a record of a route to a destination to which it has

to send a packet, it creates a forward ant and broadcasts it to all its neighbors.

Before broadcasting the forward ant, the node pushes its own IP address on to the

stack of the forward ant as well as the time at which the ant is created. Henceforth,

the node keeps sending forward ants periodically to the destination for as long as

a route is required.

When a node receives a forward ant, it checks in the destination IP address

field if the address corresponds to its own IP address. If the forward ant is not

directed to the current node, the node pushes its own IP address and the time

47



at which the ant was received at the node. Also, the hop count field of the for-

ward ant is decremented by 1. Each forward ant is uniquely identified by the

values of its source node IP address and the sequence number, i.e. the record

(Source IP address, Sequence Number). The sequence number for each ant is

assigned at the source node and is unique for that source and forward ant. Thus,

each node stores the pair (Source IP address,Max Sequence number), where

the Max Sequence number is the highest value of the sequence number of an ant

received from that source node. The node drops forward ants with a sequence

number less than or equal to the Max Sequence number that it receives from the

same previous hop. This avoids the duplication of forward ants in the network. If

the Max Sequence number value is greater than that previously recorded by the

node, the node updates this value.

An ant which reaches a node that it has already traversed is destroyed in similar

fashion. It has taken a circuitous route and is therefore not allowed to contribute

to the store of information regarding the status of the network.

It is important to note that the forward ants travel on the same queues as data

packets. In our experiments, these queues are modeled as FIFO queues. Hence,

the forward ants experience the same delay and congestion as the data packets

when the metric being used is delay. This allows us to reinforce certain routes

more than other routes depending on the current network status as perceived by

the forward ants.

When a forward ant reaches the node that is its intended destination, the node
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extracts all the relevant information from the forward ant. That is, the source

address, the hop count and the stack. The forward ant is then ’killed’, i.e. its

memory is deallocated. The information obtained by the forward ant is then used

by the node to create a backward ant.

It is important to note that since the the forward ant is broadcast at the source

and intermediate nodes, each forward ant will cause the broadcast of multiple for-

ward ants, several of which may find different paths to the destination, generating

multiple backward ants with the same source sequence number.

Since forward ants are re-broadcast at every intermediate node, creating mul-

tiple forward ants, it can be seen that a forward ant broadcast from the source

node may find more than one route to the destination, if more than one routes

exist. In the case when the network is closely connected and the network diameter

(defined as the minimum number of hops between any two nodes) is small, a single

broadcast forward ant successfully finds several feasible paths to the destination

node from the source node.

Further, the forward ant also collects information about each of these paths,

that is, the number of hops on the path and the delay on the intermediate subroutes

as well as on the entire route. It should be noted here that the Route Discovery

phase is similar to that of existing MANET algorithms like AODV and DSR,

in the sense that a flooding-based approach is used which uses the inherently

broadcast medium of the wireless environment to its advantage. However, an

important difference is that our algorithm discovers a set of routes (unlike AODV,
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Figure 5.3: Each broadcast forward ant generates multiple forward ants and may

find multiple paths to the destination.

for instance, which uses the first route that the Route Request packet establishes

and discards others). Further, we obtain information about these paths and use

this information as feedback to the system.

Figure 5.3 shows an example of forward ants propagating through the network

and finding a route to a destination node. A forward ant F s
s→d is created and

broadcast from the source node s to find a route(s) to the destination d. At each

neighbor of s, node k, the forward ant is rebroadcast as F k
s→d. In the figure, lightly

shaded lines indicate transmitted forward ants that are dropped by the receiving

node and the dark lines indicate forward ants that are accepted by the receiving

node and help build routes. For instance, node 5 rejects the forward ant it receives
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from node 10 as it has already received an ant with the same destination and

sequence number from node 1.

Further, two alternate paths are found, s → 1 → 5 → 6 → 3 → d and s → 1 →

2 → 4 → d. These paths are then graded by the corresponding backward ants,

assigning a higher probability values to nodes on the path s → 2 → 7 → 4 → d, if

the metric in consideration is hop count. The figure also shows forward ants that

are received but have to be discarded as the receiving node has already received

an ant with the same sequence number. For instance, node 5 drops the forward

ant it receives from node 10 as it has already received a forward ant from node 1

with the same sequence number.

The forward ant that eventually reaches destination d via the route s → 1 →

5 → 6 → 3 → d then contains, as part of its stack, the IP addresses of nodes s,

1, 5, 6 and 3. The stack of the forward ant also contains the time at which the

forward ant was created at node s as well as the times at which it traversed nodes

1, 5, 6 and 3. Further, this forward ant travels on the same queue as data packets

between these nodes and therefore experiences the same set of delays. Hence, it

has accurate information about the status of the network.

In summary, a node sends forward ants to a destination if it has a data packet

to send to this destination and it has no record of an available route. If this node

is the source of the data packet, it sends forward ants periodically for as long as

the route is required. On the other hand, if this node is not the source of the data

packet, it sends a forward ant exactly once.
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5.1.4 Backward Ants

When a forward ant reaches the destination node that it is intended for, the des-

tination node creates a new agent, a Backward Ant. The purpose of the backward

ant is to retrace the path of the corresponding forward ant that triggered its cre-

ation. It uses the information contained in the forward ant on the reverse path to

change the probability distribution at each node and update the routing tables to

reflect the current status of the network more accurately.

When a node receives a forward ant that is intended for it, the node creates

a new agent, a backward ant. The IP address of the source node of this agent is

the destination address of the backward ant and the current node is the source of

the backward ant. The backward ant is similar to the forward ant, it contains the

following fields:

• Destination IP address : The IP address of the source of the forward ant,

• Source IP address : The IP address of the current node, i.e. the node creating

the backward ant,

• Hop count,

• The stack of the forward ant,

• The sequence number of the forward ant - this is not unique anymore for the

set of backward ants.
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The backward ant travels in unicast fashion back to the source node. It is

forwarded on high priority queues, which are separate from the queues used for

forward ants and data packets. This is important since the backward ants are

required to spread information about the current state of the network as quickly

as possible. The stack of the forward ant is used to route it. Using the address at

the top of the stack, the node forwards the backward ant to the correct next hop.

Suppose that a forward ant from source node s is received at node d. Node d

generates a backward ant. When the backward ant is received at the next hop(also

the penultimate hop of the corresponding forward ant), node f , the stack of the

backward ant is popped once. The resulting information is the following:

• The IP address of the current node f ,

• The NODE TIME, the time at which the corresponding forward ant was

received at node f .

• The time at which the backward ant was created at its source node d,

ANT TIME. Then, the time taken to reach the destination of the forward

ant from the current node is the difference ANT TIME − NODE TIME,

• The number of hops from the current node f to the destination d are cal-

culated by subtracting the value in the hop count field from the network

diameter.

These values are used to update the routing and local statistics tables at the

53



intermediate nodes f .

If routing table entries for destination d do not exist at node f , new ones are

created with the neighbor list of the node f . All the neighboring nodes are given a

probability of 1/N , where N is the number of neighbors of the node f . The routing

tables are then readjusted according to the probability rules discussed underneath.

If routing table entries for d already exist at node f , they are updated so as

to increase the probability (goodness, preference) of taking as the next hop, the

node from which the backward ant has just been received, node f to reach the

destination d.

The following update rules may be used to adjust the probabilities at the

intermediate nodes:

1.

Pfd ← Pfd + r(1− Pfd) (5.1)

Pnd ← Pnd − rPnd (5.2)

Probability Pfd is the probability of choosing neighbor f when the destination

is d and decrementing by normalization the other probabilities Pnd , which

is the probability of choosing neighbor n when the destination is d.

r is the reinforcement parameter.
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2.

Pfd ← (Pfd + r)

(1 + r)
(5.3)

Pnd ← Pnd

(1 + r)
(5.4)

Once again, probability Pfd is the probability of choosing neighbor f when

the destination is d and decrementing by normalization the other probabili-

ties Pnd , which is the probability of choosing neighbor n when the destination

is d.

In both cases above, the reinforcement parameter r can defined as a function

of some metric or a combination of metrics, e.g. delay or the number of hops.

r =
k

f(c)
, k > 0 and f(c) is a monotone function of the metric. (5.5)

The backward ant also updates the existing estimates of the forward trip time

at the source node as well as intermediate nodes. It is important to note that in

this scheme, which utilizes broadcast flooding of forward ants, each forward ant

potentially generates many backward ants. Suppose a forward ant F i
s→d, where

i is the sequence number of the forward ant, generates a set of l backward ants,

Bi,1
d→s, Bi,2

d→s, ....., Bi,l
d→s. Then only the statistics of the backward ant, Bi,best

d→s , such

that
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cost(Bi,best
d→s ) = min[cost(Bi,1

d→s), cost(B
i,2
d→s), ......., cost(B

i,n
d→s)] (5.6)

are used to calculate the new mean and variance at the node k for the destination

d. In the case where the optimization metric is delay, the first backward ant to

reach its destination is the required ant. The trip time of this backward ant is

used to update the statistics.

The mean and the variance, (µkd, σ
2
kd) are updated using the following update

rules:

µkd ← µkd + η(ok→d − µkd) (5.7)

where µkd is the mean of the ant trip times at the current node, k, to the destination

node, d. η is a constant, ok→d is the trip time of the ant from the current node k

to the destination ndoe d, and

σ2
kd ← σ2

kd + η((ok→d − µkd)
2 − σ2

kd) (5.8)

where σ2
kd is the variance of the ant trip times at the current node, k, to the

destination node, d. η, ok→d and µkd are the same as above.

The learning rules are an important factor in the efficient functioning of the

algorithm and are dealt with in further detail in chapter 6.

To further illustrate the functioning of the algorithm for individual ants as well

as individual nodes, figure 5.4 depicts the algorithm flow for each ant, while figure

5.5 depicts the algorithm flow ateach node.
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Figure 5.6 presents the abstract pseudo code for the algorithm.
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Figure 5.4: Algorithm for each ant.

5.1.5 Changes in routing tables triggered by node mobility

In a mobile, ad hoc network, the possibility of rapid movement of nodes creates

high dynamicity and requires the algorithm to be highly adaptive to these changes.

It is of crucial importance that the algorithm adapt quickly to changes in the

network toppology, discovering new, efficient paths frequently and efficiently as
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Figure 5.5: Algorithm at each node.

well as reacting to changes in the network topology when existing paths are no

longer available.

More specifically, due to the movement of nodes, it is possible that new, more

efficient paths might become available to route packets between the source and

destination nodes. The algorithm should quickly adapt itself and adjust the routing

tables accordingly so as to take advantage of such paths. On the other hand,

existing routes may be frequently disrupted and/or become temporarily unavailable
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due to node movement, loss of connectivity as well as factors such as terrain and

other conditions. In such a situation, the algorithm should allow the nodes to

quickly gather information regarding the loss of specific links and create new routes

between source and destination nodes.

When a node or nodes enter into the transmission range of a node, this creates

the possibility of there being available new routes to a destination that was either

reachable by a longer route or previously unreachable. The detection of a newly

moved node is through the beaconing mechanism. The Hello mesages broadcast

by each node give information regarding the availability of a node as a next hop.

Suppose a node A moves into the neighborhood of a node B, then the IP address

of A is added to the list of neighbors of B and vice versa. Node B then adjusts

its routing table to include A with a small probability. So, if node B has existing

routes to nodes d1, d2, ..., dm, it adds A as a next hop with a small probability for

each of d1, d2, ..., dm. Thus, the probability of taking node A as the next hop is,

pA = δ, δ ¿ 1 (5.9)

and the probability of the other nodes, n, n 6= A becomes,

pi = pi − δ

N
(5.10)

where N was the number of B’s neighbors before A entered its transmission range.

The sum of the probabilities remains 1. i.e. Σipi = 1.

This allows the exploration of new routes through node A from node B. If
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new and efficient routes are found with node A as an intermediate node, they are

quickly reinforced and can be utilized for routing data packets.

When a node A leaves the transmission range of a node B, A is removed from

B’s routing table. That is, for all destinations for which B has routing probabilities,

A is removed from the routing table. The probability of taking A as the next hop

is made 0 for all destinations from node B. The probability distribution is then

normalized for all the other nodes, so that the sum of the probabilities is 1, i.e.

∑
i pi = 1. .

pi = pi +
pA

N
(5.11)

where N is the number of neighbors of B after A leaves its transmission range,

and,

pA = 0 (5.12)

In the case when A was the next hop with the highest probability for a certain

destination d, this means that the best possible route to d from B is no longer

available. In this case, the neighbor with the next highest probability is chosen to

be the next hop. If this neighbor does not have a route available to the destination

d, it sends a single forward ant for route discovery and waits for a backward

ant before forwarding the data packet. On the other hand, if this node has a

previously established route available, it simply forwards the data packet on this
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route. It is important to note here that looping for data packets will not occur

since probabilities for next hops are created only when a backward ant arrives at

a node, and forward ants are inherently loop-free.

Figure 5.7 illustrates how a new route is found by the adjustment of probabil-

ities at the routing tables. Initially, the routing probabilities at node 2 are such

that the data packet is routed to node 3 as the next hop. However, as node 3

moves out of transmission range of node 2, the routing table of 2 changes so that

4, which is the neighbor with the next-highest probability for destination d, is the

next hop. The new route is then found through node 4.

5.1.6 Routing Data packets

The data packets can now be routed via a number of possible schemes:

1. The data packets can be routed on the basis of the highest probability for the

next hop at a node for the data packet’s eventual destination. This creates

a complete global route by using local information.

2. The data packets can also be routed probabilistically. Previous results [6] for

swarm intelligence algorithms show excellent results for this method in the

case of static networks with relatively small topologies. However, this might

not be the suitable method in the case of the mobile ad hoc environment

with rapid topology changes.

61



5.1.7 Modularity in PERA

Most routing protocols consist of the following three phases of operation:

• Route Discovery,

• Route Maintenance,

• Route Table Maintenance

• Local Connectivity Management

In the route discovery process, packets are sent between nodes for the discovery

of routes between-source destination pairs. Proactive protocols do route discovery

continuously and typically for all the nodes in the network. Reactive protocols

typically go into the route discovery phase only when a route is required for sending

a data packet. The routing table entries are changed suitably to reflect established

paths.

In the route maintenance process, existing routes are updated and possible

new routes are established between source-destination pairs. Once again, proactive

attempt to do this constantly whereas reactive protocols go into this phase only

when a previously available route for data packets is found to be no longer available.

Nodes use a Local Connectivity Management scheme to keep a record of their

immediate, single-hop neighborhood. This allows them to keep a track of local

network status and change their routing table accordingly.
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Figure 5.8 shows a comparison between AODV and PERA in terms of the

different phases, route discovery and route maintenance.
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t:= Current time;

tend:= Time length of the simulation;
�

t:= Time interval between ants generation;

foreach (Node) /* Concurrent activity over the network  */

M = Local traffic model;  /* Contains µd and � d for some destinations */
� = Node routing table;

while (t <= tend)

in_parallel /* Concurrent activity on each node  */

if (t mod 
�

t = 0)

LaunchForwardAnt(destination node, source node)

end if

foreach (ActiveForwardAnt[source node, current node, destination node])

while (current node � destination node)

next_hop_node := BroadcastAnt(current_node, destination_ node);

PushOnTheStack(next_hop, node_elapsed_time);

current_node:=next_hop_node;

end while

LaunchBackwardAnt(destination_node, source_node, stack_data);

Die();

end foreach

foreach (ActiveBackwardAnt[source_node, current_node, destination_node])

while (current_node � destination node)

next_hop_node := PopTheStack();

WaitOnHighPriorityLinkQueue(current_node, next_hop_node);

CrossTheLink(current_node, next_hop_node);

UpdateLocalTrafficModel(M, current_node, source_node, stack_data);

UpdateLocalRoutingTable( � , current_node, source_ node, 

reinforcement)

end while

end foreach

end in_parallel

end while

end foreach

Figure 5.6: Pseudo code for the algorithm.
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link breakage due to node movement.
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Chapter 6

Algorithm Parameters

The routing problem in Mobile Ad Hoc Networks is a stochastic distributed multi-

objective problem. Information propagation delays and the difficulty to completely

characterize the network dynamics under arbitrary traffic pattern and node mo-

bility make the routing problem in MANETs intrinsically distributed. Routing

decisions can be made only on the basis of local and approximate information

about the current and future state of the network.

These features make the problem well adapted to be solved by a multi-agent ap-

proach like swarm intelligence algorithms. The important parameters that control

the performance of the algorithm described in chapter 5 are:

• The rate at which Forward Ants are sent from a node to explore feasible paths

to destination nodes in the network. To keep the routing tables updated at

frequent intervals, and with the latest information regarding the status of the

network, forward ants are required to be sent at relatively frequent intervals.

On the other hand, though each forward ant that is broadcast may generate

a set of routes (since it generates possibly multiple backward ants), it also
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generates significant overhead. In the MANET environment, the routing

overhead is required to be low due to the low power and limited bandwidth

available at individual nodes. Therefore, schemes which allow the algorithm

to control the sending rate of ants are key to the successful functioning of

the algorithm.

• The learning rule and the reinforcement that the backward ants use to update

routing tables. This determines the speed with which the algorithm adapts to

changes in the network topology. This also determines which routes are given

high reinforcement relative to others. Further, the reinforcement parameters

determine how quickly newly found routes are reinforced and actually used

for routing data packets. Good routes should be rewarded substantially as

long as they are available and newly available routes that are more efficient

than pre-existing routes should be quickly ’ramped-up’ to high probability

(goodness) values.

6.1 Routing Table Updates

The algorithm discussed in chapter 5 provides a method of multi-objective opti-

mization in the mobile, ad hoc environment. An important consideration, then,

is the metric or combination of metrics to be used for obtaining good solutions to

the routing problem. The metric of choice for most popular routing algorithms has

traditionally been the number of hops. AODV [18] and DSR [14], two of the most

68



popular algorithms use this metric. Other routing algorithms such as ABR [13]

use a ’connectivity relationship’ metric. This combines the connectivity of a node

to its neighbors with the available battery power at the node to obtain a metric

for finding good routes in the MANET.

In our experiments using swarm intelligence inspired algorithms, we use delay

and the number of hops as two possible metrics. However, this algorithm has

further possible applications with other metrics, such as the battery power available

at the node. In short, this algorithm provides a generalized method of optimization

of the required metric.

The time measure (delay) can be used as the reinforcement signal to provide

structural and temporal credit assignment. The observed times are absolute mea-

sures and we cannot associate with them a precise error measure. We cannot

score the trip times according to an absolute scale because ”optimal” times de-

pend on the traffic, and the network mobility, and they need to be considered from

a network wide point of view.

If the network is in a congested state, all the trip times of the ants will score

poorly with respect to times observed in low load situations, but we should never-

theless be able to understand that the network is under congestion and therefore

we should give adequate reward to a trip time high with respect to absolute values

but good relative to the trip times observed in the congested situation.

The update of the routing tables happens using the available feedback signal,

that is, the trip time experienced by the forward ant. This gives a clear indication
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about the goodness of the followed route because it is proportional to its length

from a physical point of view (number of hops, transmission capacity of the used

links, processing speed of the traversed nodes) and from a traffic congestion point

of view. This aspect is extremely important as forward ants share the same queues

as data packets, whereas backward ants have priority over data to propagate faster

the accumulated information regarding the state of the network. So if the forward

ants cross a congested region of the network with high delays, they will take a

longer time. This has two effects:

1. The trip grows and the back-propagated increments to the routing tables are

small.

2. Also, these increments will be assigned with a larger delay (i.e. the interval

between two consecutive increments will be large). Hence, links and paths

that are congested will be given a small, delayed reward.

In a mobile environment, the number of hops is a good metric as it allows the

feedback to be rapidly disseminated in the network. Unlike in the case of using

delay as a metric, when using the number of hops as a metric, the forward ants

are not required to move on normal queues. As such, they do not face possibly

long delays and the feedback is largely independent of the network status and

congestion. Both forward and backward ants move on high priority queues. This

is similar to other reactive MANET protocols such as AODV and DSR. This allows

quick adaptation and optimization to find the paths with the fewest hops. However,
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this does not give accurate information about the network in terms of the traffic

flows between nodes, the delays and congestion at nodes. As a result, in the case

of high traffic flows, this may lead to inefficiencies in the network.

There are several methods or learning rules that can be used for updating and

adjusting the probability distributions at each node. These update rules aim to

increase the probability for the next hop for nodes from which backward ants have

just been received. Hence, feedback regarding the status of the network from the

backward ants is used as reinforcement to adjust the routing tables.

In the following sections, we discuss some learning rules and the results obtained

in experiments using these updating rules.

6.1.1 Learning Rule 1

We discuss here a learning rule proposed by Dorigo et al. in their work on AntNet,

an ant routing algorithm for communication networks [6].

As noted in section 5.1.4, each forward ant broadcast from the source node

may result in the reception of a number of backward ants at the source of the

forward ant. All the backward ants are used to update the routing probabilities

at intermediate nodes as well as the source node. This allows the building of

alternative routes (rather than just the best route as per the perception of the

forward ants of the status of the network). If only the best performing ant is

used to update the routing table probabilities, then only one route is reinforced.
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The remaining routes, which would be useful in the case of node mobility, are not

reinforced at all. This leads to the building up of a single, temporarily good route.

On the other hand, by using all the backward ants to adjust the probability tables,

we ensure that routes other than the best-performing are also reinforced. With

mobility and the breakage of links, the second best route can then be used to route

data packets if the best route is no longer available.

The statistics (µsd, σ
2
sd) are updated only for the first backward ant that is

received by the source node s of the corresponding forward ant to destination d.

This ensures that only the statistics of the best known route are available to the

node. Since the statistics at a node for a destination may be used to control the

sending rate of ants and for grading routes at the node for the destination, only the

mean and the variance of the best available route should be used. Using cumulative

statistics from all the backward ants will give an inaccurate representation of the

network status at the node for a given destination.

Consider a forward ant F l
s→d, the kth forward ant from source node s to des-

tination node d. This ant generates a set of backward ants, Bl1
d→s, B

l2
d→s, ...., B

ln
d→s.

The first backward ant to arrive at node s is then chosen to update the statistics

(µsd, σsd) for destination d. The following discusses a procedure to update the

probability distribution at the routing table of each node that the backward ant

visits. This is similar to the learning method used by DiCaro and Dorigo in [6].

If T is the trip time of the backward ant received at a node i (which is either

the source node of the forward ant or an intermediate node on the path between
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source node s and destination node d) and µid is the mean value of previous good

round trip times as stored in the routing table as part of the vector (µid, σ
2
id), then

we can compute a raw quantity r′ measuring the goodness of T , with small values

of r′ corresponding to satisfactory trip times,

r′ =
T

cµ
, c ≥ 1 if

T

cµid

< 1 (6.1)

= 1, otherwise. (6.2)

r′ is a problem-independent measure that scores how good the trip time is with

respect to the average of the observe trip times. c is a scaling factor and it is

assigned a reasonable value (currently chosen to be 2). Out-of-scale values are

given a value of 1.

A correction strategy is applied to the goodness measure r′ taking into account

how reliable the currently observed trip time is with respect to the variance in the

the so far observed values. This takes into account the stability of the trip time.

Observations are considered stable if

σid

µid

< ε, ε ¿ 1 (6.3)

In this case, a good trip time, (that is r′ < t where t is arbitrarily set to 0.5) is

decreased by subtracting a value

S(σid, µid; a) = e
−a

σid
µid (6.4)
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to the value of r′, while a poor trip time is increased by adding the same quantity.

On the other hand, if the mean is not stable, the raw values r′ cannot be

completely considered reliable and, in this case, the quantity

U(σid, µid; a) = 1− e
−a′ σid

µid , (6.5)

with a′ ≤ a, is added to a good r′ value and subtracted from a poor one. In this

case, the attempt is to avoid traffic fluctuations, with the risk of amplifying them.

Then, the above correction strategy can be summarized as:

r′ ← r′ + sign(t− r′)sign(
σid

µid

− ε)f(σid, µid), (6.6)

with f beingS or U according to the case. The final value of r′ is bounded in the

interval [0,1].

The obtained value r′ is used by the current node i to define a positive rein-

forcement, r+, for the node f that the backward ant comes from, and a negative

one, r−, for the other neighboring nodes n:

r+ = (1− r′)(1− Pfd) (6.7)

r− = −(1− r′)Pnd, nεNk, n 6= f, (6.8)

where Pfd and Pnd are the last probability values assigned to neighbors of node k

for destination d. NK is the set of k’s neighbors. In this way, the reinforcements
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are proportional to the obtained goodness measure r′ and to the previous values

of the goodness probabilities.

These probabilities are then increased or decreased by the reinforcement values

as follows:

Pfd ← Pfd + r+, Pnd ← Pnd + r− (6.9)

Thus, the rescaling of the r′ value is equivalent to the definition of the learning

rate, the scale compression factor and its degree of non-linearity determine the

final size of the probability changes. The constants (c, a, a′, ε, h, t) are not problem-

dependent and simply provide a suitable scaling.

6.1.1.1 Actor-Critic Systems

The principle behind the algorithm is similar to Reinforcement Learning [12] and

can be represented as an actor-critic system. The raw information as represented

by the round trip times in this case is processed by the critic and then used to train

the actor to improve the system performance. The quantity r′ is used to process

the raw information. Figure 6.1 is a representation of actor-critic systems.

6.1.2 Learning Rule 2

The following learning rule was proposed by Schoonderwoerd et al. [10] in their

algorithm, Ant Based Control.
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Figure 6.1: The Actor-Critic system.

In the algorithm for call routing in telecommunication networks proposed in

[10] and mentioned in chapter 2, ants go from their source node to the destina-

tion node by moving from node to node. The next node an ant will move to is

selected probabilistically according to the routing table of its current node. When

the ant reaches its destination node it is deleted. Each visited node’s routing ta-

ble is updated by the deposition of some pheromone on the routing table entry

corresponding to the neighbor node it just came from and to the ant source node,

which is viewed as a destination node. Formally, routing tables are updated as

follows. Let s be the source node of an ant, f be the node it just came from, and

i its current node at time t. The entry Pfd(t + 1) is reinforced while other entries

Pnd(t + 1), n 6= f , in the same column decay by probability normalization.
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Pfd(t + 1) =
Pfd(t) + δr

1 + δr
, (6.10)

Pnd(t + 1) =
Pnd(t)

1 + δr
, n 6= f, (6.11)

where δr is the reinforcement parameter that depends on the ant’s characteristics

such as the age. This updating procedure also conserves the normalization of the

probability values and keeps the sum as 1 if these values are initially normalized.

The probability Pfd is more reinforced when it is small (eg. when the node f was

not already on an established path between s and d) and reinforced to a smaller

extent when it is large (ie. the intermediate node f is already on the path between

s and d). This allows new routes to be discovered quickly when established routes

have become congested or unstable. There is, however, an exploration-exploitation

trade-off, since a large amount of instability in choosing routes does not allow

localization of searches.

The amount of reinforcement δr depends on how well the ant is performing.

The age (time taken to traverse the nodes) of the ant can be used to determine

δr. In principle, the age of the ant should be proportional to the cost metric (eg.

delay along a path). If an ant takes a long time on a certain path, then δr should

be reduced. Schooenderwoerd et al. [10] choose to use the absolute time (or age)

T , measured in time units spent by the ant in the network and propose

δr =
a

T
+ b, (6.12)
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where a and b are chosen parameters.

6.1.3 Using a Cost Function to update probabilities

A non-linear learning rule for the probabilities was proposed by Chen et al. [11].

This rule uses the cost function, f(c) of the links traversed by each ant to update

the probabilities.

Pfd =
Pfd + ∆p

1 + ∆p
, (6.13)

Pnd =
Pnd

1 + ∆p
, 1 ≤ j ≤ n, i 6= j (6.14)

where ∆p = k
f(c)

, k > 0 is a constant and f(c) is a non-decreasing function of c, the

cost. Pfd is the probability of taking neighbor f (from where the backward ant has

been received) as the next hop to reach destination d. Pnd’s are the probabilities

of taking the other neighbors, n, n 6= f as the next hop to reach destination d.

The constant k is the learning rate of the algorithm. It should be set high

enough so that it has a substantial effect on Pfd for each ant and it should be low

enough so that the routing tables converge with high probability. As for earlier

learning rules, k can also be generated as a function of the absolute cost of the

route when compared to the mean of the cost observed so far.

A significant advantage of this scheme and of the ant routing paradigm in

general is the fact that the learning rules can be used to optimize the routing table

with respect to one of a number of metrics, or with respect to a number of metrics.
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• Delay

• Number of hops

• A trust metric

• Battery power available at a node or at a set of nodes

• Mobility

6.2 The Sending Rate of Ants

The sending rate of forward ants is the most important criterion for routing as

an optimization problem. One of the key aspects of swarm intelligence techniques

applied to the MANET environment is the tradeoff between sending ants frequently

and the routing overhead generated by these ants. Sending out ants at a high

frequency allows high adaptivity to changes in the network. It also allows for more

optimized routes in terms of the metric. However, this creates high overhead and

inefficient operation.

We attempt to control the sending rate of Forward Ants by two mechanisms:

1. By sending ants only when a node receives a data packet for a destination for

which it has no route. The forward ants then establish routes in the network.

Data packets are buffered until a route is established. Once a route has been

established, the data packets are dequeued and routed as per the available

routing probabilities.
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2. We use available information about existing routes to establish a method

to control the sending of Forward Ants. For each route (as built by the

probabilities at each intermediate node), along with the next hop, we also

maintain the mean and the variance (µfd, σ
2
fd) of the route (between node f

and destination d) as perceived by the ants.

The variance of the routes give us information about the stability of the

route. Then, we can base the rate of sending forward ants on the variance of

the route.
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Chapter 7

Simulation Results

7.1 Simulation Environment

Network Simulator 2 [28] discrete event simulator was used to simulate our algo-

rithm. The simulation modeled a network of nodes randomly placed within an

area of varying dimensions. The network density, i.e., the number of nodes per

unit area of the network were varied as simulation parameters. At the physical

layer, radio propagation distance for each node was set to 250m and the channel

capacity was 2Mbps. Our model does not support radio capture [27] so, in the

case of packet collisions all packets are dropped. The IEEE 802.11 Distributed Co-

ordination Function (DCF) [26] as implemented in NS2 was used as the Medium

Access Control (MAC) protocol. The communication medium is broadcast and

nodes have bi-directional connectivity. Each simulation was run for 900 seconds.

Multiple runs with different seed values were conducted for each scenario and the

collected data were averaged over those runs. The algorithm was developed as a

separate NS2 routing layer protocol.
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7.1.1 Node Placement

Nodes in the network were randomly placed. Hence, network partitions can exist,

irrespective of the density of the network. For a given experiment, all routing

protocols compared are configured with the same seed value. Thus all schemes

will encounter the same network scenario. Hence the performance of the routing

protocols can be directly compared.

7.1.2 Mobility Model

All nodes in the network are mobile and move according to the “Random Way-

point” model [17]. In this model nodes move at the set speed for a specified period

of time towards a random destination and after reaching the destination nodes

pause for a set amount of time (a simulation parameter). After this period a new

random destination is chosen and the node moves towards this new destination

with the same speed. If a node reaches the boundary of the fixed area, the node

will rebound. Thus, the nodes are free to move to any region in the network area.

The continuous movement of the nodes ensures continuous change in the topology.

This highly dynamic network is ideal to test the reliability of our algorithms.

7.1.3 Other simulation parameters

In all our simulations we use a set of eight end-to-end connections, that is, eight

source nodes (two or more of which might be the same) attempt to send constant
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bit rate traffic to eight destination nodes (again, two or more of which might be the

same). The pause time is maintained at 50 seconds throughout and the mobility

speeds range from 1 m/s to 20 m/s.

7.1.4 Application Traffic

The NS2 source generator model was used to generate Constant Bit Rate (CBR)

traffic. The size of each data packet payload was 128 bytes. Source nodes start

generating data at random instants of time. The source then sends data packets at

constant intervals of time. This interval is determined by the traffic load.In fact,

the interval is the inverse of the load in packets/sec. The value of packets/sec

throughout the simulations was 1.

7.2 Simulation Methodology

7.2.1 Algorithms for Evaluation

Since a large number of routing algorithms exist for Mobile Ad Hoc networks, it

is important to compare the performance of our routing algorithm against other

algorithms. We use the Ad Hoc On Demand (AODV) routing algorithm for com-

parisons. This gives us a comparative analysis of swarm algorithms for MANETs

when compared to both Link State and Distance Vector algorithms.

We use the throughput, the goodput and the average end-to-end packet trans-
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mission delay for comparisons. All the simulations were carried out with the same

seed for the given simulation scenario and hence the results can be directly com-

pared for the routing algorithms.

7.2.2 Simulation Attributes

The above schemes were evaluated as a function of the following attributes.

7.2.2.1 Protocol specific parameters

• The update rule used. As noted in 6.1, a number of possible methods of

updating the routing tables can be used.

• The value of the reinforcement used to calculate the applied reinforcement

as discussed in 6.1

7.2.2.2 Network parameters

• Mobility speed: The speed at which the network nodes move is varied. Vari-

ation against mobility determines the robustness of the protocols.

• Pause time: The pause time in the random waypoint model is varied. The

performance variation gives another indication of the robustness of the pro-

tocols.
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7.2.3 Performance Metrics

The collated data from the different runs were used to generate the following

metrics.

7.2.3.1 Goodput

The goodput is defined as the ratio of data packets received at the nodes to the

number of routing packets received at the nodes. Thus, it is a measure of the

efficiency of the routing protocol in terms of the number of routing packets used

to route each data packet.

Goodput =
Data packets received at routers ∗ 100

Routing packets received at routers
(7.1)

7.2.3.2 Throughput

The throughput is defined as the ratio of the number of data packets received to

the number of data packets sent.

Throughput =
Data packets received ∗ 100

Data packets sent
(7.2)

7.2.3.3 Average End-to-End Delay

The end-to-end delay is the interval between the instant a source generates a packet

and the time at which the destination receives the packet. The end-to-end delay

is aggregated for each packet for each source-destination pair. The average per
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packet end-to-end delay is then calculated as the number of source-destination

pairs and the number of packets received is known.

7.3 Simulation Results and Trade-off Analysis

In this section we present the simulation results for all the schemes as a function of

the simulation attributes described in 7.2.2. The basic simulation model for all the

experiments is as described in 7.1. Also we analyze the trade-off characteristics of

these schemes.

7.3.1 Hop count based optimization

In this experiment, we evaluate the performance of the routing algorithm based

on the hop count metric.

The network consisted of 20 nodes, randomly placed in an area 500m x 500.

4 source and destination pairs were randomly chosen from these 20 nodes. Each

source transmitted 1 packet/sec. Nodes in the simulation were mobile.

7.3.2 Mobility Speed

In this experiment,the mobility speed was varied between 0 to 20 m/s

(0,5,10,20,15,20). The model consisted of 20 nodes randomly placed in the network.

In each run of the simulation, all the schemes were tested on the same scenario, this

was ensured by setting the same seed for all the scenarios. The seed was changed
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for different runs. 4 source-destination pairs were randomly chosen from these 20

nodes. The sources generated 1 packet/sec.
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Figure 7.1: Variation in the goodput with mobility in a scenario with 20 nodes in

500m X 500m.

Figure 7.1 shows the goodput as a function of the node mobility speed. It is

seen that the goodput decreases with increase in mobility. This is to be expected

since with an increase in mobility, a larger number of forward ants are required to

be sent to discover new routes and modify and update existing routes which are

no longer available for packet transmission. Hence, at higher speeds, the number

of routing packets required per data packet correctly transmitted is high, leading

to lower goodput.

Figure 7.2 shows the percentage packet loss as a function of the mobility. With

0 and low mobility (1 m/s), the packet loss is 0. With speeds of 5 m/s, the packet
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Figure 7.2: The percentage packet loss for varying mobility with 20 nodes in 500m

X 500m.

loss in under 2%. However, with increasing mobility, the packet loss increases lin-

early. Thus, even the increased rate of sending ants (as evidenced by the decreased

goodput) does not serve to maintain a low percentage of packet loss. To keep the

packet losses low, the rate of sending ants has to be increased non-linearly. That

is, the rate of increase in sending of ants has to increase faster than the mobility.

7.3.3 Rate of sending Forward Ants

In this experiment the rate of sending forward ants is varied for different mobility

speeds and the behavior of the algorithm is studied.

Table 7.3.3 shows the variation in goodput and percentage packet loss as a

function of the ANT INTERV AL (the time period between the transmission of
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ANT INTERVAL Goodput % Packet Loss

15 7.92 4.39

25 11.44 10.37

50 7.92 11.60

100 19.24 15.59

Table 7.1: Goodput and % Packet Loss with ANT INTERVAL with mobility of

10 m/s.

two forward ants) for 20 nodes in an area of 500m X500m with speeds of 10 m/s

and a pause time of 50 secs. For a high value of ANT INTERV AL, the packet

loss is high. This is explained by the fact that information regarding the current

state of the network is not updated rapidly. The algorithm fails to adapt in many

cases resulting in high packet loss. However, as the period between the sending

of two consecutive forward ants is decreased, the packet loss reduces significantly.

This shows that the algorithm adapts to the changes in the network quickly as the

number of forward ants being sent increases. With a value of 15 seconds for the

ANT INTERV AL, the packet loss is 4.39%.

Table 7.3.3 shows the variation in the goodput and percentage packet loss as a

function of the ANT INTERV AL for 20 nodes in an area of 500m X 500m with

speeds of 5 m/s and a pause time of 50 secs. For a low value of ANT INTERV AL,

the packet loss is lower than for a higher value. Further, it is important to note

that the packet loss for values of ANT INTERV AL 100 and 150 are the same.
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ANT INTERVAL Goodput % Packet Loss

50 12.12 3.67

100 9.29 5.45

150 8.37 5.45

Table 7.2: Goodput and % Packet Loss as functions of ANT INTERVAL for mo-

bility of 5 m/s.

ANT INTERVAL Goodput % Packet Loss

300 17.23 0

900 19.18 0

Table 7.3: Goodput and % Packet Loss as functions of mobility with 1 m/s.

This is because the increase in the number of forward ants that are sent is not

sufficient to cause an increase in performance in terms of goodput and packet loss.

The goodput therefore goes down since the packet loss remains constant.

Table 7.3.3 shows the variation in the goodput and percentage packet loss as a

function of the ANT INTERV AL for 20 nodes in an area of 500m X 500m with

speeds of 1 m/s and pause time of 50 secs. Since the mobility is very low, the

adaptivity required of the algorithm is relatively low. Even by sending ants at a

higher rate, there is no change in the packet loss, since a single forward ant sent

at the start of the simulation obtains enough data (with some redundancy due to

the availability of multiple routes) for all data packets to be successfully routed.
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7.3.4 Reinforcement

In this experiment the value of the reinforcement used based on the learning rule

described in section 6.1.1 to update the routing tables at the nodes is varied be-

tween 0.1 and 0.5 (0.1, 0.15, 0.20, 0.30, 0.40, 0.50). The network consists of 20

nodes randomly placed in an area of 500m X 500m with speeds of 5 m/s and

10 m/s and pause time 50 secs. This experiment allows us to study the impact of

the reinforcement value on algorithm performance.
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Figure 7.3: Variation in the goodput with the reinforcement parameter.

Figure 7.3 shows the variation of the goodput as a function of the value of the

reinforcement. The speeds of the nodes are 5 m/s and 10 m/s. The goodput is

higher for speed 5 m/s, as expected.

Figure 7.4 shows the variation of the percentage packet loss as a function of the

value of the reinforcement for 20 nodes in an area of 500m X 500m with the nodes
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Figure 7.4: The percentage packet loss with varying reinforcement parameter for

20 nodes in 500m X 500m.

moving at speeds of 5 m/s and 10 m/s and a pause time of 100 secs . As expected,

the packet loss is lower for lower speed of movement. However, it is important to

note that with an increasing value of the reinforcement applied, the packet loss first

increases and then decreases. This is because a weak (small) applied reinforcement

implies that routes do not get positively reinforced to a sufficiently high degree.

In the situation where mobility exists in the network, this reduces the adaptivity

of the algortihm, leading to stale routes being used for the transmission of data

packets. If the reinforcement applied is increased beyond a certain value, it causes

the routes to be reinforced too fast. This leads to routes that may not actually be

the best routes being used for the transmission of data packets.
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7.4 Comparison with AODV

As mentioned earlier, we compare the algorithm proposed in chapter 5 with AODV

in terms of the throughput, delay and the goodput.

7.4.1 Goodput comparison

Figure 7.5 shows a comparison of the goodput for AODV and PERA for a scenario

with 20 nodes in an area of 500m X 500m with the nodes moving with speeds of

1 m/s and a pause time of 100 secs. Since the mobility is low, the overall goodput

for both algorithms is also low. However, while the goodput for AODV is nearly

the same throughout, that of PERA shows marked variations. This depicts the

learning phases of the algorithm - in the initial phase, forward ants are sent to

discover new paths in the network. Once these paths have been established, the

algorithm has learnt the current state of the network.

Figure 7.6 shows a comparison of PERA and AODV for the same scenario as

above, but with a mobility speed of 10 m/s. The goodput is observed to be lower

than that of AODV. This is because forward ants are sent more frequently to allow

quick adaptation to the network conditions.

7.4.2 Throughput

Figures 7.7 and 7.8 show the throughput comparisons for AODV and PERA for

mobility speeds of 1 m/s and 10 m/s and pause time 100 secs. At the lower speed,
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Figure 7.5: A goodput comparison of PERA and AODV at 1 m/s.

the throughput is the same for both AODV and PERA, however, at the higher

speed, the throughput is slightly less for PERA in some cases. This is because

with mobility, PERA adjusts gradually to the changes in topology.

7.4.3 Delay

Figures 7.9 and 7.10 show the comparison of delay for AODV and PERA. Both

algorithms show a large initial delay, which is required for routes to be set up.

Subsequently, AODV shows large delays again in situations with high mobility.

PERA on the other hand, shows low delays in all cases, as instead of buffering

data packets until a new route id found, PERA delivers the data packet through

an alternate route.
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Figure 7.6: A goodput comparison of AODV and PERA at 10 m/s.

7.5 Some Comments

It should be noted that scenarios with network partitions and persistent mo-

bility, though realistic, represent worst case scenarios. The protocols evaluated

should perform better in networks with improved connectivity and predetermined

or meaningful mobility patterns. Hence we attempt to establish the performance

of our routing protocol in scenarios that are fairly well-connected.
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Figure 7.7: A throughput comparison of AODV and PERA at 1 m/s.
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Figure 7.8: A throughput comparison of AODV and PERA at 10 m/s.
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Figure 7.10: A goodput comparison of AODV and PERA at 10 m/s.
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Chapter 8

Conclusions and Future Work

The inherent constraints of a mobile wireless ad hoc networks viz mobility, band-

width and energy limitations, pose difficult challenges in designing routing algo-

rithms. Thus, a routing algorithm for a MANET, should be robust against topol-

ogy changes and achieve efficient data distribution. In this thesis we presented a

routing algorithm for MANETs inspired by the swarm intelligence meta-heuristic.

Swarm intelligence methods have been widely studied and successfully applied to

difficult optimization problems. Further, these algorithms have been found to be

robust and resistant to router state corruption. The algorithms uses two kinds of

agents - forward and backward agents, referred to as forward and backward ants,

to collect and disseminate information regarding the status of the network. These

agents adjust a probability distribution at each node that reflects the likelihood

of a reaching a given destination using a neighbor as the next hop. We found

that the algorithm is robust against mobility and topology changes, and performs

with minimum delay in high mobility conditions due to the presence of multiple

graded paths. The algorithm is found to function particularly well in closely-
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connected scenarios, but with increasing mobility, the routing packets required per

data packet (as indicated by the goodput) goes up.

Some of the important aspects of these algorithms understood in the course

of this work are the advantages of establishing and grading multiple paths prob-

abilistically. This allows several routes to be found between source-destination

pairs, without a large amount of bandwidth and storage resources (memory) being

consumed. Further, a unicast approach to route discovery in MANETs incurs high

overhead and low efficiency.

Another important aspect of this algorithm is that some of its important ele-

ments can be incorporated into many existing routing algorithms without incurring

a large penalty in terms of overhead. We identify the following areas of future re-

search:

• Introducing routing efficiencies by using more information from the MAC

layer.

• A thorough study of the robustness and resistance to router state corruption

of swarm intelligence-based algorithms under various extreme conditions.

• A study and analysis of incorporating ideas such as multiple paths and prob-

abilistic grading of these paths into existing algorithms such as AODV and

DSR.

• A study of operation of the algorithm under various metrics such as available

energy at each node.
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