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Abstract
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Mobile Adhoc NETworks(MANETs) are characterized by bandwidth con-

strained links, multiple hops and dynamic topologies. Routing and providing

quality of service in these networks is a highly challenging task. In this thesis,

we discuss the unicast routing in MANETs with enhancements to the Temporally

Ordered Routing Algorithm (TORA) and quality of service at the network layer

with INORA.

Temporally Ordered Routing Algorithm (TORA) is a highly distributed, scal-

able routing protocol for MANETs. We discuss improvements in the performance

of TORA by Query Localization. We also discuss the improvements to TORA to

remove a specific traffic instability problem in TORA. We also describe the proac-

1



tive operation of TORA and show by simulations that it is generally a good idea

to have the gateway nodes in a MANET proactively perform route building and

route maintenance.

We propose INORA, a network layer QoS support mechanism in adhoc net-

works, which makes use of the INSIGNIA in-band signaling mechanism and

TORA. We present an effective coupling between TORA and INSIGNIA to get

routes that are “best-able” to provide QoS requirements for a flow. INORA also

provides congestion control. We present two schemes calles “Coarse feedback

scheme” and “Fine feedback scheme” under the INORA framework. We show

that under heavily loaded conditions, the INORA schemes perform better than

when the signaling protocol and the routing protocol operate without feedback.
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Chapter 1

Introduction

The abundance and variety of information services provided by the Internet along

with the possibility of access to services via light, hand-held, cord-less devices

such as portable computers, mobile phones and personal digital assistants(PDAs),

have transformed wireless communication systems into a prominent part of any

state of art network. The studies and developments in wireless networking have

primarily been driven by success of the dominant cellular architecture model.

Thus, although significant progress has been achieved in the thorough understand-

ing of wireless networking characteristics through the study of cellular systems,

many of the developments are still not directly applicable to satisfy the needs of

the wireless systems that require network architectures which may not follow the

cellular paradigm. Such networks, sometimes referred to as wireless ad-hoc, or

peer-to-peer, or multi-hop networks, consist entirely of wireless and often mobile

nodes that may communicate either directly or via multiple hop paths that require
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the support of intermediate nodes to achieve connectivity. Wireless Adhoc net-

works which have node mobility are calledMobile Adhoc Networks(MANETs).

Wireless ad-hoc networks are autonomous systems of fixed or mobile wireless

nodes with routing capabilities, that may operate in a stand-alone fashion or as part

of larger heterogenous network (e.g. in hybrid configurations). Although their de-

velopment was initially driven by the needs of military networks(prior term used

to describe them waspacket radio networks), they are expected to embrace com-

mercial systems as well, especially with the evolving use of personal communica-

tion services systems. It is envisioned that future applications will not be limited

to the needs of the military (wireless digital battlefield, war-fighter’s wireless in-

ternet etc.) but will include several civilian applications as well. For instance, they

can be deployed in collaborative network scenarios (e.g. conferences or company

meetings), where individual users need to share or exchange information with-

out depending on a local network of access points. They are a viable solution

in situations of emergency and rescue operations where the infrastructure-based

network may not be available. Ad-hoc networks can also serve as platforms for

micro-sensor networks that can be deployed in remote or inaccessible areas to col-

lect, process and transmit various signals(e.g acoustic, seismic etc). for multiple

purposes. And there are many potential applications such as home networks of

heterogenous devices, industrial robotics and others.

The all-wireless architectures studied here exhibit several noticeable charac-

teristics that make them quite different from the existing cellular systems and

wireless LANs. In wireless ad-hoc networks the existence of a link between any
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two nodes depends on a multitude of parameters, such as transmission power level,

distance from the receiver, interference from other transmitters, propagation ef-

fects(e.g. multi-path, shadowing etc), type of antennas used (e.g. omnidirectional

or highly-directional) etc. Nodes may move frequently and in an arbitrary fashion

and /or may select to turn their power “OFF” at any time in order to conserve their

battery reserves. Thus, the ad-hoc network topology is not stable, may change

randomly and unpredictably and consists of varying capacity links.

Another crucial issue in wireless ad-hoc networks is the lack of central co-

ordinator node. Although in some simulations, there may or may not be certain

nodes in the role of local coordinators(similar to that of a base station), proto-

cols designed to perform network control and signaling functions must operate

in a distributed fashion. The overhead associated with collecting and maintain-

ing global network state information prohibits the use of schemes that control

operation through a central coordinator node. Moreover, distributed algorithms

that do not depend on the status of a single node are not directly affected by in-

dividual node/link failures that occur often in such environments. The MANET

working group [7] in the Internet Engineering Task Force is working on standard-

izing routing and other network layer protocols for MANETs. The Temporally

Ordered Routing Algorithm (TORA) [5, 4, 6]is one such protocol. It is a highly

distributed, scalable protocol. In this thesis, we present changes to the TORA

routing protocol which causes in the improvement in its performance. Also, we

describe a new network layer QoS mechanism called INORA which operates by

effective interaction between TORA and INSIGNIA in-band signaling system.
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1.1 Prior Work: Temporally Ordered Routing Al-

gorithm (TORA)

1.1.1 Notation and Assumptions

A network is modeled as a graph G=(N,L), where N is the finite set of nodes and

L is a set of initially undirected links. Each nodei � N is assumed to have a

unique node identifier(ID), and each link�i� j� � L is assumed to allow two-way

communication (i.e nodes connected by a link can communicate with each other in

either direction). Due to mobility of the nodes, the set of linksL is changing with

time (i.e. new links can be established and existing links can be severed). From the

perspective of neighboring nodes, a node failure is equivalent to severing all links

incident on that node. Each initially undirected link�i� j�� L may be subsequently

be assigned one of the three states:

1. Undirected

2. Directed fromnode i to node j

3. Directed fromnode j to node i

If a link �i� j�� L is directed fromnode i to node j, node i is said to be “upstream”

from node j, while nodej is said to be downstream from nodei. For each nodei�

the neighbors ofi, Ni � N is defined to be the set of nodesj such that�i� j� � L�

TORA requires the presence of an underlying link-level protocol, which ensures

that the nodei is always aware of its neighbors in the setNi. It is also assumed

18



that all transmitted packets are received correctly and in the order of transmission.

In current implementations of TORA, an underlying layer calledInternet Manet

Encapsulation Protocol (IMEP) is being used for reliable, in-order transmission

of TORA packets. IMEP also gives TORA the neighborhood setNi. Finally, since

existing networks of this type typically employ omnidirectional antennas, it is

assumed that when a nodei transmits a packet, it is broadcast to all its neighbors

in the setNi .

1.1.2 Basic Structure of TORA

A logically separate version of TORA is run for each destination to which routing

is required. Let us consider a single version running for a given destination.

The protocol can be separated into three basic functions:

� Creating Routes

� Maintaining Routes

� Erasing Routes.

Creating a route from a given node to the destination requires establishment of a

sequence of directed links leading from the node to the destination. The function

is only initiated when a node with no directed links requires a route to the des-

tination. Thus, creating routes corresponds to assigning directions to links in an

undirected network. The method used to accomplish this is a query/reply process,
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which builds a directed acyclic graph (DAG) rooted at the destination.(i.e. desti-

nation is the only node with no downstream links). The protocol uses QRY and

RPY packets for this functionality.

Maintaining routes refers to reacting to topological changes in the network in

a manner such that routes to the destination are re-established within a finite time.

This means that its directed portions return to a destination-oriented DAG within

a finite time. TORA uses UPD packets for this functionality.

1.1.3 Description of the Protocol

At any given time, an ordered quintupleHi � �τi�oidi�ri�δi� i� is associated with

each nodei�N� Conceptually, the quintuple associated with each node represents

the “height” of the node defined by two parameters: a reference level and a delta

with respect to the reference level. The reference level is represented by the first

three values in the quintuple, while the delta is represented by the last two values.

A new reference level is defined each time a node loses its last downstream link

due to a link failure. The first value representing the reference level,τi, is the time

tag set to the “time” of the link failure. The second value,oidi, is the originator-

ID(i.e.. the unique ID of the node which defined the new reference level). This

ensures that the reference levels can be ordered lexicographically, even if link

failures occur at a node simultaneously(i.e. with the same time tags). The third

value,ri, is a single bit used to divide each of the unique reference levels into two

unique sub-levels. This bit is used to distinguish between the original reference

level, and the higher reflected reference level. The first value representing the
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delta,δi, is an integer used to order nodes with respect to a common reference

level. This value is instrumental in the propagation of a reference level. Finally,

the second value representing the deltai� is the unique ID of the node itself. This

ensures that nodes with a common reference level and equal values ofδi(and in

fact all nodes) can be totally ordered lexicographically at all times.

Each nodei (other than the destination) maintains its height,Hi. Initially, the

height of each node in the network (other than the destination) is set to NULL.

Hi = ��������� i�� Subsequently, the height of each nodei can be modified in

accordance with the rules of the protocol. The height of the destination is always

ZERO,Hi�did � �0�0�0�0�did��

Each nodei(other than the destination) also maintains a link-state array with

an entryLSi� j for each link�i� j� � L� where j � Ni. The state of the links is de-

termined by the heightsHi andHNi� j, and is directed from the higher node to the

lower node. If a neighborj is higher than nodei, the link is marked upstream (UP).

If a neighborj is lower than nodei, the link is marked downstream (DN). When a

new link�i� j�� L is established(i.e., nodei has a new neighborj�Ni�� nodei adds

entries for the new neighbor to the height and link-state arrays. If the new neigh-

bor is the destination, the height entry is set to ZERO,HNi�did � �0�0�0�0�did�;

otherwise it is set to NULL,HNi� j � ��������� j�� The corresponding link-state,

LSi� j is set as outlined above.
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Route Creation

Creating routes uses QRY and UPD packets. A QRY packet consists of a destination-

ID �did�, which identifies the destination for which the algorithm is running. An

UPD packet consists of adid� and the height of the nodei which is broadcasting

the packet,Hi.

Each nodei (other than the destination) maintains a route-requested flag,RRi,

which is initially unset. Each nodei (other than the destination) also maintains

the time at which the last UPD packet was broadcast and the time at which each

link �i� j� � L, where j � Ni became active.

When a node with no directed links and an unset route-requested flag requires

a route to the destination, it broadcasts a QRY packet and sets its route-requested

flag. When a nodei receives a QRY packet, it reacts as follows:

1. If the route-requested flag of the receiving node is set, it discards the QRY

packet.

2. If the route-requested flag of the receiving node is not set and its height

is non-NULL with r � 0, it first compares the time last UPD packet was

broadcast to the time the link over which the QRY packet received became

active. If a UPD packet has been broadcast since the time the link became

active, it discards the QRY packet; otherwise, it broadcasts an UPD packet

which contains its current height.

3. If the route-requested flag of the receiving node is not set and its height

is non-NULL with r � 0, but it has a neighbor node whose height is non-
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NULL with r � 0; it sets its height toHi � �τ j�oid j�r j�δj � 1� i�, where

HNi� j � �τ j�oid j�r j�δj� i� is the minimum height of its non-NULL neigh-

bors withr � 0, updates all the entries in its link-state arrayLS and broad-

casts aUPD packet which contains its new height.

4. If none of the above conditions hold true, the receiving node re-broadcasts

the QRY packet and sets its route-requested flag.

If a node has the route-requested flag set when a new link is established, it broad-

casts a QRY packet.

When a nodei receives a UPD packet from a neighborj � Ni, nodei first

updates the entryHNi� j in its height array with the height contained in the received

UPD packet and then reacts as follows:

1. If the route-requested flag of the receiving node is set and the height con-

tained in the received UPD packet is non-NULL withr � 0� it sets its height

to Hi � �τ j�oid j�r j�δj �1� j�-whereHNi� j � �τ j�oid j�r j�δj� j� is the height

contained in the received UPD packet, updates all the entries in its link-state

arrayLS, unsets the route-required flag and then broadcasts an UPD packet

which contains its new height.

2. If the above condition does not hold true, the receiving node simply updates

the entryLSi� j in its link-state array.
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Route Maintenance

Route maintenance is only performed for nodes that have a non-NULL Height.

Furthermore, any neighbor’s height which is NULL is not used for the computa-

tions. A nodei is said to have no downstream links ifHi �HNi� j for all non-NULL

neighborsj � Ni. This will result in one of five possible reactions depending on

the state of the node and the preceding event. Each node (other than the desti-

nation) that has no downstream links modifies its height,Hi � �τi�oidi�ri�δi� i� as

follows:

Case 1 (Generate): Nodei has no downstream links(due to a link failure).

�τi�oidi�ri� � �t� i�0�� wheret is the time of the failure

�δi� i� � �0� i�

i.e. nodei defines a new reference level. The above assumes that nodei has at

least one upstream neighbor. If nodei has no upstream neighbors, it sets its height

to NULL.

Case 2 (Propagate): Nodei has no downstream links (due to a link reversal

following the reception of a UPD packet) and the ordered sets�τ j�oid j�r j� are not

equal for all j � Ni�

�τi�oidi�ri� � max��τ j�oid j�r j�� j � Ni�
�δi� i� � min��δk� �τk�oidk�rk� � max�τ j�oid j�r j� f or j � Ni��1� i�
In essence, nodei propagates the reference level of its highest neighbor and

selects a height which is lower than all neighbors with that reference level.

Case 3(Reflect): Nodei has no downstream links(due to a link reversal follow-

ing reception of a UPD packet) and the ordered sets�τ j�oid j�r j� are equal with
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r j � 0 for all j � Ni�

�τi�oidi�ri� � �τ j�oid j�1�

�δi� i� � �0� i�

In essence, the same level(which has not been “reflected”) has propagated to

nodei from all of its neighbors. Nodei “reflects”back a higher sub-level by setting

a bit r.

Case 4(Detect): Node i has no downstream links (due to a link reversal fol-

lowing the reception of an UPD packet), the ordered sets�τ j�oidi�ri� are equal

with r j � 1 for all j � Ni� andoid j � i (i.e., nodei defined the level).

�τ j�oidi�ri� � �������

�δ� i� � ��� i�
In essence, the last reference level defined by nodei has been reflected and

propagated back as a higher sub-level from all its neighbors. This corresponds to

detection of a partition. Nodei must initiate the process of erasing invalid routes.

Case 5(Generate): Nodei has no downstream links (due to link reversal fol-

lowing the reception of a UPD packet), the ordered sets�τ j�oid j�r j� are equal

with r j � 1 for all j � Ni� andoid j �� i (i.e., nodei did not define the level).

�τi�oidi�ri� � �t� i�0� wheret is the time of failure.

�δi� i� � �0� i�

In essence, nodei experienced a link failure(which did not require reaction)

between the time it propagates a reference and the reflected higher sub-level re-

turned from all neighbors. this is not necessarily a partition. Nodei defines a new

reference level.
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Following the determination of its new height in cases 1, 2, 3 and 5, nodei

updates all the entries in the link-state arrayLS; and broadcasts an UPD packet to

all the neighborsj � Ni. The UPD packet consists of adid, and the new height of

the nodei which is broadcasting the packet,Hi. When a nodei receives a UPD

packet from a neighborj � Ni, nodei updates the entriesHNi� j andLSi� j in its

height and link-state arrays. If the update causes a link reversal which results in

nodei losing its last downstream link, then it modifies its height as outlined as the

cases above.

Route Erasure

Following the detection of a partition (case 4), nodei sets its height and the height

entry for each neighborj � Ni, to NULL (unless the destination is a neighbor, in

which case the corresponding height entry is set to ZERO), updates all the entries

in its link-state arrayLS, and broadcasts a CLR packet. The CLR packet consists

of a did and the reflected reference level of nodei, �τi�oidi�1�. When a nodei

receives a CLR packet from a neighborj � Ni, it reacts as follows:

1. If the reference level in the CLR packet matches the reference level of node

i, it sets its height and the height entry for each neighborj � Ni to NULL

(unless the destination is a neighbor, i which case the corresponding height

entry is set to ZERO), updates all the entries in its link-state arrayLS, and

broadcasts a CLR packet.

2. If the reference level in the CLR packet does not match the reference level
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of nodei, it sets the height entry for each neighborj � Ni(with the same

reference level as the CLR packet) to NULL, and updates the corresponding

link-state array entries.

Thus, the height of each node in the portion of the network which was partitioned

is set to NULL and all invalid routes are erased. If condition 2 causes nodei to

lose its last downstream link, it reacts as in case 1 ofRoute Maintenance.
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Chapter 2

Query Localization in TORA

2.1 Introduction

The following problems exist with the querying mechanism in TORA:

� The extent of query propagation determines the size and complexity of the

DAG, that gets built. The DAG built fornode j might include nodes, that

may never participate in communication withj.

� The maintenance of the DAG is an expensive affair. The topology changes

in the underlying graph in the adhoc network trigger routing reactions. The

route maintenance is performed byupdate packets(UPDs). It has been

found by simulations that the update packets contribute most to the rout-

ing traffic.

� If the Route Requested flag(RR flag) is set forever at anode i, any route
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maintenance packet, sent out much later than theroute-building phase can

cause the DAG to be extended to nodei. This is an additional overhead.

� Moreover, if the communication patterns are localized, flooding the query

packets (QRYs) throughout the network caused considerable overhead. A

practical illustration of this would be in a military application of MANETs

on a battle field. The communication is mostly localized within the same

unit.

To tackle these problems, we designed a query localization technique that would

reduce the routing packet overhead in the case of limited and localized communi-

cation patterns.

2.2 Features of Query Localization

The following features were incorporated into the querying mechanism of TORA:

� Mention of node-id of the querying source.

� Sequence numbering inQueries(QRY’s).

� Hop-count (Time to Live) forQuery packets(QRY’s).

� Route Requested (RR flags) which have finite expiration times.

� Separation ofroute-building androute-maintenance functions.
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When anode i intends to start communicating withnode j, it looks for the avail-

ability of a route in its routing table to the destinationj . If it does not find any

existent route (has NULLHeight), it sends out a query(QRY(i,seqno,hc1 , j)),

whereseqno stands for the sequence number of the query.hc1 stands for the 1st

hop-count. Also, a timer is set with a value ofQT1. If the neighbors of nodei

do not have route to the destination, (have a NULLHeight) they set their Route-

Requested flag (RR flag) and start off the RR Timer (RT ). If node i doesn’t receive

a reply from any of the nodes within the query time-out period, it sets out another

queryQRY(i,seqno�1,hc2 , j), with a higher hop-counthc2. The query timer in

this case is set to a value ofQT2. When anode l, which has a route to the desti-

nation (has a non-NULLHeight ), it sets out a replyRPY �Hl� l�, whereHl is the

Height of the nodel.

The hop-count values of the queries are chosen such thathc1 � hc2 � hc3 �

������ � hcn, wheren is the diameter of the network.

The operations of Query Localization are described in the flow chart in figure

2.2. These modifications were implemented on a Linux test-bed of laptops and

were tested in real-time. The protocol stack diagram for the Linux implementation

of TORA is as shown in the figure . These modifications were also implemented

and tested on the ns-2 simulator.

Merger of QRY’s from two different sources

In the original TORA, theQueries (QRY’s) were not associated with the query

source. They were only associated with the destination. When a query for a
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Figure 2.1: Protocol Stack for the Linux implementation of TORA

destination arrives at a node which has itsRR flag set (i.e. a query has already

passed that node for that particular destination), the query is dropped.

In the Query-Localized TORA, when a node with its RR flag set, receives a

QRY, it allows the latest query to pass by. This is because the forwarding of the

QRY will enable the nodes that are ahead to reset their RR-timers, which are very

critical for the operation of theQuery-Localized TORA. This is described in the

figure .

2.2.1 Illustration of Query Localization

Consider an adhoc network with connectivity as illustrated in figure 2.4.

1. Node 9 wants to initiate a connection to node 7. TORA on node 9 sends
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Figure 2.2: Flow chart for procedures executed on query reception
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Figure 2.3: Merger of Queries from two different sources

out a Query (QRY) with the src field set to 9 and thedest field set to 7.

The hop_count field is set to 1. (Note that the illustration here shows an

arithmetic increase in the hop-counts. This can easily be extended to other

kinds of increments).

2. TheQuery-Timer expires and the source node hasn’t received a Reply (RPY).

So, it initiates a new Query (QRY) with ahop-count field set to 2 as shown

in figure 2.5.

3. The 3rd query(see figure 2.6) reaches the destination.

4. Reply (RPY) packets are broadcast by the destination 7. Nodes that have

their RR flags set propagate the RPYs(see figure 2.7). The status of the RR

flag at a node is determined by theRR Timer (RT �.

5. Figure 2.8 illustrates the pruning of the DAG when thequery-localization

changes are applied.
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Figure 2.8: The DAG is pruned in query-localized TORA as compared to the
original TORA
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2.2.2 Choice of Parameters

Hop-Count: This depends on the density of the mobile nodes in the network. For

networks, that have uniform density of nodes, if we intend to have

an arithmetic increase in the number of nodes covered in eachquery-

run, we need to have the hop-count increase as
�

n, wheren is the

number of the query-run. i.ehcn 	
�

n.

Query-Timer: The choice of the query timer must be such thatith query timer

value should be greater than the expected round-trip time for covering

hci hops. i.e.QTi � RT Ti. Let QTi � kqRT Ti, wherekq � 1. kq must

be small enough to minimize delay in finding routes.

RR-Timer: The choice of the RR Timer must be such that theith RR-Timer value

should be greater than the expected round-trip time for coveringhci

hops.
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Figure 2.10: Choice of Reply-Timer

2.3 Simulations and Evaluation of Query Localiza-

tion

The performance of TORA with the Query Localization incorporated has been

tested by simulations in ns-2 simulator. We used the CMU wireless extensions

for this purpose.[16]. 50 nodes are randomly placed in a rectangular area of

1500mx500m. Nodes move around this area in a random way-point model [17]with

a maximum speedvmax= 40 m/s and pause timept � 5sec. Random waypoint

model is described in the section 2.3.1. The communicating nodes among these

50 mobile nodes are picked at random. The source nodes generate CBR traffic

with packet size 64 bytes and inter-packet interval is 0.1 sec�5�12 kbps�. The

communicating nodes are chosen at random amongst the 50 mobile nodes. IEEE

802.11 (operating in adhoc mode) was chosen as the underlying MAC layer. The

transmission radius of the mobile nodes is chosen to be 250m. The underlying

propagation model in the physical layer was chosen to be theTwo-Ray Ground

Propagation Model[8]. According to this model,
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wherePt is the transmission power.Pr is the power of reception.Gt is the

transmitter antenna gain.Gr is the receiver antenna gain.ht is the height of the

transmitter antenna.hr is the height of the receiver antenna.

A number of experiments were performed to compare the original TORA and

the “Query-Localized” TORA. The results are explained in section 2.3.2.

2.3.1 Mobility model

Random Waypoint Model: The trajectory of a mobile node is specified by ran-

dom way-points�x1�y1� , �x2�y2��......,�xn�yn�. A node moves from theithwaypoint

�xi�yi� to thei�1th waypoint�xi�1�yi�1� with a velocityv� v0 wherev0 is chosen

randomly between 0 andvmax. On reaching�xi�1�yi�1�, the node pauses for the

pause timept and changes direction towards the next random waypoint.

2.3.2 Simulation Results

The performance metrics that we consider for comparison are:

1. Routing Overhead

2. Percentage of packet delivery

Routing Overhead is the number of routing messages received by different nodes

for a single data packet received.
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Figure 2.11 depicts the comparison of routing overhead between the original

TORA and the “Query Localized” TORA. It can be seen that the routing overhead

in TORA is reduced substantially (by about 50%) with the query-localized version

of TORA. As explained in section 2.1, the major portion of routing overhead in

TORA is due to theUpdate(UPD) messages. These messages are used to maintain

the DAG routing structure. By reducing the extent to which theQuery(QRY)

messages propagate, we have pruned the DAG to a great extent as described in

sections 2.2 and 2.2.1. By doing this, far fewer UPD messages are propagated.

Hence there is considerably low overhead. We also notice that as the number of

connections in the network increase, the routing overhead reduces. The routing

overhead in TORA consists of a reactive portion(QRY’s and RPY’s) and a non-

reactive portion(UPD’s). As explained earlier, the non-reactive portion constitutes

the majority of routing messages and it depends on the size of the DAG. As the

number of connections increase, previously built DAG’s are re-used (either in part

or entirety), thus precluding the necessity for non-reactive overhead (UPDs). This

causes the reduction in the routing overhead. We found that both the versions of

TORA performed identically in terms of end-to-end delay of packets.

We varied the values of the query-timer and observed the performance of the

Query-Localized TORA. It can be seen from the figure 2.12, the routing over-

head is the least when the query timer is chosen as a value between 100msec and

200msec. The percentage of packet delivery is also the highest for theQuery-

Timer value in this region. This validates the point illustrated in section 2.2.2.

The performance of the protocol was found to be insensitive to RR Timer�RT ��
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Figure 2.11: Comparison of Routing Overhead vs #of connections.

Figure 2.12: Routing Overhead vs Query Timer values

Figure 2.13: Packet Delivery Percentage vs Query Timer Values
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Chapter 3

INORA - A Unified Signaling and

Routing Mechanism for QoS

Support in Mobile Adhoc Networks

3.1 Introduction

Providing quality of service (QoS) support for the delivery of real-time audio,

video and data in mobile adhoc networks thus, presents a number of technical

challenges. Mobile adhoc networks can be quite large, which makes the problem

of network control very difficult. In fixed-wired networks, most QoS schemes use

hard-state resource reservations and explicitconnection-establishment andcon-

nection tear-down mechanisms. Dynamically changing topology of mobile adhoc

networks due to mobility of the nodes calls for the soft-state reservation[1] of re-
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sources across the network for providing QoS support, as against hard-state reser-

vations in wired networks. QoS support can be provided at the MAC layer(E.g.

MACA/PR[12]) or at the network layer[9][1][13]. In this chapter, we present a

QoS framework at the network layer based on the TORA routing protocol and the

INSIGNIA in-band signaling system.

3.2 Approaches to network layer QoS support in Mo-

bile Adhoc Networks

Various network layer mechanisms have been proposed for QoS support in mobile

adhoc networks. They can be be broadly categorized as the following depending

on the degree of coupling between the QoS resource reservation mechanisms and

routing protocol.

1. QoS Routing

2. QoS signaling with no interaction between the QoS resource reservation

mechanism and the routing protocol.

3. QoS signaling with interaction between the QoS resource reservation mech-

anism and the routing protocol.

QoS Routing QoS routing protocols search for routes with sufficient resources

for the QoS requirements. QoS routing protocols work with the resource man-
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agement mechanisms to establish paths through the network that meet end-to-end

QoS requirements, such as delay or jitter bounds, bandwidth demand.[14]

E.g.: CEDAR[9]

Here, the QoS provision mechanism is intrinsically tied to the routing protocol.

QoS Routing is difficult in MANETs.

Firstly, the overhead of QoS routing is too high for the bandwidth limited

MANETs because there needs to be some mechanism for a mobile node to store

and update link information.

Secondly, because of the dynamic nature of MANETs, maintaining precise

link information is very difficult.

Thirdly, the traditional meaning that the required QoS should be maintained

once a feasible path is established is no longer true. The reserved resource may not

be guaranteed because of the mobility-caused path breakage or power depletion

of the mobile hosts.

QoS Signaling QoS signaling is used to reserve and release resources, set up,

tear down and renegotiate flows in the network. Soft-state reservations are bet-

ter in mobile adhoc networks, because of the highly dynamic conditions in the

network. [2]

QoS Signaling without interaction between the QoS mechanism and the

routing protocol The signaling mechanism can be operated independent of

the routing protocol. The routing protocol provides the route between the source
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and destination of a flow. The signaling protocol establishes resources along the

route chosen by the routing protocol. Here, the routing protocol is completely

decoupled from the signaling mechanism.

E.g. INSIGNIA[1][2]

QoS Signaling with interaction between the QoS mechanism and the rout-

ing protocol Here, there is a loose coupling between the QoS mechanism and

routing protocol. The coupling is looser than inQoS Routing. The routing proto-

col provides a route between the source and destination of the flow. The signaling

mechanism provides feedback to the routing protocol regarding the route chosen

and asks the routing protocol for alternate routes if the route provided doesn’t

satisfy the QoS requirements. The INORA (INSIGNIA+TORA) scheme that is

presented in this chapter belongs to this category. In INORA, INSIGNIA makes

a call-back to TORA asking for alternate routes when the current route fails to

meet the QoS requirements. TORA is a good choice for the routing protocol in

this case. This is because, TORA operates by creating a routing structure called a

Directed Acyclic Graph (DAG), which gives multiple routes from a source to the

destination.
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3.3 Overview of INSIGNIA-based Wireless flow man-

agement system

The INSIGNIA QoS signaling system is a part of thewireless flow management

that supports the delivery ofadaptive real-time services in dynamic mobile adhoc

networks.

The goal of INSIGNIA-basedwireless flow management is to support the de-

livery of adaptive real-time services to mobile adhoc hosts under time-varying

conditions. The adaptive service model allows packet audio, video and real-time

data applications to specify their maximum and minimum bandwidth needs. IN-

SIGNIA plays a central role in the establishment of resources, at the intermediate

routers between the source-destination pairs. Based on the availability of end-to-

end resources, wireless flow management attempts to provide assurances for the

minimum and maximum bandwidth needs depending on resource availability. In

addition to supporting adaptive real-time services the service model also supports

IP best-effort packet delivery.

The following are the main modules of the of the INSIGNIA-basedwireless

flow management system:

� Packet Forwarding Module: This classifies the incoming packets and for-

wards them to the appropriate module(viz. routing, INSIGNIA, local appli-

cations, wireless packet scheduling modules). Signaling messages are pro-

cessed by INSIGNIA and the data packets delivered locally or forwarded to

the packet scheduling module.
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� Routing Module: This is a routing protocol which dynamically tracks the

changes in an adhoc network topology making the routing table visible to

all the intermediate forwarding modules. (E.g. INSIGNIA, packet forward-

ing). Wireless flow management requires the availability of such a MANET

routing protocol. e.g. Temporally Ordered Routing Algorithm (TORA),

Dynamic Source Routing Protocol (DSR), AdHoc On Demand Distance

Vector Routing Protocol (AODV).

� INSIGNIA Module: This establishes, restores, adapts and tears down real-

time flows. Flow restoration algorithms respond to dynamic route changes

due to mobility. Adaptation algorithms respond to changes in available

bandwidth. Based on an in-band signaling approach that explicitly carries

the control information in the IP packet header, flows can be rapidly estab-

lished, restored, adapted and released in response to wireless impairments

and topology changes. Because of this dynamic environment, network man-

agement is based on soft-state, which is well suited to managing flow state

in mobile adhoc networks.

� Admission Control Module: This module allocates bandwidth to flows based

on the adaptive real-time service maximum and minimum bandwidth re-

quest in the data packet. Once resources have been allocated, they are pe-

riodically refreshed by the soft-state mechanism through the reception of

data packets. Admission control is testing is based on the measured channel

capacity/utilization and requested bandwidth.
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� Packet Scheduling Module: This responds to location dependent channel

conditions experienced in wireless networks. Without taking the channel

state into account, a mobile node may receive significantly less service than

it is supposed to, while another node may get more.

� Medium Access Controller Module: This provides quality of service driven

access to the shared wireless media for adaptive real-time services and best-

effort services.

The wireless-flow management system is illustrated in figure 3.1

The INSIGNIA[2] in-band signaling system plays an important role in es-

tablishing, adapting, restoring and terminating end-to-end reservations for flows.

INSIGNIA is designed to be light-weight in terms of the amount of bandwidth

consumed for network control. It operates by setting up soft-state reservations for

a flow across the path from the source of the flow to the destination of the flow in

a mobile adhoc network. INSIGNIA uses the IP Options field in the IP header to

convey the signaling information. See fig.3.2. The following are the IP options

fields:

� Service Mode: When a source node wants to establish a reserved QoS flow

to a destination node, it sets the RES bit of the INSIGNIA IP option service

mode of a data packet and sends the packet toward the destination. On re-

ception of a RES packet, the intermediate nodes executeadmission control

to accept or deny the request. When a node accepts a reservation request,

resources are committed and subsequent packets are scheduled accordingly.
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Figure 3.1: Wireless Flow Model for INSIGNIA

If the reservation is denied, packets are treated asbest effort mode (BE)

packets.

� Payload Type: This option carries an indication of the payload type, which

identifies whether the packet is of the typebase QoS (BQ) orenhanced QoS

(EQ)[2]

� Bandwidth Request: The bandwidth request allows us to specify its max-

imum (MAX) and minimum (MIN) bandwidth requirements for adaptive

services. During request establishment, the bandwidth indicator reflects

the resource availability at the intermediate nodes along the path between

source-destination pairs of different flows.
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Figure 3.2: INSIGNIA IP options

3.3.1 Admission Control

A source of a QoS flow sets out data packets with its service mode IP options field

set to RES. All the intermediate nodes which receive packets with theirservice

mode field set to RES perform admission control. At the first node where the

admission control fails, the service mode is changed to BE (best effort).

Admission control failure occurs when either of the following occurs:

� The node is unable to allocate at least the minimum required bandwidth

�BWmin� for the flow.

� There is congestion at the node, i.e the queue-size at the node has exceeded

a threshold.�Q � Qth�

In fig.3.3, we illustrate the connectivity of a MANET with a graph. The source of

a QoS flow is node 1. The destination is node 5. Let the path given by the routing

protocol be 1� 2� 3� 4� 5. node 4 is the first node at which an admission

control failure occurs because of either of the conditions mentioned above. The

reserved flow turns into abest effort flow.
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Figure 3.3: INSIGNIA-Admission Control fails at node 4

3.3.2 QoS Reporting

QoS reporting is used to inform source nodes of the ongoing status of the flows.

Destination nodes actively monitor ongoing flows, inspecting thestatus informa-

tion (e.g. Bandwidth Indicator) andmeasured delivered QoS (e.g packet loss,

throughput etc.). Although the QoS reports are basically generated periodically

according to the sensitivity of application, QoS reports are sent immediately when

required. The source, on the reception of a QoS report indicating a flow degrade

from reserved to best effort flow may downgrade the flow. Here the feedback is

end-to-end from the source to destination. INSIGNIA doesn’t take any help from

the network with regard to redirecting the flow along routes which are able to

provide the required QoS guarantees. In INORA (See section 3.4) we describe

a mechanism that takes help from the network and the feedback about the capa-

bility of intermediate nodes to admit flows is given to the routing protocols on a

hop-by-hop basis.
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3.4 INORA

In INORA, we make use of feedback on a per-hop basis to direct the flow along

route that is able to provide the QoS requirements of the flow. We make use of

the INSIGNIA in-band signaling system and TORA[4] routing protocol in the

INORA scheme. The wireless flow management system described in the section

3.3 modified to give feedback from the signaling system to the routing protocol.

This is illustrated in figure 3.3.

TORA operates by creating aDirected Acyclic Graph (DAG) rooted at the

destination as described in the section 1.1.3. We use this routing structure to

direct the flow through routes that are able to provide the resources for the flow

according to the QoS requirements of the flow. We present two schemes under the

INORA framework.

1. Coarse feedback scheme.

2. Fine feedback scheme.

3.4.1 Coarse Feedback Scheme

The operations of the coarse-feedback scheme of INORA are described illustrated

through the following example :

Consider a QoS flow being initiated with node 1 as the source and node 5 as

the destination.

1. Let the DAG created by TORA be as illustrated in fig.3.5
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Figure 3.4: Wireless Flow Management system in INORA

2. Let 1� 2� 3� 4� 5 be the path chosen by the TORA routing proto-

col.(See fig. 3.5)

3. INSIGNIA tries to establish soft-state reservations for the QoS flow along

the path. Node 4 is the first node at which admission control for the flow

fails, (because of either condition mentioned in section 3.3.1Node 4 sends

an out-of-bandAdmission Control Failure (ACF) message to its previous

hop (node 3).(See fig.3.6)

4. Node 3 realizes that the next hop 4 is not good for the current flow and re-

routes the flow through another downstream neighbor (node 6) provided by

TORA. (See fig.3.7)

5. If node 6 is able to admit the flow, the flow gets the required reservations all
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along the path. The new path would be 1� 2� 3� 6� 5(See fig.3.7)

6. If node 6 is unable to admit the flow, it sends an ACF message to node 3(its

previous hop).(See fig.3.8)

7. Node 3 realizes that it has exhausted all the downstream neighbors that it

was provided by TORA. So, it sends a CumulativeAdmission Control Fail-

ure message to its previous hop (node 2), indicating that none of its down-

stream neighbors can accommodate the flow.(See fig.3.9)

8. Node 2 now, tries with its other down-stream neighbors for the possibility

of a path that can give the required reservations to the flow.

The following things can be noted:

� As a result of this scheme, it is possible that different flows between the

same source and destination pair can take different routes, as can be seen

from fig.3.10, that to go from node 1 to node 5, flow 1 takes the path 1�
2� 3� 4� 5 and flow 2 takes the path 1� 2� 3� 6� 5

� While INORA is trying to find a good route for the flow following admission

control failure at an intermediate node, the packets are transmitted asbest

effort (BE) packets from the source to the destination. It should also be

noted that there is no interruption in the transmission of a flow that has not

been able to find a route in which resources have been reserved all the way

from the source to the destination.

54



1

2 9

7 3 8

6 4

5

Figure 3.5: INORA Coarse-Feedback
node 4 is a bottle-neck node. Admission Control Fails at 4
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ACF

Figure 3.6: INORA Coarse-Feedback
node 4 sends an out-of-band ACF to the previous hop (node3)

� Because of the nature of theDirected Acyclic Graph (DAG), INORA tries

to get a route which satisfies QoS requirements locally. When this fails,

the search for a route which satisfies the QoS requirement becomes more

global. In the worst case, we would have searched the entire DAG for a

QoS route.

� Also, the scope of search for the routes is the DAG. INORA only chooses an

appropriate route from the set of routes given by TORA. It doesn’t trigger

any route-querying mechanism to find new routes which will be goodQoS-

wise.
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Figure 3.7: INORA Coarse-Feedback
node 3 redirects the flow to node 6.
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Figure 3.8: INORA Coarse-Feedback
If node 6 fails to admit the flow, 6 sends an ACF message to 3
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Figure 3.9: INORA Coarse-Feedback
node 3, having exhausted all its next-hops, sends an a cumulative ACF to its pre-
vious hop 2.
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Figure 3.10: INORA Coarse-Feedback
Different flows between same source-destination pair can take different routes
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Figure 3.11: TORA Routing Table in INORA

Implementation Details

When a node X receives an Admission Control Failure (ACF) message from its

downstream neighbor Y, it blacklists the downstream neighbor Y. Associated with

the black-list entry, is a timer, which makes sure that the downstream neighbor

Y is black-listed long enough. The node Y must be black-listed for the expected

period of time required by INORA to search for a QoS route. This time isO�E�,

whereE is the number of links in the network at any given time. The TORA

routing table is restructured in INORA as shown in fig.3.11

Associated with every destination, there is a list of next hops which is created

by TORA. With the feedback that TORA receives from INSIGNIA in INORA,

TORA associates thenext-hops with the flows that they are suitable for. So, a

routing look-up in INORA is based on the ordered pair�destination� f low�. If

TORA doesn’t have the information about the best route for the given flow, the

routing look-up is just based on the destination. In that case, TORA gives the

downstream neighbor with the leastHeight[4] metric. If any of the nodes is not

INORA aware, normal operations of INSIGNIA and TORA continue.
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3.4.2 Class-Based Fine Feedback Scheme

In this scheme, we divide the�BWmin�BWmax� interval intoN classes, whereBWmin

is the minimum bandwidth required by a flow andBWmax is the maximum band-

width required by the QoS flow. The IP options field in the IP header which carries

the INSIGNIA information, now carries an additionalclass field. This field signi-

fies the amount of bandwidth that has been allocated for the flow along the path.

The operation of the protocol is illustrated by the following example:

Consider a QoS flow being initiated with node 1 as the source and node 5

as the destination, with minimum bandwidth requirementBWmin and maximum

bandwidth requirementBWmax. Let the flow be admitted with classm �m � N� at

node 1.

1. Let the DAG created by TORA be as shown in fig.3.12

2. Let 1� 2� 3� 4� 5 be the path chosen by the routing protocol.(See fig.

3.12)

3. INSIGNIA tries to establish soft-state reservations for the QoS flow along

the path.

4. Node 2 is able to admit the flow with classm as was requested by its previ-

ous upstream hop, node 1�

5. Suppose that node 3 has admitted the flow with classl, but has not been

able to allocate the bandwidth of classm, as requested by its previous hop

2.�l � m� (See fig.3.13)
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6. Node 3 now, sends anAdmission Report message �AR�l�� to the upstream

previous hop(node 2), indicating its ability to giveclass l bandwidth to the

flow.(See fig. 3.13)

7. Node 2 splits the flow in the ratio ofl to m� l and forwards the flow to node

3 and node 7 respectively, in that ratio. This means that the flow of classm

has been split into two flows of classl andm� l and is forwarded to nodes

3 and 7 respectively.(See fig. 3.14)

8. Suppose that node 7 is unable to giveclass �m� l� as requested by the

upstream previous hop 2, but is only able to give classn �n � m� l�. 7

sends an Admission Report message�AR�n�� to the upstream previous hop

, node 2.(See fig.3.15)

9. Now node 2, realizing that its downstream neighbors have been unable to

give theclass m, which it was requested, informs its ability to give a class

l�n �l�n � m� by sending a cumulativeAdmission Report AR�l�n� to its

previous hop 1. (See fig. 3.16)

10. Now, node 1 tries to find another downstream neighbor, which might be

able to accommodate the flow with class�m� �l�n��

The following things can be noted:

� When a node is unable to admit a flow, either due to its inability to give the

flow the requested minimum bandwidth or due to congestion at a node, it

is not able to allocate the minimum bandwidthBWmin required by the flow,
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Figure 3.12: INORA Fine-Feedback
node 3 has admitted the flow with classl� but is not able to give the bandwidth-
class that the node 2 (previous hop) is able to give, saym, m � l
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AR(l)

Figure 3.13: INORA Fine-Feedback
node 3 sends Admission ReportAR�l� to previous hop (node 2)

theAdmission Control Failure messages as in thecoarse-feedback scheme

described in section 3.4.1are sent. So, thefine-feedback scheme is a super-

set of thecoarse-feedback scheme.

� Fine-feedback scheme, like thecoarse-feedback scheme first tries to search

for a QoS route, which can give the requested bandwidthclass locally. The

search becomes more global if it is not able to find the QoS route which

gives the required cumulative class locally.

� A single flow can get split, and the packets can take different routes from

the source to the destination. (See fig.3.17)
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Figure 3.14: INORA Fine-Feedback
node 2 splits the flow among the next hops, 7 and 3 in the ratiom� l to l
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Figure 3.15: INORA Fine-Feedback
node 7 is unable to givem� l, but onlyn � m� l. It sendsAR�n� upstream
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Figure 3.16: INORA Fine-Feedback
node 2 sendsAR�n� l� indicating the bandwidth that it can support
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Figure 3.17: INORA Fine-Feedback
A single flow gets split and takes different paths to the destination
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Implementation Details

Consider the example mentioned in 3.4.2. When node 2 receives anAR�l� from

node 3 andAR�n� from node 7, indicating the ability of the downstream neighbors

to give classn and classl to the flow as against the requested classm �l�n � m�,

node 2 makes a note of the class, that each downstream neighbor has been able to

allocate in theClass Allocation List and associates timers with those entries. The

TORA routing tables here, are similar to thecoarse-feedback scheme as illustrated

in fig. 3.11. There is an additionalclass field in theflow entries of the routing

table. The routing table look-ups are made on the basis of the ordered 3-tuple

�destination� f low�classreq� where

destination stands for the destination for which we are looking up routes.

f low stands for the flow for which we are looking up routes.

classreq stands for the bandwidth class requested by the flow.

3.5 Simulations

We performedns-2 simulations to evaluate the INORA framework. The IN-

SIGNIA code was obtained from COMET group, Columbia University [15]. The

TORA ns-2 code from CSHCN, University of Maryland[18] was used. We made

modifications to the INSIGNIA and TORA code to incorporate the INORA scheme.

CMU Monarch wireless extensions [19]forns-2 were used. We ran experiments

with the INORA schemes(coarse-feedback and fine-feedback), and the original

INSIGNIA and TORA, running independent of each other without the feedback.
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In the INORAfine-feedback scheme, we chose the number of classes,N � 5

The node mobility followsRandom Way-point Model(see section 2.3.1). The

underlying MAC layer is IEEE 802.11 and the wireless propagation model isthe

Two-Ray Ground Propagation model as explained in section 2.3.

We have 10 flows, 3 of which have QoS requirements and the remaining 7

flows don’t have QoS requirements. The sources generate CBR traffic. The simu-

lations have been run for a simulation time of 300sec. We considered two different

scenarios. Scenario B has QoS sources transmitting at a higher data rate and the

QoS flows have a higher reservation requirements.

Scenario_A: The 50 nodes are spread out randomly in a rectangular grid of

1500mX500m. The nodes more with a velocity uniformly distributed

between 0-40m/s. The 3 QoS flows generate traffic at a data rate

of 81�92.kbps The 7 non-QoS flows generate traffic at a data rate of

40.96kbps. The QoS flows ask for a reservation ofBWmin � 81�92

kbps, andBWmax � 163�84kbps

Scenario_B: The 50 nodes are spread out randomly in a rectangular grid of

1500mX500m. The nodes move with a velocity uniformly distributed

between 0-40 m/s. The 3 QoS flows generate traffic at a data rate of

136�533kbps� The 7 non-QoS flows generate traffic at a data rate of

40�96kbps. The QOS flows ask for a reservation ofBWmin � 136�533

kbps, BWmax � 273�066kbps

Scenario_C: The 50 nodes are spread out randomly in a rectangular grid of

63



1500mX300m� The nodes move with a velocity uniformly distributed

between 0- 20 m/s. The 3 QoS flows generate traffic at a data rate

of 81�92 kbps� The 7 non-QoS flows are generated at a data rate

of 81�92kbps� The QoS flows request for a reservation ofBWmin �

81�92kbps andBWmax � 163�84kbps�

3.5.1 Results

We evaluate the performance of INORA schemes by observing the end-to-end

delay of the packets and the control message overhead.

The average end-to-end delay for QoS flows in different schemes for sce-

nario_C is shown in Table 3.1. We see that the INORAcoarse-feedback has

lesser average delay than INSIGNIA and TORA operating without feedback. The

INORA fine-feedback scheme performs better than the INORAcoarse-feedback

scheme. This is because the INORA feedback schemes try to find paths which can

allocate the requested bandwidth reservations to the QoS flows. Thefine-feedback

scheme does this in a much fine-grained manner when compared to thecoarse-

feedback scheme. So, we have the fine-feedback scheme performing better than

thecoarse-feedback scheme.

Table 3.2 shows the average end-to-end delay experienced by all packets (from

both QoS and non-QoS flows). We see that the INORA schemes perform bet-

ter than INSIGNIA and TORA operating without feedback. It can be seen that

the average delay is reduced by 80% from the no feedback case in the INORA

coarse-feedback scheme. By trying to find the paths which can allocate the re-
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Table 3.1: Average delay of QoS packets
QoS Scheme Avg. end-to-end delay(sec)

No feedback 0.049
Coarse feedback 0.043
Fine feedback 0.034

Table 3.2: Average delay of all packets(QoS/non-QoS packets)
QoS Scheme Avg. end-to-end delay(sec)

No feedback 0.108
Coarse feedback 0.021
Fine feedback 0.062

quired bandwidth to the flows and by performing load balancing in the network,

the INORA schemes ensure that the overall congestion in the network is reduced.

So, we have a lesser end-to-end delay for the packets. We find that INORA

fine-feedback scheme has higher average end-to-end delay (for QoS and non-QoS

packets together) when compared to the INORAcoarse-feedback scheme. This

is because the INORA fine-feedback scheme does fine-grained feedback(by split-

ting the flows along different paths), which benefits the QoS flows more at the

cost of non-QoS flows. Table 3.3 shows the overhead in the INORA schemes. We

find that the number of INORA control messages transmitted per every QoS data

packet delivered is more for the fine-feedback scheme as compared to the coarse-

feedback scheme. This is expected because of the additional Admission Report

messages for fine-grained control in the fine feedback scheme.

We find that the delays in scenario_A and scenario_B are higher than in sce-

nario_C. This is because of higher mobility in scenario_A and scenario_B. Also,

because of the larger area, there are more partitions in scenario_A and scenario_B.
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Table 3.3: Overhead in INORA schemes
QoS Scheme No. of INORA pkts/data pkt

Coarse feedback 0.0174
Fine feedback 0.1833

Now, we compare the performance of the 3 QoS schemes between scenario_A

and scenario_B. Scenario_B generates traffic at a higher data rate and the reserva-

tion requirements are also more than in scenario_A.

We find that INORA with coarse-feedback and fine-feedback schemes gives

almost the same packet delivery rate as INSIGNIA and TORA acting without

feedback, in both Scenario_A and Scenario_B. (See fig.3.18 and fig.3.19)

The average delay on a per-flow basis for QoS flows in Scenario_A is shown

in fig.3.20. The average delay on a per-flow basis for non-QoS flows is shown in

fig.3.21. The average delay on a per-flow basis for QoS flows in scenario_B is

shown in fig.3.22. The average delay on a per-flow basis for non-QoS flows is as

shown in fig.3.23. It can be seen that the delay is flow dependent. The INORA

schemes do betteraverage delay-wise for most of the flows when compared to IN-

SIGNIA and TORA running without interaction. Also, INORA does better when

there are higher bandwidth requirements (Scenario_B) than when the flows have

lower bandwidth requirements (Scenario_A). The INORA fine-feedback scheme

does better when compared to INORA coarse-feedback scheme in Scenario_B.

The plot of average delay vs. simulation time in scenario_A for all data pack-

ets (QoS and non-QoS) is as shown in 3.24. The same plot in Scenario_B is shown

in fig.3.25. In Scenario_B , the INORA fine-feedback scheme does the best, fol-
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lowed by INORA coarse-feedback scheme and then, followed by INSIGNIA and

TORA running without feedback.

INORA schemes work better in scenario_B than in scenario_A. This shows

that as the network gets more heavily loaded, and when the QoS flows have higher

bandwidth requirements, having an interaction between the routing protocol and

the QoS signaling system gives better performance. Also by using the INORA

fine-feedback scheme in higher loaded scenarios, we have good effects of fine-

tuned load balancing.

The additional overhead incurred in the INORA schemes over INSIGNIA and

TORA running independently of each other for Scenario_A is as shown in fig.

3.26. The additional overhead incurred in INORA schemes over INSIGNIA and

TORA running independently in Scenario_B is as shown in fig. 3.27. As expected,

INORA fine-feedback scheme has larger messaging overhead when compared to

the INORA coarse-feedback scheme in both Scenario_A and Scenario_B. It can

be seen that the ratio of INORA overhead in coarse-feedback to fine-feedback in-

creases from scenario_A and scenario_B. This shows that even the fine-feedback

scheme performs better in heavily loaded networks than in lightly loaded networks

in terms of overhead.
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Figure 3.18: Percentage of Packets delivered(Scenario_A)

Figure 3.19: Percentage of packets delivered (Scenario_B)
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Figure 3.20: Average Delay of QoS packets (Scenario_A)

Figure 3.21: Average Delay of non-QoS packets(Scenario_A)

69



Figure 3.22: Average Delay of QoS packets(Scenario_B)

Figure 3.23: Average Delay of non-QoS packets(Scenario_B)
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Figure 3.24: Average Delay of all the packets(Scenario_A)

Figure 3.25: Average Delay of all the packets(Scenario_B)
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Figure 3.26: Overhead in INORA(Scenario_A)

Figure 3.27: Overhead in INORA(Scenario_B)
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Chapter 4

Enhancements to TORA

4.1 Introduction

In this chapter we describe a problem which causes routing instability in MANETs

which use TORA. We describe the enhancements that were made to TORA to

fix this problem. We also made changes to TORA to separate out the functions

of Route Creation and Route Maintenance. We evaluate the enhanced TORA

against the other standard MANET routing protocols. In the end, we describe the

proactive operation of TORA. We evalute the proactively operated TORA against

the non-proactive TORA.
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4.2 Routing Instability Problem in TORA

4.2.1 Problem Description

Consider a heavily loaded and congested network as shown in fig. 4.1. It consists

of two portions portion A and portion B connected by a single link with node

P as the connecting node. Portion A is built off the referenceR1 � �τ1�P�rp�.

Destination is in the portion B. The DAG rooted at the destination is as shown in

the fig. 4.1.

1. At time τ � τ2� node Q loses its last downstream neighbor due to a link

failure. (See fig. 4.2)

2. Node Q reverses its upstream links by generating a new referenceR2 �

�τ2�Q�0� and sends aUPD�UPD1�. UPD1 hasn’t been delivered to the

neighbors yet. (Because of congestion in the network). (See fig. 4.3)

3. At timeτ � τ3� the link between nodeP and portionB fails. Partition of the

network occurs.(see fig. 4.4)

4. Route Erasure mechanism triggers aCLR (CLR1) for referenceR1��τ1�P�rP�.

All the nodes that haveR1 as their referenceNULL theirheights. (See figure

4.5)

5. At time τ � τ4, seeing that all its neighbors haveNULL heights, nodeQ

NULLs its Height and being the generator for referenceR2, it sends out a

CLR�CLR2� for the referenceR2 . (see figure 4.6)
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6. At timeτ � τ5, UPD1 gets delivered to the portion A.(IMEP, the underlying

layer ensures reliable transmission of the routing packets). Now, routes are

built off the new referenceR2.(See figure 4.7)

7. At time τ � τ6, a QRY �QRY1� arrives for the destination at the portion A.

This is replied to by any node which has a non-NULLHeight built off R2.

(See figure 4.8)

8. At timeτ � τ7� another nodeR loses its last downstream link and sends out

anUPD�UPD2� after generating a new referenceR3 � �τ7�Q�0�. This is

not delivered yet.(See figures 4.9 and 4.10)

9. At time τ � τ8� a CLR�CLR2� for referenceR2 is delivered. All the nodes

that have their reference asR2 NULL their Heights. (See figure 4.11)

10. At timeτ � τ9� NodeR (which generated theHeight referenceR3) NULLs

its Height, because it is surrounded by NULL nodes.(See figure 4.12)

11. At timeτ � τ10�UPD2 which was generated forR3 is delivered. (See figure

4.13)

12. At timeτ � τ11� this is followed by another query for the same destination

QRY2, which is replied to by nodeP which has a non-NULLHeight built

off R3. (See figure 4.14)

This leads to an infinite sequence of routing events ordered according to their

delivery time as shown below:
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Consider a heavily loaded, congested network. Portion A is built off reference R
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) . Destination is in portion B.

Figure 4.1: MANET Topology for Routing Instability Problem
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, node Q loses its last downstream neighbor due to a link failure.τ
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=τemtiAt

Figure 4.2: MANET Topology for Routing Instability Problem

CLR1 �UPD1� QRY1 �CLR2 �UPD2� QRY2 � ������

This problem manifests as large IMEP packets, This is because the underlying

layer, IMEP aggregates TORA messages before sending them into the network.

Because of this, the already heavily loaded network breaks down. This problem

was first observed by Matt Impett during ns-2 simulations of TORA. The sequence

of events is illustrated in figures 4.1 through 4.12 .

4.2.2 Solution to the Routing Instability Problem in TORA

We propose the following modifications in TORA to tackle the above problem

At the timeτ � τ5(as described in section 4.2.1), when nodeQ finds all its
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Figure 4.3: MANET Topology for Routing Instability Problem
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Figure 4.4: MANET Topology for Routing Instability Problem
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Figure 4.5: MANET Topology for Routing Instability Problem
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Figure 4.6: MANET Topology for Routing Instability Problem
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Figure 4.7: MANET Topology for Routing Instability Problem
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Figure 4.8: MANET Topology for Routing Instability Problem
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Figure 4.9: MANET Topology for Routing Instability Problem
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Figure 4.10: MANET Topology for Routing Instability Problem
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Figure 4.11: MANET Topology for Routing Instability Problem
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Figure 4.12: MANET Topology for Routing Instability Problem
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Figure 4.13: MANET Topology for Routing Instability Problem
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Figure 4.14: MANET Topology for Routing Instability Problem
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neighbors withNULL heights, it doesn’t set itsHeight to NULL. Similarly, node

R NULLs its Height when it finds itself surrounded by NULL nodes. NULLing

of the Height is permissible for a node, only on the explicit reception of a CLR

for the reference of the node and a CLR will be generated only when a partition

occurs.

Separation of Route-Building and Route Maintenance Procedures

We also incorporated the use of separate message types for theRoute-Building

andRoute-Maintenance procedures in TORA(that have been described in section

1.1.3). An explicitRPY would be used forRoute-Building as against anUPD

packet as used in the original TORA. This helps the mobile nodes to know whether

the Height change of their neighbors has been triggered as a response to an explicit

Query, or has been due to aRoute Repair mechanism. So, the node can choose to

adapt/not adapt propagate/drop the routing message.

The flow charts describing these changes are illustrated in figures 4.15 through

4.22. These changes were implemented on the ns-2 simulator.

4.3 Performance Evaluation of the new TORA

To evaluate the performance of the new TORA, we tested it in a scenario which

causes the routing instability problem described in section 4.2.1 to occur. We

chose the ns-2 simulator for the simulations.
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Figure 4.15: Procedure executed on initial boot-up
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Figure 4.16: Procedure executed on the reception of a query
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Figure 4.17: Procedure executed on a link failure
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Figure 4.18: Procedure executed on the reception ofClear(CLR) messages
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Figure 4.19: Procedure executed on the reception of a data packet
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Figure 4.20: Procedure executed on a link coming up between two nodes
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Figure 4.21: Procedure executed on the reception of aReply(RPY) packet
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Figure 4.22: Procedure executed on the reception of anUpdate(UPD) packet
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4.3.1 Description of the simulation scenario

The simulations were carried out in a 1500mx500m rectangular grid area. There

are 50 nodes placed randomly in this area and move around with a maximum

velocity of 40 m/s in aRandom way-point model. The physical layer description

and the MAC layer description are same as in chapters 2 and 3.

Communication Pattern

Out of the 50 nodes, 20 nodes engage in communication.

This communication pattern was provided by Majid-Raissi Dehkordi and Gun

Akkor. Each of the 20 communicating nodes generate voice, data and content-

delivery traffic. Such a communicating node switches between these services with

a silence period between each change of service. The transition between the three

services and the silence state for each node is defined by the continuous-time

Markov chain as described in figure 4.23. The descriptions of the various traffic

models are as follows:

1. Voice: The activity model for voice is an ON/OFF model with a constant

transmission rate of 8kbps during the ON periods. The ON periods are ex-

ponentially distributed with a mean of 0.35 sec and the OFF periods have

the same type of distribution, but with a mean of 0.65 sec. Thus, the effec-

tive bandwidth used by the voice source is: 8kbpsx�0�35��0�35�0�65�� �

2�8kbps

2. Data: The activity model for data in an ON/OFF model with a constant
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transmission rate of 64kbps during the ON periods. The ON periods are

distributed according to a Pareto distribution with the shape parameter 1.5

and average value 0.8 seconds. The OFF periods follow the same distribu-

tion, but with an average of 20 seconds.

3. Content Delivery: The activity model for content delivery is a constant bit

rate connection with a high rate of 300kbps. The effective bandwidth for

this type of source is therefore equal to this number because there are no

OFF periods in this case.

The parameters of the Markov Chain are selected as follows:

1�λs= avg. time in “silence” state = 49.5 sec

1�λv= avg. time in “voice” state = 30 sec.

1�λd=avg. time in “data” state = 120 sec.

1�λc=avg. time in “content delivery” state = 13.33 sec

pv � 0�944,pd � 0�037,pc � 0�019

These parameters result in the following stationary probability distributions:

Ps � 0�6, Pv � 0�344,Pc � 0�003

These parameters have been chosen such that the average load generated by a

node at a particular time is around 40-50 kbps per each service. The traffic load

offered by the CBR traffic is as shown in figure 4.24. The traffic load offered by

the voice traffic is as shown in the figure 4.25. The traffic pattern of the content-

delivery traffic is as shown in the figure
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Figure 4.24: Traffic load offered by the Content delivery traffic
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Figure 4.25: Traffic load offered by the Voice traffic

Figure 4.26: Traffic load offered by the data traffic
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4.3.2 Performance of the enhanced TORA

We compared the performance of new TORA against other routing protocols for

adhoc networks (AODV and DSR).

The following metrics were used for comparison:

1. Average end-to-end delay experienced by packets belonging to different

kinds of traffic

2. Total Goodput: Goodput of the traffic is defined as the total number of data

packets received by the destination nodes�x� divided by the total number of

packets received(data packets�y�+routing packets�z�). Goodput � x��y�z�

This metric penalizes long routes. It also penalizes the protocol with larger

control packet transmissions. In the figure 4.27 that during the calculation

of goodput, the packet reception is counted 5 times in the denominator and

once in the numerator of the goodput expression.

It can be seen from figure 4.28 that the goodput of the new version of TORA is

comparable to AODV and DSR. The goodput of TORA is lesser than AODV and

DSR. This is because TORA has a greater overhead than AODV and DSR. This is

because TORA creates a DAG structure and provides multiple routes. As we saw

in chapter 3, this can be exploited to provide QoS facilities.

Figure 4.29 shows that the new TORA gives reasonable end-to-end delay char-

acteristics for voice packets. It can be seen that DSR and AODV have a high delay

during the initial portion of the simulation, while TORA maintains the same range

of end-to-end delay throughout.
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1 2 3 4 5

Node 1 is the source of a connection and node 5 is the destination for the connection.

Figure 4.27: Calculation of Goodput

Figure 4.28: Goodput

Figure 4.30 shows that new TORA performs comparable to AODV and DSR

in the delay for data packets. Again, AODV performs better than TORA which

performs better than DSR.

Figure 4.31 shows the delay experienced by content delivery packets in AODV,

DSR and TORA. It can be seen that AODV performs better than TORA which

performs better than DSR.

4.4 Proactive Operation of TORA

As described in the section 1.1.3, TORA is an on-demand (reactive ) routing pro-

tocol where, routes are built on-demand. But, TORA can also be operated in
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Figure 4.29: Delay Experienced by Voice Packets
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Avg. delay for CBR traffic 
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Figure 4.31: Delay Experienced by Content Delivery Packets

proactive mode[4]. Some selective nodes can proactively initiate the construction

of DAGs for them as the destinations. This operation is possible by the introduc-

tion of an additional packet type calledOptimization (OPT) packets. OPT packets

are send out periodically by selective nodes. The OPT packets have the following

fields:

� Destination IP address: This field denotes the node which originated the

OPT packet.

� Height: This field denotes theHeight metric of the neighboring node from

which the OPT packet was received.

� Optimization Sequence Number: This field denotes the sequence number

of the OPT packet.
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� Optimization Interval: This field denotes the time interval between the

production of two OPT packets.

On the reception of an OPT packet, a node compares theOptimization sequence

number of the OPT packet which it has received to that of the OPT packet that

it has previously propagated. If theOptimization sequence number of the packet

received is greater than that of the OPT packet that it had propagated previously,

it sets itsHeight with the same reference as the Height of the OPT packet it has

received. It then increments theδ field of theHeight. The unique id field of the

Height is set to the id of itself. The node then propagates the OPT packet by

setting the Height field in the OPT packet to its ownHeight by broadcasting to its

neighbors.

It should be noted that since the selective destination nodes are initiating the

build-up of the DAG rooted at themselves, the reference part of the Height propa-

gated by the DAG will always bezero-reference �0�0�0�. The proactive building

of the DAG will typically be initiated by the nodes that act as gateways to the ex-

ternal networks (or the Internet) from the MANET. These will be nodes that will

be very frequently accessed. So, it makes sense to have a DAG proactively built

to these nodes, and not wait until an explicit connection establishment trigger the

route building process to these nodes. The procedure executed on the reception of

an OPT packet is as shown in the figure 4.32.
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Figure 4.32: Procedure executed on the reception of an OPT packet.
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4.4.1 Performance Evaluation of Proactively Operated TORA.

The performance of proactively operated TORA was tested against the non-proactively

operated TORA by simulations in the ns-2 simulator. The simulation scenario was

a 1500mx300m rectangular two dimensional grid. 50 nodes were randomly placed

in this area. The mobility pattern of these nodes was random way-point model as

described in section 2.3.1. The maximum speed of a mobile node is 20m/s. The

wireless propagation model was chosen to be similar to that mentioned in the sec-

tion 2.3. The transmission range of a single wireless node is 250 m as in the pre-

vious simulations. A single node was chosen as the gateway node which initiates

proactive construction of the DAG to itself. We performed several experiments

by varying the number of connections. The gateway node was always chosen as

the destination. The source nodes generate CBR traffic with packet size 64 bytes

and inter-packet interval is 0.1 sec. This corresponds to a bandwidth of 5�12kbps�

We choose routing-overhead as a measure for performance comparison of the two

versions of TORA. In the proactively operated TORA, theOptimization Interval

(the interval between the generation of two consecutive OPT packets) was chosen

to be 30 sec.

From fig. 4.33, we can see that as the number of connections increases, the

routing overhead in both versions of the protocol decreases. This is due to the

phenomenon of many connections using the single DAG mentioned in the section

2.3.2. This phenomenon is more evident in this simulation because all the connec-

tions use a single node (the gateway node) as the destination, and hence use the

same DAG. We see that in the case of lower number of connections, the routing
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Figure 4.33: Routing Overhead in Proactive and non-proactive TORA

overhead is considerably lower in the proactive-TORA when compared to the non-

proactively operated TORA. This is because in the proactively operated TORA,

the destination proactively builds a DAG for itself and maintains it proactively

(by the usage of OPT packets). This precludes the necessity for the route-building

overhead(QRY and RPY packets) . This also reduces the route-maintenance over-

head (UPD packets) considerably. We also find that as the number of connections

increase, the routing overhead in the proactively operated TORA becomes greater

than the non-proactively operated TORA. This is because, in non-proactively op-

erated TORA, as the number of connections increase, the extent of the DAG in-

creases, and more source nodes lie on the DAG. So, they don’t have to initiate

the route-building mechanism. Also, the reactive nature of TORA makes sure that

UPD packet are generated only when a link failure causes a node to lose its last
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downstream link. In the proactive version of TORA, the OPT packets are launched

at regular intervals, irrespective of whether or not a topology change occurs.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In Chapter 1, we have provided an introduction to adhoc networking in general and

mobile adhoc networks(MANETs) in particular. We also provided a description

of Temporally Ordered Routing Algorithm(TORA) which is a highly distributed

routing protocol for MANETs.

In Chapter 2, we presented theQuery-Localization techniques for TORA. We

have shown by simulations that the routing overhead is reduced by about 50% by

using the Query-Localization techniques. We have also shown that the choice of

the Query-Timer plays an important role in the performance ofQuery-Localized

TORA.

In Chapter 3, INORA, a QoS support mechanism using INSIGNIA in-band

QoS signaling system and TORA routing protocol for adhoc networks has been
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proposed. The implementation and an evaluation of INORA has also been pre-

sented. We have shown by simulations that INORA schemes do well compared

to when INSIGNIA and TORA have no feedback. In particular, INORA schemes

perform very well in networks that are heavily-loaded and where the QoS flows

have higher bandwidth requirements.

In Chapter 4, we presented the enhancements to TORA incorporated for solv-

ing a specific routing instability problem and also for providing a separation of

Route-Creation and Route-Maintenance functions by introducing an additional

control packet(RPY). We have shown by simulations that the new version of

TORA compares well against other standard adhoc routing protocols (AODV and

DSR). Also, we presented the proactive operation of TORA. We have shown that

the gateway nodes in a MANET network can proactively build a DAG for them-

selves and cause a considerable reduction in routing overhead.

5.2 Future Work

In wireless networks, congestion at a wireless node is related to congestion in

its one-hop neighborhood. i.e. wireless networks are best treated as a union of

neighborhoods defined by the transmission radius of a node, rather than a graph

consisting of nodes joined by point-to-point links. So, the congestion at a node

is intrinsically related to congestion in its neighborhood. A suitable mechanism

needs to be incorporated in INORA to reflect this fact, so that congested neigh-

borhoods can be avoided by QoS flows.
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A good method of calculating the bandwidth available to a wireless node also

needs to be found, rather than the current method of finding it in an indirect fashion

by the node listening promiscuously listening to the packet transmissions in its

neighborhood.

In wireless networks, the different layers of the protocol stack cannot function

in isolation with each other. This is because the higher layer functions directly

depend on the lower layers. So, there needs to be an explicit coupling between the

different layers to achieve efficient performance in wireless networks.
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