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While Hybrid Satellite-Terrestrial Networks (HSTNs) have become a popular 

method of providing internet connectivity, network dimensioning and performance 

prediction problems in these networks—as in their terrestrial counterparts—have remain 

largely unsolved.  A key hindrance to the resolution of these issues has been accurate, 

tractable traffic models.  While a number of rather complex models have been proposed 

for terrestrial network traffic, these have not been evaluated against HSTN traffic.  And 

further, recent studies have questioned whether these more complex models, while 

statistically better fits, really provide significantly better performance prediction. 

We examine the question of how to model HSTN traffic for network 

dimensioning and performance prediction, and in particular, how far ahead into the future 

a traffic model can be expected to accurately function.  We investigate these issues by 

directly comparing four of the most likely candidate statistical distributions—the 



   

exponential, log-normal, Weibull and Pareto.  These distributions are fit to two key traffic 

parameters from real HSTN traffic traces (connection interarrival times and downloaded 

bytes), and their relative fits are compared using statistical techniques.  We further 

compare traffic models built using these distributions in a simulated environment; 

comparing performance predictions (over a number of metrics) obtained from these 

models to the actual results from our real-world traffic traces. 
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Chapter 1 – Introduction 

1.1 Motivation and Significance 

With the explosive growth of the Internet, bandwidth demand has for the past 

several years exceeded supply at the network edge, particularly for home and small 

business users.  Conventional remedies to the 56 – 128kbps ceiling of analog modems 

and Integrated Services Digital Networks (ISDN)—long promised technologies such as 

cable modems and Digital Subscriber Lines (DSL)—have languished in their deployment 

for large sectors of users.  Deployment of these technologies has, in addition, been 

hampered by equipment and infrastructure costs as well as uncertainties in the market and 

business case evaluations.  As a result the “power” home Internet user, the 

“telecommuter,” and the small business have faced a paucity of connectivity options 

available to them in the significant price and performance gap between ISDN (128kbps) 

and T-1 (1.5Mbps) services.  And while these broadband technologies have begun to be 

more widely deployed in the last year, a number of customers, in the U.S. and especially 

abroad, will remain outside their service areas for the near future. 

While a number of wireless alternatives have been demonstrated, only one has 

been widely deployed to date: hybrid satellite-terrestrial networks (HSTNs).  The 
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DirecPC™ system, developed by Hughes Network Systems, is the principal example of 

this technology.  The system provides a downstream bandwidth to its users of 400kbps or 

more via a satellite channel.  Upstream bandwidth is provided over terrestrial telephone 

lines via a conventional voiceband modem.  However, because classic TCP/IP is not well 

suited to satellite channels, it, like all HSTNs, must overcome several technical hurdles to 

provide a comparable quality of service.  This adds to the complexity of the gateways that 

are responsible for forwarding traffic over the satellite.  And while the problems—such as 

long satellite link delay and connection fairness—have been studied and addressed with 

solutions like connection splitting (also called “spoofing”)1 and flow control; 

performance prediction and network dimensioning problems have remained unsolved, in 

part because traffic models for HSTN networks have not been fully studied. 

Wide area network (WAN) traffic models have also changed rapidly in recent 

years, principally due to Internet traffic.  The “burstiness” of packet arrivals, at all time 

scales, has found expression in fractal mathematical models for traffic.  To incorporate 

the required long range dependence, a number of different statistical distributions have 

been suggested for both interarrival times and durations.  Recent studies have indicated, 

however, that although these more complex models more accurately characterize source 

and network traffic, when that source traffic is fed through a queueing system the 

resulting performance predictions (based on these more complex models) may offer only 

limited additional insight or accuracy over those obtained from simpler, more traditional 

models.  At the present state of analysis, measurement and experimentation, we do not 

                                                 

1 We prefer the term “connection-splitting” as it better describes what takes place, and does not 

also refer to a method of security breach used by hackers, as does “spoofing”. 
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have a clear understanding of the implications or benefits of these more complex models 

for network control, performance evaluation and resource allocation. 

The question then arises as to how to model HSTN traffic for performance 

prediction, and in particular, how far ahead into the future a traffic model can be expected 

to accurately function.  We investigate these issues by directly comparing four of the 

most likely candidate statistical distributions—the exponential, log-normal, Weibull and 

Pareto.  These distributions are fit to two key traffic parameters from real HSTN traffic 

traces (connection interarrival times and downloaded bytes), and their relative fits are 

compared using statistical techniques.  We further compare traffic models built using 

these distributions in a simulated environment; comparing performance predictions (over 

a number of metrics) obtained from these models to the actual results from our real-world 

traffic traces. 

While terrestrial Internet traffic has been studied extensively recently [Pax94] 

[WTSW97], it has typically been studied over rather small networks. There are now 

several World Wide Web sites with traffic traces from terrestrial Internet available to 

researchers [BU] [ITA].  However these traces are taken from networks that are neither 

satellite/wireless, nor commercial size.  Our research and investigation is among the very 

few (but widely required) studies that used actual data from a large commercial service 

providing hybrid Internet over satellites.   

1.2 Contributions of this Thesis 

The basis of this work is a series of traffic traces taken from a large, commercial 

HSTN known as the DirecPC system.  These traces, collected by the author, are used as 

the heart of a comparative study of HSTN traffic models undertaken on a unique HSTN 
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simulation testbed constructed by the author in the OPNET discrete event network 

simulator.  This thesis presents the most complete study to date of HSTN Internet traffic 

and its most suitable models, and in addition offers substantial insight into the utility (and 

limitations) of performance prediction via statistical traffic models in the HSTN 

environment.   

1.2.1 Outline  

We examine the applicability of various wide-area traffic model distributions in 

the setting of hybrid satellite-terrestrial networks-- with a particular eye toward two 

issues: first, what we term the “marginal utility” (that is, the additional benefit resulting 

from their use) of newer “self-similar” models over traditional ones; and second, the 

“lifetime” of a model (by this we mean how long it remains valid after being fit). 

We begin with a review of the basics of hybrid satellite-terrestrial networks with 

an emphasis on their unique technical characteristics in Chapter 2.  The general HSTN 

topology is presented, along with an explanation of the function of the key elements of 

the HSTN Network Operations Center (NOC), including connection-splitting and flow 

control.   

Chapter 3 reviews the traffic models utilized in this study, and additionally covers 

results of recent comparative traffic model studies.  Beginning from a historical 

perspective we trace the development of modern data network traffic models and 

statistical distributions.  We present also the parameter estimation techniques for each 

distribution used in this study. 

Three large traces were collected from an HSTN NOC, and used as the reference 

for traffic model comparison.  Chapter 4 details the traffic traces used for the study, and 
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evaluates the statistical fit of our models to these traces.  Comparisons between the 

models and their fits are provided. 

An HSTN network testbed was created in the OPNET discrete event simulator. 

Chapter 5 describes this simulation testbed and presents the results of our traffic model 

evaluations and comparisons performed with it.   

Conclusions are presented in the final chapter. 
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Chapter 2 – Hybrid Internet 

We shall describe Hughes Networks Systems (HNS) DirecPC as our example of a 

hybrid satellite-terrestrial Internet service.  However, many of the technical issues we 

discuss are applicable to all systems providing TCP/IP network connectivity via 

geostationary satellite(s). 

2.1 Background 

The DirecPC system provides Internet access to business and residential 

customers via a “hybrid” network technology combining downstream satellite bandwidth 

and conventional upstream analog modem service.  Downstream bandwidth is provided 

on an unused 6MHz television channel on a direct broadcast video satellite.  Upstream 

bandwidth is provided via an ordinary telephone modem.    

Figure 2.1 shows the typical DirecPC connection.  The customer’s computer—by 

convention called a “hybrid host” (HH)—forwards all outbound packets over the modem 

through an Internet Service Provider (ISP) to the DirecPC Network Operations Center 

(NOC).  The heart of the NOC is the hybrid gateway (HGW).  The hybrid gateway 

forwards packets to the chosen Internet server (IS).  Packets comprising the server’s 
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response are received by the HGW, and forwarded back to the hybrid host over the 

satellite link.   

Because the satellite sits in a geostationary orbit, the link delay from the HGW to the HH 

is approximately 250ms.  The performance of conventional TCP over this long delay link 

will be hindered by its relatively small transmit window.  The hybrid gateway addresses 

this problem through the use of connection-splitting.  By acknowledging incoming 

packets from the IS on behalf of the hybrid host (thus assuming responsibility for their 

reliable delivery to the HH), and using the large windows TCP option (Internet RFC 1072 

[JB88]) over the satellite link, the “apparent” round trip time experienced by the IS can 

be minimized.  This results in the maximum achievable throughput.  This approach is 

Hybrid Host DirecPC Network Operations Center (NOC)

Internet
Internet
Service
Provider

Internet Server

Hybrid Gateway (HGW)

Satellite Gateway (SGW)

ACKs from HH

ACKs to IS (spoofed)

Requests
From HH

Responses
from HH

A

B

C

 

Figure 2.1 – Typical HSTN Configuration 
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sometimes referred to as “spoofing” because this act of pretending to be the HH 

constitutes a benign form of IP address spoofing. 

2.2 Technical Issues 

This connection-splitting technique comes with a cost: considerable memory 

requirements on the HGW.  When a packet is received from an IS it must be enqueued in 

a send buffer, to be forwarded to the HH.  Once sent, a copy of the packet must be 

maintained in a retransmit buffer while awaiting acknowledgment by the HH.  Typically 

the memory available for these buffers is divided equally among all connections, with 

caps on the total number of split connections and on the maximum amount of memory 

allocated to any connection. 

The Satellite Gateway in the DirecPC system utilizes two priority queues for 

scheduling packets destined to various users.  IP datagrams encapsulating any UDP 

packets, or TCP segments from connections that have not exceeded their buffer threshold 

in the HGW, are assigned to the higher priority queue.  Those datagrams containing TCP 

segments belonging to connections which have exceeded their buffer threshold on the 

HGW are assigned to the lower priority queue.  All datagrams in the higher priority 

queue are served before any in the lower priority queue. 

2.3 Hybrid Internet Traffic Modeling 

The connection-oriented nature of HSTN service affects traffic modeling for this 

environment.  All of the popular self-similar time-series traffic models—such as 

Fractional Brownian Motion (FBM), Autoregressive, and Fractional Autoregressive 

Integrated Moving Average (FARIMA)—describe packet arrivals for aggregated traffic, 

but offer no framework for assigning individual packets to flows (or connections).  These 
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classes of models represent doubly-asymptotic models of network traffic; both in the 

sense of asymptotic for large (similar) numbers of users and in the sense of time 

asymptotic.  However in the HSTN environment, we are interested in modeling traffic at 

the connection level (meaning characterizing connection traffic), because in any 

simulation model of the HSTN gateway (the HGW in the DirecPC scheme) we have to be 

able to input synthetic data (or real data) tagged by individual connections.  Having fit an 

FBM or a FARIMA model to the aggregate traffic traces does not allow us to distinguish 

packets belonging to separate connections.  Nevertheless, the traces we collected can 

allow us to study individual or aggregate connections’ packets and their statistics and 

related models.  Although these types of analyses were not undertaken in the present 

study, the data we have collected would allow for such studies in future efforts. 

Since we can summarize each TCP connection by two characteristics: arrival time 

and the number of bytes transferred, we still have a broad class of models available to us.  

Assuming independence of arrival times and bytes transferred, we can fit any statistical 

distributions we please to these two variables.  We will fit a total of 3 different 

distributions to both the interarrival times and connection sizes, though one of the 

connection size distributions will prove to be a very poor fit.
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Chapter 3 – Network Traffic Models 

From the earliest days of communication networks the development and 

application of accurate, readily-applied traffic models has been crucial to their successful 

deployment and growth.  Accurate (high-fidelity) network traffic models are needed for 

planning and cost-effective dimensioning of network resources, and are the basis of 

quality of service guarantees.  Traffic models have been a fundamental part of the success 

of modern telephone systems—allowing companies to provide a service that, in terms of 

reliability and cost, is (arguably) surpassed only by electric power.  But the heterogeneity 

and complexity of wide area data networks and the applications generating their payloads 

have frustrated attempts to derive and apply simple traffic models for them.  Much 

progress has been made recently in developing statistically accurate local-area and wide-

area network traffic models, but their applicability has been hampered by their 

complexity.  Furthermore, verification of their validity for large scale networks is still an 

open question. 

3.1 Traffic History: The Poisson Model 

Communication traffic theory has its roots in the engineering of early circuit 

switched telephone networks.  Pioneering work by M.C. Rorty of AT&T modeled 
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telephone calls as having a fixed length and calculated call blocking probabilities using a 

binomial expansion of the probabilities of the occurrence or non-occurrence of individual 

calls.  E.C. Molina, also with AT&T, expanded this model when he independently 

derived a call arrival process that (it was soon discovered) had already been described by 

Siméon Poisson, whose name it came to bear.  It was this model, completed by the work 

of A.K. Erlang of Denmark, who introduced the exponential holding time, that became 

the foundation of telephone traffic engineering [Fag75].  The exponential distribution, 

used for both the interarrival times and call holding times, takes the form: 

 xexF λ−−= 1)(  (3-1) 

with the corresponding density function: 

 xexf λλ −=)(  (3-2) 

where λ=E[x]-1.  A unique characteristic of the process is that the deviation is the same as 

the mean.  A Poisson process is simply a random arrival process with exponentially 

distributed interarrival times.  The most distinctive feature of this process is its 

randomness—it is completely memoryless.  This model is elegant in that both the arrival 

process and the holding time distributions are each defined by only one parameter. 

Synthetic Poisson data may be generated by generated the required number of 

samples, uniformly distributed between (0,1), i.e. u~U(0,1).  Exponentially distributed 

sample values are then obtained through the transformation: 

 x=F-1(u) (3-3) 

where F(⋅) is the probability distribution function (in this case equation (3-1)).  
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3.2 Toward Modern Traffic Models 

When computer networks first appeared, the Erlang model of Poisson call arrivals 

and exponentially distributed service times had ruled teletraffic for close to 50 years.  

Equations such as the Erlang “B” and “C” formulas, along with other mathematically 

tractable and elegantly derived results from queueing theory had lent themselves readily 

and reliably to network engineering.  Moreover they were perceived as almost natural 

laws.  So originally, and indeed for quite some time, despite the architectural and 

application changes, very little thought was given to re-evaluating the suitability of 

Poisson models to the traffic in the new networks that emerged in the last twenty years 

[WP98].  Call arrivals were simply replaced with packet arrivals, and holding times with 

“service” (or forwarding) times.  Indeed, much of the early validation and peformance 

comparison work on Ethernet and ring networks—familiar papers by Metcalfe and Boggs 

[MB76], Bux [Bux81], and others—was based on this model.  This is still the 

predominant model for packet traffic in network texts and university courses. 

Over the years several extensions of the Poisson model have been suggested to 

improve its accuracy, including sums of multiple exponential distributions, and Markov-

Modulated Poisson Processes (MMPPs) [Heff80].  Most have met with limited success, 

largely because they still relied on the exponential distribution.  The MMPP model for 

instance has been successfully employed in the modeling of packetized voice and data 

traffic [HL86]. 

But it is now understood that the old rules do not apply to data networks.  As 

cause Willinger and Paxson identify four significant ways in which data networks differ 

from voice networks [WP98]:  
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• data networks are packet based instead of circuit switched;  

• individual connection durations and bandwidth requirements are variable;  

• packets are buffered at points during transmission and may be dropped;  

• most network layer protocols contain end-to-end congestion control 

mechanisms that introduce complex correlations.   

3.3 Long Range Dependence 

In 1990, investigating the types of traffic expected on future broadband networks, 

W. Leland and D. Wilson gathered the largest, most accurate interconnected LAN traffic 

trace of its time [LW91].  Its time-stamp precision and size gave a view of time-scales 

from milliseconds to months.  The conclusion from this trace was indisputable: wide area 

traffic was bursty on much larger time scales than that provided for by Poisson-based 

modeling [FL91], and this long range dependence, or “self-similarity” (to be defined 

shortly) received much attention.  In 1994 a slew of papers arrived finding evidence of 

self-similarity in Ethernet traffic [LTWW94], ISDN traffic [GW94], variable-bit-rate 

video traffic [BSTW94], Common Channel Signaling Networks [DMRW94], and 

Internet traffic [PF94]. 

The term “self-similarity” is a property of fractal processes, and in network traffic 

refers to a time scale characteristic: statistical similarity over a wide range of time-scale 

aggregations.  That is, a continuous-time stochastic process x(t) is statistically self-similar 

with parameter H (0.5 ≤ H ≤ 1) if for any real a > 0, the process a-Hx(at) has the same 

statistical properties as x(t) [Stal98].  Likewise a discrete-time stochastic process is 

second-order self-similar if, for all m, the m-aggregated time series: 
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has the following variance and autocorrelation relationships with the original series x(m): 

βm
m )Var(

  )Var( )( x
x =  and )(R)(R )( llm xx

→  as ∞→m  (3-5, 6) 

The “Hurst” parameter, H, is a measure of the degree of self-similarity—or in other 

words, how well the statistical properties scale with respect to time.  A value of 0.5 

indicates no self-similarity, and 1.0 perfect self-similarity.  The parameter β  is the 

corresponding measure of self-similarity in the discrete time definition, and is related to 

H as β=2(1-H) [LTWW94]. 

Long-range dependence, a related phenomenon, is a statistical property of self-

similar processes, and refers to a hyperbolically decaying autocovariance.  Short-range 

dependent processes such as the Poisson process have (much faster) exponentially 

decaying autocovariances.  The more slowly decaying autocovariances of self-similar 

processes reflect the persistence of their burstiness through many time scales [Stal98]. 

The finding of self-similarity does not immediately lead to a traffic model, as it is 

only a statistical property (of an infinite class of models).  But mathematicians have long 

known that self-similar processes arise from the presence of so-called “heavy-tailed” 

distributions in the system [Ma63].  A heavy-tailed distribution is one which matches the 

proportionality:   

γ−∝> ttT )(P    (0 < γ < 2) (3-7) 

for ∞→t [HLF98].  Heavy-tailed distributions have infinite variance and, for γ < 1, 

infinite mean.   
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The Weibull and Pareto distributions (to be discussed later) are two heavy-tailed 

distributions which, when incorporated into traffic models, produce self-similar behavior.  

They can be used to model interarrival times or connection durations (message lengths)—

or both.  Willinger, Taqqu, Sherman and Wilson have proven that the superposition of 

many ON/OFF sources with strictly alternating ON- and OFF- periods, both of heavy-

tailed distribution, produces aggregate network traffic that is self-similar; they present 

results showing that it also closely matches Ethernet LAN traffic [WTSW97]. 

3.4 Log-normal Distribution 

The log-normal distribution is sub-exponential, but does not have a strictly heavy-

tailed probability density function.  The definition of the log-normal distribution is based 

on the normal distribution, as follows: given that )log( XZ =  is normally distributed 

(with zero mean), the random variable X shall be called log-normal.  The log-normal 

probability density function takes the form: 

2

2

2

))(log(

2
1

)( σ

ζ

σπ

−
−

=
x

e
x

xf  (x > 0) (3-8)  

where ζ represents the mean, and σ the standard deviation, of Z.  These parameters can 

then be estimated as they would be for a normal distribution (given outcomes x1, x2, … 

xn), by the maximum likelihood estimators: 

∑
=

=
n

j
jx

n 1

)log(
1

ζ̂  
2
1

1

2)ˆ)(log(
1ˆ 








−= ∑

=

n

j
jx

n
ζσ  (3-9, 10)  

These estimators are unbiased [JK70].  The mean and standard deviation of the 

corresponding log-normal distribution X are thus: 
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2
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ζ +
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22

−= σσζσ eeex  (3-11, 12) 

The log-normal distribution is one of the earlier non-exponential distributions to 

be applied to network traffic modeling.  The log-normal distribution has been suggested 

in the modeling of phone call durations [Bol94], local area network packet interarrivals 

[MM85], and Telnet connection sizes (in packets) and FTP data connection spacing 

[PF95].  We generate log-normal interarrival times and response sizes by transforming 

unit normal samples u~N(0,1) via the relation: 

 uex =  (3-13) 

3.5 Weibull Distribution 

The Weibull distribution is a popular heavy-tailed distribution in network traffic 

modeling.  The probability density function is: 

 
βαβαβ xexxf −−= 1)(   (3-14) 

and the distribution function is: 

 
βαxexF −−= 1)(  (3-15) 

The maximum likelihood estimator for β  is obtained by iteratively solving the equation 

[JK70]: 
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The estimator for the parameter α is then: 
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We generate Weibull trace values in the same manner as the exponential 

distribution, using the inverse of the Weibull distribution function (eq. 3-15). 

3.6 Pareto Distribution 

The Pareto distribution is a very popular heavy-tailed distribution, with density 

function: 

 
1)(

)(
+

=
kx

k
xf

αα
 (3-18) 

(where k represents the minimum value) and distribution function: 
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The variance is infinite if α ≤ 2, and the mean is infinite if α ≤ 1; otherwise the mean and 

standard deviation are as follows: 

1
][

−
=

α
αk

xE  and 
)2()1( 2

2

−−
=

αα
α

σ
k

x  (3-20, 21) 

The parameter α is related to the Hurst parameter H as α=3-2H.   

There are a number of ways to fit the Pareto distribution, including least squares, 

moments-based, maximum likelihood and iterative means [CM80], and Hurst parameter 

estimation via block packet count [HLF98].  We use the maximum likelihood estimator, 

which is as follows: 
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where k̂ =min(Xi).  This estimator is unbiased. 
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The Pareto distribution has been used to model the sizes of web pages, disk file 

sizes, and FTP-data bursts [PF95]. 

3.7 Fit Comparison 

When fitting distributions to actual traces it is useful to have a discrepancy 

measure—particularly one that allows fit comparisons between different distributions.  

We use the λ2 test used by Paxson, Feldman and others [Pax94], [Feld95].  This test 

modifies the χ2 test to make its results independent of the number of bins used.  To 

review, the χ2 test proceeds as follows.  Given n outcomes of a random process X being 

fit to a model Z, we choose a partition of N equally spaced bins and define Xi as the 

number of outcomes in bin i.  We further define pi as the proportion of distribution Z 

falling in bin i.  The discrepancy measure is then: 
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This measure is not independent of N, however, which presents problems when 

trying to compare results across different traces.  A modification, suggested by Pederson 

and Johnson [PJ90], solves this problem.  We first compute: 
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followed by the “degrees of freedom”: 

 EstNdf −−= 1  (3-25) 

where Est is the number of parameters of Z being estimated from trace X.  The new 

discrepancy measure 2̂λ is then: 
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The standard deviation of 2̂λ is: 
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Thus far we have not discussed the bins, other than describing them as equally 

spaced.  We use the following formula for bin width, according to [Pax94]: 

 3/1ˆ49.3 −= nw xσ  (3-29) 

The number of bins, N, is then determined from w and the range of X.  Because the 

number of outcomes will be very small in the bins near the tail, we follow [Feld95] and 

combine all bins with less than 5 outcomes.
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Chapter 4 – Traffic Traces and Modeling 

4.1 DirecPC™ Trace(s) 

For this study three sample traces were taken of actual DirecPC NOC traffic, all 

using a modified version of the tcpdump program [Jac98].  All traces were taken using a 

Linux PC equipped with a 100 Base-T Ethernet adaptor and a high resolution (~10µs) 

timer.1  The network vantage point for the trace logging was a spanned port on the 

primary NOC router, giving us access to all packets passing between hosts on the NOC 

LAN, as well as all packets inbound or outbound on the Internet links (two T-3s).   

Referring back to Figure 2.1, we could have chosen to collect our trace at points 

A, B, or C (or really any combination of these, since each of these links represents a hope 

through the core router).  The path between the HGW and the SGW (point C) is a virtual 

LAN, and we excluded it from the port span, so our traces contain only the packets seen 

at points A and B.  This means that each packet inbound from a HH was actually logged 

twice: once in its tunneled form passing through point A to the HGW, and once in its 

                                                 

1 The default timer granularity of tcpdump is only about 10ms, but patches are widely available to 

improve it. 
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normal form passing from the HGW to the Internet.  For this study we ignored the 

tunneled packets (point A) but this data was included in the trace to allow future studies 

of HH request patterns, etc.   

The traces contain the first 100 bytes—beginning with the Ethernet header—of 

each Ethernet frame observed on the network.  Together they contain over 75 million 

packets.  In each case, at trace termination tcpdump reported no dropped packets, so the 

traces can be considered complete.  Each trace was postprocessed using the tcp-reduce 

script [Pax95] to produce one line summaries of each connection.  Connections which 

failed to complete the setup phase were discounted, as well as all connections involved in 

updating the cache of DirecPC’s Cacheflow caching appliance.   

4.1.1 Trace Summaries 

Trace one was taken on May 12, 1999, between the hours of 5 and 6pm Eastern 

Time.  It is 3,473 seconds (0h:57m:53s) long and contains 86,062 complete TCP 

connections.  Trace two was taken on October 13, 1999 between the hours of 5 and 6pm 

Eastern Time.  It is 3,688 seconds (1h:01m:28s) long and contains 64,553 complete TCP 

connections.  Trace three was also taken on October 13, 1999 during the peak hours of 

10:30pm - 12:30am Eastern Time.  It is 7,396 seconds (2h:03m:16s) long and contains 

140,667 complete TCP connections.  These traces are summarized in Table 4.1.  The 

number of bytes shown reflects only the downstream direction, because it is this direction 

we are concerned with.  
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Trace  WWW FTP-ctrl FTP-data POP NNTP Other Total (Units) 
73,205  386 648 5,271 130 6,422 86,062 Connections 

852,949,541 227,390 406,206,429 54,921,840 109,907,689 97,960,411 1,522,173,300 Bytes 
85.06 % 0.45 0.75 6.12 % 0.15 % 7.46 % 100.00 % Connections 

 
1 

56.03 % 0.01 26.69 3.61 % 7.22 % 6.44 % 100.00 % Bytes 
53,754 310 601 3,661 133 6,094 64,553 Connections 

593,022,253 209,950 170,624,961 56,103,608 314,068,168 323,321,547 1,457,350,487 Bytes 
83.27 % 0.48 % 0.93 % 5.67 % 0.21 % 9.44 % 100.00 % Connections 

 
2 

40.69 % 0.01 % 11.71 % 3.85 % 21.55 % 22.19 % 100.00 % Bytes 
123,561 1,708 1,719 4,663 551 8,465 140,667 Connections 

1,711,701,945 988,441 1,368,561,512 52,761,724 923,483,754 576,591,034 4,634,088,410 Bytes 
87.84 % 1.21 % 1.22 % 3.31 % 0.39 % 6.02 % 100.00 Connections 

 
3 

36.94 % 0.02 % 29.53 % 1.14 % 19.93 % 12.44 % 100.00 Bytes 

Table 4.1 – Summary of traffic traces used 

Upon examining the traces several things are evident.  The first is that the bulk of 

the traffic is generated by two applications: the World Wide Web and File Transfer 

Protocol.  Second, there is no Telnet or Rlogin traffic; which is because those low 

bandwidth, fast response demanding applications are routed back over the telephone 

network, to avoid incurring the satellite delay.  Also notable is that FTP-data connections, 

while few in number, are very large in size.  The same is true for NNTP.  And most 

importantly, the significant majority of the traffic is of varieties that can be described as 

single-burst retrievals.  That is, immediately upon connection-open a single object is 

downloaded (or perhaps a group of associated objects in immediate succession—i.e. e-

mail messages in the POP case) and the connection closes shortly thereafter.  Only the 

FTP-control, NNTP and Other2 traffic varieties—comprising only about 10% of 

connections and 30% of bytes—may contain periods of both bursts and lulls in 

downstream traffic.  And for the largest NNTP connections the bursts vastly exceed the 

                                                 

2 In the case of trace 2 the unusually high amount of “Other” traffic can be attributed to one user 
who was downloading multiple 15 megabyte files via the “IRC” application—analogous to FTP and also 
“single-burst”. 
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lulls.  Hence we can conclude that the bulk of our traffic can be described as “single-

burst” downloads.   

4.1.2 Trace Validation 

An assumption used in fitting traffic models to these traces is the statistical 

independence of connection arrival times and download sizes.  Autocorrelation plots for 

all three traces, shown in Figure 4.1, reveal an adequate, though not particularly high, 

degree of independence in the connection arrival times.  For traces 1 and 2 r(1) is 

approximately 0.1, and for trace three it is closer to 0.15.  While these are small enough 

to label our independence assumption valid, we shall pause to note here that they do 

indicate the potential for success using connection level time-series models, were such 

models available. 
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For the download sizes there is no question.  Autocorrelation plots, shown in 

Figure 4.2, indicate a high degree of independence for this variable.   

 

Figure 4.1 – Connection Interarrival Autocorrelations (for traces 1,2,3) 
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4.2 Connection Interarrivals 

Connection interarrival distributions for traces 1, 2 and 3 are shown on a linear 

plot (highlighting the lower tails of the distributions) in Figure 4.3.   

 

Figure 4.2 -  Download Size Autocorrelations (for traces 1,2,3) 
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To better emphasize the tails, Figure 4.4 shows the same data on a semilog plot.   

 

 

Figure  4.3 – Distributions of interarrivals (linear scale) (traces 1,2,3) 
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Fitted exponential, log-normal and Weibull distributions for traces 1, 2 and 3 are 

shown in Figures 4.5, 4.6, and 4.7, respectively.  All three traces’ interarrivals are plainly 

subexponential; the fitted exponential distributions obviously fail to capture their tail 

behavior.  The log-normal distribution, on the other hand, is too heavily-tailed, and also 

appears to be a poor fit to all three traces.  Fortunately the Weibull distribution, in all 

three cases, appears to be a good match. 

                                                 

3 In this and all distribution plots in this work the last data point reflects the sum of the remaining 

tail. 

 

Figure 4.4 – Distributions of interarrivals3 (semilog scale) (traces 1,2,3) 
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Figure 4.5 - Interarrival distribution of Trace 1 
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Figure 4.6 - Interarrival distribution of Trace 2 
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The suitability of the Weibull distribution is attested to by the results of the λ2 

test, shown in Table 4.2.  For all three traces the Weibull distribution outfits the 

exponential and log-normal by a measurable margin.  The high value of 2λ̂  for the 

exponential fit to trace 3 is not an error.  Rather, it is proof of the substantially sub-

exponential tail of the connection interarrivals.  The largest arrival interval contained in 

trace 3 is 2.54 seconds.  The expected number of exponential arrivals (npi in equations (3-

23) and (3-24)) in the bin containing this value is on the order of 10-12, which contributes 

greatly to the size of 2λ̂ .   

 

Figure 4.7 - Interarrival distribution of Trace 3 
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Trace Model 2λ̂  σ̂  

Exponential 2.037116e-01 1.551436e-02 
Log-normal 2.485222e-01 3.687781e-03 

 
1 

Weibull 8.229092e-02 2.038071e-03 
Exponential 2.823670e-01 8.147982e-02 
Log-normal 2.734092e-01 4.538923e-03 

 
2 

Weibull 1.014115e-01 2.668935e-03 
Exponential 3.424973e+02 3.992822e+02 
Log-normal 2.383435e-01 2.829614e-03 

 
3 

Weibull 7.549240e-02 1.592505e-03 

Table 4.2 - Interarrival λ2 goodness of fit results 

4.3 Bytes downloaded (per connection) 

Connection download sizes are considerably heavy-tailed.  Figure 4.8 shows the 

actual response size distributions of all three traces, plotted against exponential 

distributions fit to each one.  The tails are enormous: for all three traces the upper 5% of 

connections account for over 80% of all bytes downloaded.  For this reason we 

immediately eliminate the exponential distribution as a candidate, and focus on fitting the 

three sub-exponential distributions to the download sizes.   

 



  32

Figure 4.9 shows fitted log-normal, Weibull and Pareto distributions for the 

download sizes in traces 1. Table 4.3 shows the 2λ̂  best fit results for the same fits.  

There is a noticeable problem.  Though the conclusion that the log-normal distribution is 

the best fit appears to be correct, the fit results for the Weibull and Pareto distributions 

are misleading.  The tail on the Weibull distribution is so large, in fact, that its mean is 

over 106 bytes, though the mean download size of actual trace is approximately 1.7×104.  

The results for traces 2 and 3 proved to be similarly disastrous.  Our conclusion is that the 

2λ̂  goodness-of-fit test, while very useful for comparing fits to the moderately heavy-

 

Figure 4.8 - Download size distributions 
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tailed interarrival data, is misleading when dealing with such heavily-tailed data as the 

download sizes.  It appears to penalize a distribution much more for underestimating the 

upper tail than for overestimating it.   

Model 2λ̂  σ̂  
Log-normal 7.572985e-02 1.049059e-02 
Weibull 2.095553e-01 2.410206e-03 
Pareto 7.914014e-02 1.444359e-03 

Table 4.3 – Download size λ2 goodness of fit results for trace 1 

 

 

Figure 4.9 - Trace 1 download sizes (bytes) 
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There is a similar problem for the Pareto distribution.  The Pareto distribution is 

unique among the three because it has a non-zero minimum value.  Historically the 

Pareto distribution has been fit to the upper tails of statistical data, rather than entire 

distributions.  Here we must choose the best way to apply the Pareto.  Consequently, we 

must fit the Pareto to an upper fraction of the entire data, but use it to model the entire 

distribution.  Experiments indicate that fitting the Pareto to the upper 90% of the 

distribution gives the best “goodness-of-fit” results when evaluated against the entire data 

set.  For our traces this led to a k of about 130 bytes.  This is what is shown in Figure 4.9.  

However fitting the Pareto in this manner results in the same problem seen with the 

Weibull—overestimation of the upper tail.  Hence, for our work we will fit the Pareto to 

the upper 20% of the download size data.  This leads to a k of roughly half the mean 

response size (8-10kbytes). 

Figures 4.10, 4.11, and 4.12 show the distribution fits (using the new 20% Pareto) 

for traces 1 through 3.  For all three traces the log-normal distribution appears to be the 

best fit, but the Pareto now appears to be a more viable alternative.  The Weibull is again 

shown, but only for comparison purposes.  With sufficient evidence of its lack of fit to 

download sizes, we shall eliminate it from further consideration to model this traffic 

variable. 
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Figure 4.10 - Download size fits for trace 1 
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Figure 4.11 - Download size fits for trace 2 
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4.4 Summary 

In short, we have found the following:  DirecPC HSTN traffic can be modeled at 

the connection level by fitting statistical distributions to two key traffic variables: TCP 

connection interarrival times, and downstream transmission (“download”) sizes.  TCP 

connection interarrival times are neither truly heavy-tailed, nor truly exponential, but fall 

somewhere in between, under the general classification of subexponential.  Exponential, 

log-normal and Weibull are all reasonable candidate distributions for the interarrival 

times, with Weibull appearing to be the best fit.   

 

Figure 4.12 - Download size fits for trace 3 
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TCP download sizes are extremely heavy-tailed, and rather difficult to fit.  

Standard goodness-of-fit tests are not only useless, but even misleading for this variable.  

With care, however, and using the approach we have show, a good fit can be obtained for 

this variable with the log-normal and Pareto distributions.   

Also of note is the fact that, since the log-normal distribution is the best fit to the 

download sizes, they do not have infinite variance.  This has important implications for 

our modeling, implying that the prediction task should not be as difficult.
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Chapter 5 – HSTN Testbed Simulations 

5.1 Opnet HSTN Testbed 

For the purpose of studying the utility of different traffic models in the HSTN 

setting, a flexible HSTN-like environment was needed.  An HSTN simulation testbed was 

constructed using the OPNET discrete event simulator.  The OPNET environment 

provides complete, validated TCP/IP models, along with an isolated, fully configurable 

setting in which to run simulations.   This yields results that are both realistic and 

repeatable—which is necessary for the traffic model comparison undertaken.   

The testbed was constructed as a general model of an HSTN network.  It is based 

on the DirecPC scheme, but with some secondary behaviors ignored, and a few 

parameters generalized. 
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The testbed itself, shown in Figure 5.1, closely resembles a simple HSTN 

network, containing one of each of the fundamental pieces of the system presented in 

Figure 2.1.  There is a client (HH), which sends outbound (request) packets to the hybrid 

gateway (HGW) via a dialup PPP connection; six servers, which return responses to the 

requests forwarded by the HGW; and a satellite gateway (SGW), through which the 

hybrid gateway forwards the response packets back to the HH.  All interconnecting links 

are set to typical values, with the satellite link replaced with an equivalent point-to-point 

link (250ms delay), for simplicity.  Intermediate routers are eliminated because their 

effect on the system is secondary.  

5.1.1 Testbed Hybrid Gateway 

In modeling the DirecPC Hybrid Gateway (HGW) there are several significant 

functions which must incorporated to accurately model the HGW behavior.  First, the 

 

Figure 5.1 – Opnet HSTN Testbed Network 



  41

model must perform connection splitting/spoofing.  Secondly, it must manage the number 

of active connections, and the memory available to each for use as a retransmit buffer.  

Thirdly it must advertise (to the sender) a receive window which is in compliance with 

both the receiver's advertised window size, and its own available buffer space.  Fourthly, 

it must assign “priorities” to connections, based on whether or not they are overusing 

their available buffer, and embed these priority tags for the Satellite Gateway (SGW) to 

use. 

The hybrid gateway (HGW) model is a based on an earlier model of a spoofing 

gateway written at the Center for Satellite and Hybrid Communication Networks 

(CSHCN) at the University of Maryland and used in other Internet over satellite and 

HSTN studies [KLBB99] [LKRB99].  It is built on a basic router model, but with 

extensive additions and modifications, including the addition of a TCP layer capable of 

spoofing/connection splitting.  The IP layer is modified to examine datagram contents, 

and forward all TCP segments up to the TCP layer, which is modified to spoof 

acknowledgements and split connections.  This earlier basic spoofing model was 

extended with additional functionality to duplicate all of the essential behaviors of the 

DirecPC hybrid gateway, including all those enumerated above.   

5.1.2 Testbed Satellite Gateway 

The satellite gateway model is essentially a modified router, possessing only an 

IP, and no TCP layer.  As in the DirecPC scheme it is a two priority queueing system.  To 

determine an incoming packet’s priority, the SGW examines the TCP header for a 

priority assignment given by the HGW.  If the packet is not TCP or contains no priority 

tag, it will be assigned to the higher priority queue.  Only when the higher priority queue 
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is empty is the lower priority queue served.  By default the SGW is configured with 

infinite queues, but is also switchable to finite queue lengths (to study drop probabilities). 

5.1.3 Testbed Client/Server 

Key to studying traffic models is incorporating traffic traces, whether previously 

captured or synthetically generated, into the network.  This was accomplished in the 

testbed by a significant modification of the Generalized Network Application (GNA) 

client and server models found in OPNET.  The default GNA models generate common 

TCP network traffic like HTTP, FTP and other traffic, but provide little flexibility for 

incorporating other traffic models or statistical distributions.  A “trace file” application 

was added to the client and server models.  This new application was written to produce 

traffic from trace files containing interarrival and response size information.  Designated 

interarrival and response size filenames were given, and the client node reads times and 

sizes from them, scheduling requests to be made of the server.  The client and servers 

shown in the testbed are configured as “mega-devices”, that is, they have their packet 

forwarding rates and other settings adjusted so that, in the case of the server, they can 

accurately represent a large number of servers, or in the case of the client, the entire 

group of active DirecPC clients.  (The presence of six servers in the testbed is intended to 

add a measure of interleaving to the packets flowing into the HGW.) 

5.2 Modeling Studies on the HSTN Testbed 

We seek to answer two questions about the models we have proposed for HSTNs.  

First, how well do the different distribution combinations work for performance 

prediction (and in particular, what is the “marginal utility” of the heavy-tailed 

distributions)?  And second, once we have “trained” (meaning fit) our traffic model on 
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our most recent data, how long can the model be expected to remain valid before the 

statistical characteristics of the arriving traffic change too much.  The first question is one 

broadly concerned with which model (that is, combination of interarrival and response 

size distributions) is best suited to HSTN traffic, and whether or not heavy-tailed 

distributions provide significantly more accurate performance predictions.  The second 

asks what the expected lifetime of a fitted model might be, when being applied to 

predicting traffic intensity or system performance for dynamic resource provisioning or 

quality of service (QoS) prediction. 

5.2.1 Test Method 

To answer these questions we set up the following test.  All combinations of 

interarrival and response size distributions were fit to the first 30 minutes of traces 1, 2 

and 3, exactly as detailed in Chapter 4, and synthetic traffic traces were generated for 

each model.  For each trace, the succeeding 2, 5 and 10 minutes of traffic were run on the 

testbed, and separately 2, 5 and 10 minutes of each matching model’s synthetic traffic, as 

well.  For all runs a number of performance metrics were collected, to assess how well 

each model predicted traffic behavior. 

5.2.2 Performance Metrics 

Evaluating the predictive performance of traffic models requires well chosen 

metrics for comparison.  The following metrics were collected for all runs: 

• Peak throughput (in per-second intervals) on the satellite link – this allows us 

to gauge how well a model captures traffic burstiness; 

• Average throughput on the satellite link – this is an excellent gauge of a 

model’s overall prediction of traffic intensity; 
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• Maximum combined queue length on the SGW – this is an excellent example 

of a metric that would require accurate prediction for QoS provisioning; 

• Average combined queue length on the SGW – another measure of overall 

traffic intensity; 

• Peak number of simultaneous connections on the HGW – an important 

resource whose demand is desirable to predict; 

• Peak delivery delay of UDP “probe” packets sent from an IS to the HH (at 

200ms intervals); 
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 Interarrival and Response size distributions 
Actual Trace Exponential Exponential Log-normal Log-normal Weibull Weibull Trace Future  

time Actual Trace Log-normal Pareto Log-normal Pareto Log-normal Pareto 
120s 5161200 4971840 3248984 2984992 2293712 5492160 2895440 
300s 5250272 4971840 3679184 2984992 2293712 5492160 3524256 

1 

600s 5851256 4976080 4175616 3970296 2839512 6058848 4509336 
120s 4335824 3929656 2935816 4035072 2494128 4770256 2838384 
300s 4335824 3929656 3418248 4035072 2494128 4770256 3329992 

2 

600s 5154616 4381456 3524136 4035072 2494128 4770256 3755312 
120s 4495888 3788432 3717520 3043048 2133648 3916656 3239672 
300s 5976744 4841200 4955208 3043048 2872400 5119736 4835760 

3 

600s 7233208 5400296 4955208 3598376 3635872 5227392 4925448 

Table 5.1 - Peak Throughput, Predicted vs. Actual (bytes/s) 

 
Figure 5.2 - Peak Throughput, Predicted vs. Actual (bytes/s) 
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Table 5.1 tabulates the predicted vs. actual peak throughput for all six models fit 

to the first 30 minutes all three traces over the succeeding 120s, 300s, and 600s.  Figure 

5.2 shows the associated prediction error.  The exponential interarrivals with log-normal 

download sizes model, and the Weibull/log-normal model perform best on traces 1 and 2.  

All others are poor predictors.  No model performs very well for trace 3, but the 

exponential/log-normal and Weibull/log-normal are the best. 
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 Interarrival and Response size distributions 
Actual Trace Exponential Exponential Log-normal Log-normal Weibull Weibull Trace Future  

time Actual Trace Log-normal Pareto Log-normal Pareto Log-normal Pareto 
120s 2388730 2525315 1503101 1431301 966787 2565716 1525621 
300s 2985151 2789657 1659555 1449717 860187 2739489 1651473 

1 

600s 3344227 2822733 2024304 1532927 1015692 2785658 2001111 
120s 1991141 2300186 1540868 1489039 956515 2313420 1549943 
300s 2219963 2270101 1617832 1346509 889262 2334632 1665257 

2 

600s 2664985 2345479 1713316 1264444 967744 2344393 1705973 
120s 2239213 1983998 1830608 944116 1032866 2041111 1820233 
300s 3308480 2401022 2245432 1146214 1218284 2395192 2187523 

3 

600s 3816379 2615161 2348372 1391122 1297581 2678285 2328288 

Table 5.2 - Average Throughput, Predicted vs. Actual (bytes/s) 

 
Figure 5.3 - Average Throughput, Predicted vs. Actual (bytes/s) 
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Table 5.2 tabulates the predicted vs. actual average throughput for all six models.  

Figure 5.3 shows the associated prediction error.  The exponential/log-normal and 

Weibull/log-normal models again perform best on all three traces.  All others are poor 

predictors.  Trace 3 is again the most difficult to predict, but for this metric the best case 

error is not as bad as in the peak throughput case.  And, as in the peak throughput case, 

there is a general trend toward underestimation of the metric. 
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 Interarrival and Response size distributions 
Actual Trace Exponential Exponential Log-normal Log-normal Weibull Weibull Trace Future  

time Actual Trace Log-normal Pareto Log-normal Pareto Log-normal Pareto 
120s 4500 3088 3356 3076 3356 3179 3981 
300s 5255 3088 3795 3076 5032 3179 3981 

1 

600s 5255 3703 3795 3220 5032 3667 4133 
120s 3216 2534 3040 3128 3180 3040 3701 
300s 3216 3040 3799 3176 3180 3040 3701 

2 

600s 3216 3040 3799 3176 3326 3040 3701 
120s 3216 2534 3040 3128 3180 3040 3701 
300s 3216 3040 3799 3176 3180 3040 3701 

3 

600s 3216 3040 3799 3176 3326 3040 3701 

Table 5.3 - Maximum SGW Queue Length, Predicted vs. Actual (bytes) 

 
Figure 5.4 - Maximum SGW Queue Length, Predicted vs. Actual (bytes) 
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Table 5.3 tabulates the predicted vs. actual maximum SGW queue length for all 

six models.  Figure 5.4 shows the associated prediction error.  Only one model performs 

adequately in predicting this metric: the Weibull/Pareto.  All others are poor predictors. 

As with the previous metrics, there is a general trend toward underestimation. 

 

. 
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 Interarrival and Response size distributions 
Actual Trace Exponential Exponential Log-normal Log-normal Weibull Weibull Trace Future  

time Actual Trace Log-normal Pareto Log-normal Pareto Log-normal Pareto 
120s 6.46 6.79 4.39 3.86 2.79 6.92 4.47 
300s 8.03 7.50 4.88 3.90 2.52 7.40 4.85 

1 

600s 8.95 7.61 5.86 4.12 2.96 7.51 5.79 
120s 5.34 6.15 4.32 3.99 2.68 6.21 4.36 
300s 5.96 6.09 4.57 3.62 2.49 6.27 4.74 

2 

600s 7.09 6.30 4.85 3.39 2.72 6.31 4.85 
120s 6.03 5.32 5.14 2.55 2.90 5.51 5.17 
300s 8.84 6.42 6.27 3.07 3.41 6.40 6.17 

3 

600s 10.16 7.00 6.56 3.71 3.64 7.16 6.54 

Table 5.4 - Average SGW Queue Length, Predictions vs. Actual (bytes) 

 
Figure 5.5 - Average SGW Queue Length, Predicted vs. Actual (bytes) 
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Table 5.4 tabulates the predicted vs. actual average SGW queue length for all six 

models.  Figure 5.5 shows the associated prediction error.  The exponential/log-normal 

and Weibull/log-normal models again perform best on all three traces, but as in the 

throughput metrics, do not perform particularly well for trace 3.  All others are poor 

predictors.  And, as in the peak throughput case, there is a general trend toward 

underestimation of the metric, particularly for longer prediction times. 
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 Interarrival and Response size distributions 
Actual Trace Exponential Exponential Log-normal Log-normal Weibull Weibull Trace Future  

time Actual Trace Log-normal Pareto Log-normal Pareto Log-normal Pareto 
120s 114 86 83 89 80 98 94 
300s 133 93 92 89 80 100 96 

1 

600s 133 101 98 92 85 114 102 
120s 82 71 70 63 65 75 69 
300s 89 71 70 63 65 77 73 

2 

600s 92 73 71 64 65 77 74 
120s 98 73 71 64 69 81 88 
300s 113 86 80 64 69 86 88 

3 

600s 139 86 80 77 76 97 94 

Table 5.5 – Peak Number of Spoofed Connections, Predicted vs. Actual 

 
Figure 5.6 - Peak Number of Connections on HGW, Predicted vs. Actual 
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Table 5.5 tabulates the predicted vs. actual peak number of HGW connections for 

all six models.  Figure 5.6 shows the associated prediction error. Weibull/log-normal 

model performs marginally well on trace 1 and 2.  All others are poor predictors.  

Predictions for this metric for trace 3 are inadequate for all models.  There is a strong 

trend toward underestimation of this metric. 
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 Interarrival and Response size distributions 
Actual Trace Exponential Exponential Log-normal Log-normal Weibull Weibull Trace Future  

time Actual Trace Log-normal Pareto Log-normal Pareto Log-normal Pareto 
120s 0.312435 0.311659 0.307931 0.306541 0.304823 0.312294 0.307949 
300s 0.314506 0.312997 0.308146 0.306415 0.304359 0.312893 0.308166 

1 

600s 0.315622 0.313259 0.309476 0.306783 0.304783 0.313267 0.309404 
120s 0.309643 0.310292 0.306581 0.305746 0.303934 0.309905 0.30656 
300s 0.310775 0.309921 0.307054 0.305304 0.3037 0.309892 0.307153 

2 

600s 0.312754 0.31014 0.307397 0.305026 0.304025 0.309975 0.307272 
120s 0.361799 0.3432 0.33742 0.32226 0.330512 0.37181 0.363305 
300s 0.361799 0.375965 0.365902 0.362493 0.332846 0.396664 0.363305 

3 

600s 0.414312 0.405213 0.365902 0.462799 0.362113 0.420792 0.369727 

Table 5.6 – Average UDP Packet Delivery Delay, Predicted vs. Actual (sec) 

 
Figure 5.7 - Average UDP Packet Delivery Delay, Predicted vs. Actual (sec) 
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Table 5.6 tabulates the predicted vs. actual UDP packet delivery delay for all six 

models.  Figure 5.7 shows the associated prediction error.  The exponential/log-normal 

and Weibull/log-normal models again perform best on all three traces.  All others are 

poor predictors.  As with most of the other metrics, there is a general trend toward 

underestimation of the metric. 

These results are quite interesting, though in some respects difficult to interpret.  

Two models seem to generally do the best job: the Weibull interarrivals with log-normal 

response sizes and the exponential interarrivals with log-normal response sizes.  The 

performance of the first model is not surprising, since we have already established that 

the Weibull and log-normal distributions are the ones best fitting interarrivals and 

responses, respectively.   

What is more surprising is that the exponential/log-normal model performs almost 

as well as the Weibull/log-normal one.  This implies that for accurate performance 

prediction, a good response size distribution fit is more critical than the interarrival 

distribution fit.  In our studies we have done performance prediction through 

simulation—making any distribution equally easy to use.  However, if performance 

predictions are to be obtained through analytical means the use of exponential 

interarrivals may simplify the analysis and therefore the simplicity/accuracy tradeoff is 

one worth considering.   

For all metrics the log-normal interarrival distribution performs more poorly.  

This is likely due, at least in part, to the fact that the heavier-tailed log-normal slightly 

underestimates connection arrival intensity (which is visible in the error graphs). 
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Log-normal appears to generally be the preferable response size distribution 

match.  But on one metric, the maximum SGW queue length, it is outperformed by the 

Pareto, for all interarrival distribution pairings, on two of the three traces. 

There appears to be a general trend among the models of underestimating the 

metrics.  Even the best fitting models, the exponential/log-normal and Weibull/log-

normal combinations, generally give low predictions of the performance parameters we 

chose.  This could in part be due to an increase in traffic intensity over the succeeding 10 

minutes in the actual traces (this is particularly possible for Trace 3, where, upon review,  

the mean interarrival time of the succeeding 10 minutes was noticeably smaller than for 

the 30 minutes to which the models were fit).  But it also appears that even our best 

models simply fail to fully capture the burstiness of HSTN traffic.  This conclusion is 

supported by the fact that performance prediction is worse for the “peak” or maximum 

metrics than for the average metrics. 

Most difficult to ascertain is how quickly the models’ fitnesses grow stale.  There 

does appear to be sufficient evidence to conclude that this is occurring at time scales as 

small as 5 to 10 minutes.  It is most evident in the averaging statistics, because the 

unavoidable error in predicting maxima over time scales as small as 2 minutes tends to 

mask the phenomenon in the “peak” type statistics. 
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Chapter 6 - Conclusions 

6.1 Conclusions 

Performance prediction via fitted traffic models is a tricky task, magnified in 

difficulty in HSTNs by the requirement of connection level models.  Capturing the 

burstiness, or self-similarity, of traffic is essential for accurate performance prediction.  

Heavy-tailed distributions, like the Weibull, log-normal and Pareto (particularly when 

applied to response sizes), do provide a higher degree of burstiness, but still fall short for 

some metrics. 

It also appears that models—once fit—grow stale relatively quickly.  This 

presents a predicament.  To accurately fit a model we must include a sufficient number of 

samples.  In the case of our DirecPC traces, connections arrived at a rate on the order 

of 1,000 per minute.  Given that heavy-tailed data (such as the download sizes) requires 

an especially large number of samples to provide an accurate fit, 10 minutes would seem 

to be the minimum amount of time over which to fit our model.  However our results 

show that the underlying traffic process may barely be stationary over this amount of 

time.  This is an empirical manifestation of the fact that no theory for non-linear 
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prediction has been developed for the statistical models (except for the case of Gaussian 

self-similar processes). 

6.2 Future Work 

This thesis did not address analytical performance prediction, choosing instead to 

predict performance by simulation.  A similar study of the performance predictive utility 

of these traffic models, but featuring analytical results, would be equally enlightening. 

Other interesting expansions on the work presented here would include varying 

the amount of “past” time the models are fit to, and further increasing the amount of 

“future” time they are used to predict.  This study has only highlighted the limited 

lifetime of a fit model. 

In addition, it might also be possible to “weight” the trace data so that the more 

recent past figures more prominently in the calculation of model fits (the idea being to 

“ground” our models in a significant amount of historical data, but still make them 

flexible enough to accommodate recent changes in the traffic characteristics). 
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