THE CONTROL OF MULTIMEDIA
COMMUNICATION PROCESSCRS :
FOR MESSAGES WITH TIME CONSTRAINTS

by

Jen-Lun Yuan

Thesis subriitted to the faculiy of the Giaduate Schoo)
of the TTniversity of Maryland in partial fulfillment
of the requirements for the degree of

Master of Science
1988

Advisory Committee :

Professor Dr. John S. Baras
Professor Dr. William S. Levine
Assistant Professor Dr. Pantelis G. Tsoucas

ABSTRACT

Title of Thesis : The Control of Multimedia Communication
Processors for Messages with Time Constraints

Jen-Lun Yuan, Master of Science, 1988

Thesis Directed by : John S. Baras
Professor
Electrical Engineering Department
University of Maryland at College Park

Abstract — This thesis deals with the message switching problems in a multiple
networks environment with time constraints for each message class. The sojourn
time distribution for an overtake free path are first derived for two classes of
routing algorithms, namely, the shortest path algorithms and the optimal routing
algorithms, based on Kleinrock’s assumptions for standard queueing systems. The
estimates of 99% or other percentile of the delay distributions are derived. They
are converted into sequences which represent the “reward” one gets by operating
one of the subnetwork(media) with routing strategies specified. Based on this
reward sequence we formulate the problem of message allocation into the famous
“Multi-armed bandit problems” in which the optimal policy has been known to
be operating the arm of the bandit with the “Gittins index”. A simpler index is
found by the non-increasing properties of our reward sequences. Qur algorithms
switch messages based on this index rule to the maximal-current- reward(MCR
rule) network. Our algorithms are suitable for distributed implementation on a
multimedia network environment. We show that the indices can be computed in
time O(nlogn) by employing the fast Fourier transform algorithms to compute
sample points for delay distribution. The algorithms have been simulated by

QNAP2 and the simulation results show that our algorithms give better delay

performance than most conventional routing algorithms do. It also reduces the

portion of messages that are not able to meet the time constraints.

ACKNOWLEDGEMENT

I am indebted to my advisor Dr. John S. Baras for his patient guidance
and enthusiastic advise during the preparation of this thesis. His kindly trust and
timely encouragement motivated me in my academic study. I am also very grateful
to Dr. William S. Levine and Dr. Pantelis G. Tsoucas for serving on the thesis
committee. Special acknowledgement is given to National Science Foundation
and CONTEL / Federal System Department for their support of this research.
Finally and most importantly, I wish to acknowledge that this thesis could not
have been accomplished without the encouragement of my parents, Shih-Chu Yuan

and Chin-Lien H. Yuan.

TABLE OF CONTENTS

Chapter 1 Introduction 1
Chapter 2 Some Related Models
and Background Review 7
2.1 The Heterogeneous-Server Queueing Model 7
2.2 The Multiple Output-Queues Model 10
2.3 The Multiple Sub-networks Model 14
Chapter 3 Derivation of Indices for Messages Switching 18
3.1 The Analytical Model 19
3.2 Single-Path Delay Distribution 23
3.3 Delay Bounds for two Classes of Routing Algorithms 27
‘Chapter 4 The Computation of Indices
and the Switching Algorithms 39
4.1 Computation of Indices 40
4.2 The Switching Algorithms 46
Chapter & Simulation Results 52
5.1 The Simulation Scenario 53
5.2 Simulations for the Expected-Delay Indices 57
5.3 Simulations for the Delay-Bound Indices 68
Chapter © Conclusions 81
Appendix 83
A.1 Proofs of Lemma 3.3 83
A.2 Proofs of Theorem 4.1 84
A.3 QNAP2 Simulation Programs:
the Expected Delay Case 86
A.4 QNAP2 Simulation Programs:
the Delay Bound Case 98
References 111

i

CHAPTER

ONE

INTRODUCTION

This thesis considers the problems for the control of communication processors
which allocate incoming messages to an available set of transmission media. A
major performance measure for this communication processor is to guarantee that
a large percentile of messages, say 99%, must be delivered within a time bound.
This problem arises in applications that involves time-critical message contents
and in cases where the cost for the design and operation of a network is not a

major concern(3].

In recent years, the communication technology of satellites, optical fibers and
VHF /UHF radio are increasingly important in the design of a practical com-
munication networks[21]. One may expect that networks with more than one
transmission media will be available in the near future. On the other hand, the
technique to store-and-forward messages in a computer communication network
has received a lot of research effort since the pioneering works of ARPANET]|1,3].
Therefore, it is of great interest and importance to investigate the problem for

controlling the multimedia packet-switching communication networks[27,28.29].

In a practical multimedia network each communication processor(node) may

O simp ~ RSATELLITE

Figure 1.1: A multimedia network

have different set of media available for switching. For example, Consider the
multimedia network of Fig.1.1 which consists of a ground(terrestrial) subnetwork
and a satellite subnetwork. Each node is a interface message processor (IMP) or
a satellite interface message processor(SIMP). For each SIMP, there are two me-
dia available but for each IMP, the message can only be routed to the terrestrial
network. We are interested in designing the routing problems for the SIMP which

switches messages between the ground subnetwork and the satellite subnetwork.

This problem is especially important when some of the subnetworks are exist-
ing networks[34]. In the design of such multimedia networks, we have no control of
the messages once they are sent to those existing networks. The existing networks
have their own protocols for routing. Therefore, our problem is to design a message
allocation scheme(or a routing procedure) for the switching nodes(like SIMP’s
in Fig 1.1) which have the capability to utilize different media(subnetworks). The
allocation scheme uses information (e.g. local queue length, utilization factors,
mean service time, customer priorities , connectivity..) fedback from each media
to make routing decisions. Usually, the the feedback information are different
for different subnetworks and sometimes only part of these information are avail-

able. Our routing schemes have to make decisions based on the available infor-

[o)

mation[39].

This type of networks design problem have never been reported before in liter-
ature. Most previous research effort in the design of multimedia networks has been
devoted to optimization of traffic flows and capacities assigned for each link sub-
ject to a set of delay constraints[1,27,28,29,30]. Their studies centered on networks
utilizing all media available and assumed that we have control for every interme-
diate nodes(the IMP’s in Fig.1.1) in every subnetwork. It is thus difficult to
apply their result to our problems where some media may be an existing networks
which already has its own protocols for routing. Therefore, our objective here is
to propose a scheme(algorithm) which can be implemented on the communication
processors working as message interfaces for some existing networks(media). Fur-
thermore, our algorithms should be adaptive in nature, reponding to changes in

the information provided by each subnetwork.

Besides the problems we outlined above, we have found several problems asso-
ciated with currently existing routing and control strategies for a communication

network:

e Up to the present, most studies and implementations have been centered
on networks using solely point-to-point links like the Advanced Research
Project Agency Network(ARPANLT)(31,32,33] or multi-access network like

ALOHANET([35]). Routing procedures for the point-to-point type network

led to a rich field for the study of the random access protocols[1, 17,18,19,20].
However, very few has been done for the combined model where the point-
to-point networks and the multi-access networks are considered at the same

time[28.29].

Y Y

NETWORK LAYER TRANSPORT LAYER

MAC LAVER MAC LAYER

DATA LINK LAYER NETWORK LAYER

Y v

Figure 1.2: (a) MAC layer(1) Fig.1.2(b) MAC layer(2)

e Most network design problems up to date fall into the category in which
the location of nodes(topology), links and channel capacities are selected
so as to minimizing some objective function under some constraints which
are usually the traffic demands, estimates of some percentile of the delay
distribution and reliability considerations[1,5,36,37,38]. None of them con-
sidered the design of network processors to control several existing networks
in which the nodes, links and channel capacities are all fixed and the only

free parameters are the feedback information from each media(subnetwork).

o The ISO standard seven layered architecture[8] which are adequate for most
network designs[6,7] is not readily applicable to the design of multimedia
networks. If we consider the control of different rﬁedia as a sub-task per-
formed by the network layer(ISO model), then we should introduce an
additional layer between the network layer and the data link control layer.
This layer is called the Medium Access Control(MAC) layer (see Fig.1.2(a)).
On the other hand, if we consider each medium as a network , we are actu-
ally introducing the MAC layer as the protocol for media control which lies

between the transport layer and the network layer(see Fig.l.?(b)).

* Routing strategies known today can be classified into two categories: one

is the shortest path routing[15,22,23] which usually consists of finding an
estimated link delay(ELD) and assigning flows along the path with the
smallest ELD. The other is known as the bifurcating routing[5],or optimal
routing[4,16] or the best stochastic routing[39]. The approach optimizes the
overall average packet delay given the set of link capacities and traffic re-
quirements and finds the optimal flow on each link of the network. However
no known implementations of this approach to a practical network has been

known yet[5].

e The time constraint considered by present routing strategies are almost al-
ways the “socially optimal policy” which minimizes the average delay of all
messages as described above. In some cases, we may need to consider the
“individually optimal policy” which for each message minimizes its own de-
lay[49]. Especially in time-critical cases where the performance measure is
not just minimizing the average delay but keeping the sojourn time in the
network below a time bound. In this case the “socially optimal policy” does
not satisfy the problem since it may sacrifice one job if this job increase the

overall delay for all jobs[49].

Based on the problem for current routing strategies, we proposed a control

scheme with the following characteristics:
e A control scheme which utilizes multiple networks(media).
e Algorithms can be accommodated with existing networks.

e The routing decisions are made based only on partial information fed hack

from each media(subnetwork).

e Algorithms are heuristic and adaptive to the major changes of networks.

e Time constraints considered are “individual” as opposed to “socially” opti-
mizing criteria. The purpose is to guarantee a large percentile of massages

arrives within the time bound.

The organization of this thesis is as following: In Chapter 2, we first give some
interesting models that are relevant to the control of multimedia networks. These
models motivates our heuristic algorithms and the switching rule which is based
on the computation of estimates of some percentile of delay distributions. The
derivation of these estimates are given in Chapter 3. A simple model is proposed
so that the analysis is tractable. In Chapter 4, we give the heuristic algorithm
based on the “Multiarmed bandit problem”[54,55] and show that the index can be
computed with time O(nlogn) by the Fast Fourier Transform algorithms. Simu-
lation results are given in Chapter 5. Finally, suggestions for implementation of
our algorithms by VLSI chips are proposed in Chapter 6 where conclusions and

comments are given.

CHAPTER

TWO

SOME RELATED MODELS
AND BACKGROUND REVIEW

In this chapter, we give three queueing models that are related to our problem

for the control of multimedia communication networks.

2.1 The Heterogeneous-Server Model

Consider the network in Fig 2.1: There are two media with the same point-to-
point connections. Assume that each node in the network has the capabilities to
switch messages to different media and each medium is characterized by a unique

capacity Cj, (2 = 1,2,C; > C,).

To control the routing of messages for this two-media network, it suffices to

propose a two level routing scheme and divide the whole problem into two portions:

e Global routing level

e Local routing level

By this approach, we try to combine the strength of centralized and distributed

algorithms by an algorithm in two portions: In the centralized portion, a global de-

-1

MEDIUM 1

Figure 2.1: A two media network

cision is made as to which “logical path” to take among all the paths available for
a source-destination pair and we can employ any of the existing routing algorithms
which is optimal in the sense of smallest average delay[15,40]. In the distributed
portion, each node makes its final routing decision about which medium to take

based on its local information.

This two-level approach is like delta-routing[41] and R.P.Boorstyne and A.Livne
proved that this two-level approach improves in time delay while maintaining good
paths[42]. What we have done here is to introduce an additional layer between
the network layer and the data link control layer like we did in Chapter 1(see

Fig.1.2(a)).

Now, consider local routing for this network. Each link can be decomposed
into two physical links(see Fig. 2.2(a)). If we model each physical link as a single
server, we have a queueing model depicted in Fig. 2.2(b) where a queue is added
to the head of each node as an input buffer. Messages coming to this node are
queued in this input buffer waiting for service.l Each server is characterized by a
different service distribution according to the class of the customer. In standard

queueing terminology this is a G/G/2 queueing system.

oo

MEDIUM 1

>

MEDIUM 2

SERVER 1

INPUT BUFFER
SERVER 2

Figure 2.2: (a)A logical link. Fig.2.2(b) A G/G/2 queue.

The control problem of such a G/G/2 queues has received considerable atten-
tion in two respects: either seeking a individually optimal policy (see Chap.1) or

a socially optimal policy which minimizes the average delay of all jobs.

In [43], Agrawala et.al. considered the problem of obtaining a socially optimal
policy when there are no arrivals to the buffer and the service time distributions are
exponential with mean u~'(¢ = 1,2, gy > p,). This is in fact the G/M/2 queueing
system. They have shown that the socially optimal policy which minimizes the

total delay of all existing jobs is given by:

Theorem 2.1 The link with a smaller capacity(or the link associated with u,)
should be utilized only when the number of customers waiting in the buffer is

greater than T where T is given by:

T=p/p2—1 (2.1)

The result can be generalized to the G/M/s case, with s > 2(see [19]). In [44],
Larsen obtained the socially optimal policies for exponential servers when the ar-
rivals form a Poisson process. He also conjectured that if arrivals are Poisson and
service process are exponential, then the socially optimal policy is of threshold

type. That is, there exists a number 7, such that the second media(link) should

9

be utilized only when the number of jobs in the buffer exceeds 7. This is proved by
Lin and Kumar[66]. They also show that as 7 increases and the rate A of Poisson
arrivals decreases r will converge to (2.1) as A — 0. It is conjectured that this

result can also be extended to the cases s > 2(see [49]).

Recently, Viniotis and Ephermides[45] extended the result to the case of arbi-
trary distribution of arrivals and with service time of unequal distributions(also

arbitrary). Both average(socially) cost and discounted cost are considered[45].

In {39], Kumar and Walrand studied the individually optimal control of this

queueing system also with general arrivals and service processes.

These results give us the dynamic routing rule for the local routing level. How-
ever, we would like to consider a more sophisticated model which is motivated by

studying the node structure(Fig. 2.3(a)) in a real communication system[46].

2.2 The Multiple Output Queue Model
Consider the outgoing links of Fig.2.3(a), each link corresponds to a medium
or a link in a sub-network. Taking the communication processor with the output

links gives us the model of Fig.2.3(b).

The communication processors in Fig.2.3(b) operates as follows: Messages ar-
rive from the incoming links, the communication processor fetches the message
from the input buffers and decides which way to send it. The processor makes its

routing decisions based on the following information:

1. The capacity C.C; of different media.

10

incomhl'
INPUT B ' —_— C

TPUT q Ci
—_— BUFFERS
COMM. L (O)—
PROCESSOR —
2 C2

Fig. 2.3(a) The node structure for Fig.2.3(b) The output queue model
a communication network

2. The message length distribution of each class of customers.
3. The “population” in ¢, ¢2.

By class of customers, we mean each class is characterized by different mes-
sage length distribution and possibly different paths(determined by global routing
level). By “population” in each queue, we mean the information about the num-

ber of customers in the queue and the class each customer belonging to.

The control problem for switching messages to output buffers by this commu-
nication processor is a dynamic routing problem[47]. The difficulties involved in:
studying this problem stems from two sources: First, the information available at
different nodes may be different. Second, dynamic routin‘g strategies can lead to

queue behavior whose statistical characteristics are not yet understood[47).

Because of the intrinsic difficulty outlined above, algorithms for dynamic rout-
ing are almost always heuristic({39,48,51]. Among these heuristics, it may be inter-
esting to compare their performance with the bifurcating routing rule[22] which
is optimal in the sense that it gives the minimal overall delay averaged for all
source-destination pairs. With this routing rule, our problem simplifies to finding

the optimal flow z,,z; on ¢; and ¢,.

11

o —'O__ MEAN BUSYPCT | ng
] ql 0.07 qll] 0.2 0.430 P12
r=0.TS A
__D— q2| 3.0 0.837 [5s6
q2 0.03

Fig. 2.4(a) A bifurcating problem Fig. 2.4(b) Simulation Data

The optimal flows are given by(see [4]):

{.’L‘]—_—T‘ fOrT‘<Cl—\/Clcz

Ty =
T = (r—(Ci+Cy))+C

1 2 f >C_
{zz—ﬁv-(m@»m T2 G Vas

We assign each incoming message to q; and ¢; according to probabilities p,

and p; as in [39] where:

pr=z1/(21 + z2)
(2.3)

p2 = z2/(z1 + x2)

One can easily find out the problems about the bifurcating routing rule. For
example, consider the queueing system in Fig. 2.4(a): the routing probabilities
p1, p2 are computed according to (2.3). However, one may find that the second
queue may cumulate a lot of customers as in Fig. 2.4(a) while the first queue is
empty. (It is also likely for queue one to cumulate customers as queue two.) One
can readily see that resources are wasted and the performance will be decreased.

This example also gives us the idea to “balance” the load between ¢; and ¢,. It

12

also tells us that by adding some deterministic rules to the routing, it will reduce

the overall delay.

The simplest balancing scheme is to send the message to the output queue
with the shortest queue length. More balancing scheme can be found in [48]. For
the join-the-shortest-queue rule(JSQ rule), Ephremides et. al. has proved that it
is optimal under the constrain that C; = C, and that all messages have the same

message length distributions[47].

However, in cases where multiple classes of customers are in the network, in
order to get a better result, we need to use the information about the customers
in each queue rather than just using the queue length for routing. For example,
consider an arriving sequence, A,B,A,B with arrival time 0,1,2,3 respectively and
no arrivals after that. Assume Cy = C; for the queueing model in Fig. 2.3(b), if
we use the JSQ rule to route the sequence, we find that the resulting output in
each queue are as shown in Fig. 2.5(a) or Fig. 2.5(b). We also -assurne that the
service time is deterministic for A and B with 74 = 4,75 = 10. Now, the total

delay for Fig. 2.5(a) and Fig. 2.5(b) can be computed:
T'=4+104+(2+4)+(8+10) =38

T, =4+10+ (4+8) + (10 +1) =37

However, one may easily verify that the optimal assignment for this sequence

is as in Fig. 2.5(c), with total delay:
To=4+10+(2+4)+ (1 +1+10) =35

This example motivates the idea to make use of message length distribution

to make a better decision. An algorithm has been proposed by Yuan{52] in which

13

B A A A A A

Figure 2.5: (a)JSQ rule(1l). Fig.2.5(b)JSQ rule(2). Fig.2.5(c)Optimal assign-
ment.

the effective queue length for queue j is given by:

Ly =Y L}/C; (2.4)
k

where Cy is the capacity at link j (associated with queue j) and the L,* denotes
the message length for k_th message in queue j. This equation is the effective

residual service time [4] of output queue j.

The simulation result given in [52] shows that their algorithms outperform the

bifurcating routing[22] and the JSQ rule described above.

2.3 The Multiple-Subnetworks Model

In previous sections, we presented two queueing models, namely, the heterogeneous-
server model and the multiple output queue model. In these two models, we as-
sume that we have control over any single node for all media. This means that
in order to implement the dynamic routing rules presented in Sec.2.1 and Sec.2.2,
we have to control the processor C; in Fig.2.2(b) and the controller in Fig.2.3(h).

Nevertheless, in practical networks, each medium may be an existing network(see

14

feedback buffer

L1 net 1

the comm
processor

feedhack butftern

net n

Figure 2.6: The Multiple Network Model

Chapter 1) in which we have no control over each single node so as to use they
for the purpose of routing. It is thus possible to make routing decisions at cer-
tain “switching nodes” only and the decision is based on the information fed back
by each media(subnetwork). In this case, we may consider each single medium
network as a “black box”. The switching nodes then choose one of these parallel

boxes to send the message.

In this model, each subnetwork represents a single media, we will thus use

“media” and “subnetwork” as synonymies.

Note that the only information one knows about each black box is from the
feedback buffer which is refreshed periodically by the subnetwork. The feedback
information may be different for different subnetworks. Fér example, one subnet-
work may be an random access network like HF radio net, another one may be a
terrestrial(ground) network. For the radio net, the feedback information may in-
clude the status or utilization of the collision channel[4] while the ground network
may include load, message classes, connectivity, etc for the ground links. Since
each network feeds back only part of the information about the network itself.
The decision rules which utilizes these information are usually heuristic. It is the

major purpose of this thesis to propose an efficient heuristic algorithm for this

-

15

multiple subnetwork model presented in this section.

Our heuristic algorithm switches messages according to an index associated
with each subnetwork(see Chapter 4). The index is chosen according to the re-
quirement of the specific problem. For example, if the requirement of the problem
is to minimize the expected delay, we can choose the index to be the the average
sojourn time for all messages throughout the network. If the problem is to guaran-
tee that ninety-nine percent of the messages to arrive within the time bound(like
what we did in Chapter 1), then we can choose the index to be the estimates
of the 99% or other percentiles of the delay distributions. We will refer to these
estimates collectively as delay bounds, by abuse of terms. We want to emphasize

that they are different from average delay estimates.
The advantages of using this approach for message switching is the following:

e Flexibility - The index can be chosen to fit a particular problem.

e Modularity - The allocation algorithm is independent of the index compu-

tation.

e Portability - The algorithm can be easily accommodated with existing net-

works.

e Efficiency - The heuristics can be chosen so that the complexity of index

computation istractable.

e Adaptability - The routing rule is adaptive responding to the major changes

of the network.

In the next chapter, the indices for message switching will be derived. We
derive the index for computing the ninety-nine delay percentile since the index for

computing the average delay can be easily found from the delay distribution. The

16

switching algorithms utilizing these indices will be given in Chapter 5 where we
consider the switching problem to be the “Multi-armed bandit problem”[53] and

the “Gittins index rules” are in fact the allocation rule we used for routing[54,55].

17

CHAPTER

THREE

DERIVATION OF INDICES
FOR MESSAGE SWITCHING

In Chpater 2, we introduce three queueing models for the multimedia network.
Our emphasis is on the multiple network model presented in Sec.2.3. The model
overcomes some difficulties for the control of existing netowrks discussed in Chap-
ter 1. In order to implement the allocation algorithms for this model we need to
know the indices for switching. In this chapter the indices for delay bound are

derived based on a simple mathematical model proposed in Sec.3.1.

Indices for evaluating most packet-switching networks are usually the follow-
ing[1]:

° delay'

e throughput

e cost

e reliability

For our problem, the most important index for performance evaluation is the de-
lay experienced by messages throughout networks. Our main purpose is to keep

the portion of messages whose sojourn time exceed the time constrain as small as

18

possible. This is the same as keeping the “tail” of the delay distribution which
lies beyond the delay bound to a minimum. Therefore, we need to know the delay
distribution which represents some good approximation of the sojourn time for
a single message. The analysis is based on Kleinrock’s model[2,3] with routing
which satisfies the definitions of Marcov routing(Sec.3.1)[57). It can be shown
that the shortest path routing satisfies the definitions of our analytical model and
its delay distribution can thus be obtained according to the product form results
proposed in Sec.3.2. Our results on shortest path can be generalized to the case of
multiple paths under the condition proposed in Sec.3.3. In fact, the results can be
applied to practical routing(Sec.3.3) even though the constraints are violated[9].
[t is thus reasonable for us to apply the indices we obtained in this chapter to

practical network switching problems.

3.1 The Analytical Model

Consider the network of Fig.3.1 : each link in the network is a M/M/1 -
First Come First Serve(FCFS) queue. Each node is a Marcov routing (to be
defined later) device. We assume that all customers have the same message length
distribution exp(u). Furthermore, for each source-destination pair r, a fixed path
is chosen so that all messages for this source-destination pair are routed through
this path. We then define the class of these messages to be C,,r = 1,2, .-, N(N -
1). Note that the definition of class here are different from the class we discussed
in Chapter 1. The processing delay and the propagation delay are neglected in
this problem. This assumption implies that we can consider the Marcov routing
devices in this model as a dummy queue in which the delay time is zero for all
customers. We will see in Sec.3.3 that this is an important assumption for the

non-passing condition to be satisfied in the case of shortest path routing. Some

19

p—| 9

Figure 3.1: The model network
important quantities and notations we used for this model are listed below:

N = number of nodes in the network.

R = number of classes(paths).

M = number of links in the network.

C; = capacity of link 7,1 =1,2,---, M.
(81,82, +,spm) = the state of the network.

si = (ny,migy---,niR), i =1,2,--- M.

n;» = number of customers of class r on link :.

a(r) = {ir1,%r2, -3 i(} : the set of links on path r with length /.

The reason we model each link to be an M/M/1-FCFS queue is that they
satisfy the conditions which leads to product form networks{2,3,11]. This condition

can be formally defined as follows:

Definition 3.1 (Quasi-reversibility) Let {A;};>0 denote the arrival process to
a queue 1 and {D,}:>0 the departure process of a queue. A queue is quasi-reversible
if :

{Achizs L (nit,nizy - nir) L {D:}o<ics (3.1)

for all time s. where L denotes the independence relations between two random

processes.

Figure 3.2: Marcov routing

One can see that the product form result is a direct consequence of the quasi-
reversibility. There are several quasi-reversible queues which are encountered in
practical applications[56,57]. The fact that the M/M/1-FCFS queue with the
same service distribution for different customer classes is a quasi-reversible queue
has been proved in[12] by Disney et. al. We restate their result as the following

lemma:

Lemma 3.1 A stationary M/M/1- FCFS queue with customer classes Cy,--+-,Cgr

which have the same service time distribution exp(u) is quasi-reversible.

In order to have the product form results, we need to define the routing mech-

anism used in our model. It is given as follows:

Definition 3.2 (Marcov Routing) Consider Fig.3.2. The arrival process of
class ¢ into queue 1 is Poisson with rate rS;. The customers leave queue i and
move to queue j with probability r§;. The probability that a customer leaves the

network 1is :

1= (3.2)

The routing device d; of Fig.3.2 with routing defined above is a Marcov routing

device.

Intuitively, Marcov routing makes routing decisions depending only on the
class of customers, not on the past evolution of the network. With the routing
decisions described above, one can compute the flow \; for each link 7 of Fig.3.2,

and {lambda;,i = 1,2,..., M} is the solution for the flow conservation equation|3]:

A= re+d.0 s i=1,2,..., M. (3.3)

¢ j#i

One can also define the utilization factor of a link given {A; }i=12...0 » {6¢}r=12..R
and {Ci}i=12,..m as :

pir = N/ uCi (3.4)

and the total utilization of queue ¢ as:
R
r=1

Now, we have completed the description of our mathematical model for the
network. The point is that such a network implies product form invariant dis-
tributions for state (s1,s2,...,5a). This result is due to Baskett et al[11] and is

given as follows:

Lemma 3.2 The network of Fig.3.1 with M/M/1-FCFS queue which is quasi-
reversible and Marcov routing devices defined in Def.3.2 has a product form in-

variant distribution:
P(Susz, ce. ,SM) = P1(Sx)P2(52) cee PM(SM) (3-6)

where Pi(s;), @ = 1,...,M, is the marjinal distribution of the queue length

process {S} }i>o -

(8]
[S™)

3.2 Single Path Delay Distribution

Recall in Sec.2.3 that the indices for the switching algorithms are the delay
bounds for a fixed percentile of messages or the average delay used by most current
algorithms. We are thus interested in finding the delay distribution for messages
through a single path. In order to make our analysis tractable, we need another
assumption which gives us the product forms for the generation function of the

delay distribution:

Assumption 3.1 (Non-passing condition) Let link i,j denote any two links
on pathr, r=1,2,...,R. Messages arriving after a tagged message at link 1

never overtake this tagged message at link j.

Before deriving the delay distribution, we first give a combinatorial fact as a

lemma which will be used for our later proof.
Lemma 3.3 For all z; € R,: = 1,...,.M, N € Z%*, the following equation
always hols:

Q)N = b —r— [=" (3.7)

=1 (n;,n; ,,,,, nM) 1= C =
np+ng+ednp=N

where n; € {0,1,2,...}, t=1,...,M. Proof: see Appendiz A.1

Now, we are ready to derive the delay distribution for any path r defined in

Sec.3.1. Let

M
A
e, = Znir = Z ir (38)
=1

1€a(r)

23

Note that: n;; =0, Vi & a(r). This defines the total number of class r messages

in the network. Also define the the total number of messages on link 7 as:

A R
= Zn;, (39)
r=1

The joint distribution for s;,n;, ¢ = 1,..., M can now be found since the
classes of customers in a queue are assumed to be independent, the distribution

is a product of utilization factors:

R
P(si,n;) = P{nilani%---’niR;znir = n;}

ni+nig+ ... +NR 41 2

... plR
nu!,._nm! P P Pig (3.10)

= A

where A is a normalizing constant. A can be found by:

oo R
S TPen) = LT At Il
n=0 3 n;=0 (71.1R) n”' r=1
=AY (X p)
n=0 r
oo .
=AY pM=1 (3.11)

n, =0

That implies A = 1 — p;. After substituting A into (3.10), one gets:

From (3.12), we obtain:

R R pr_t.‘r
= Z(l - pi)(z n;r)! H n’f:
r=1 r=1 "7

3

= (U=p) 2 zm— HR_ H pir

= (1-pi)p" (3.13)

Where the last equality follows from Lemma 3.3. Now, taking the Z-transform of
(3.13), one finds:

IV,'(Z) = Z_ P(n{)z"‘
= (=) Y (e = 1 (3.14)

With this equation, we can find the Laplace transform by the relation between

the Z-transform and Laplace transform evaluated at critical points:
N(z)=T"(A - Az) (3.13)

The derivation of this equality is due to Kleinrock[2]. Using (3.13), one may

rewrite (3.14) as the Laplace transform of the delay distribution for link i:

Ti(s) = Ti(Ai— Aiz)

- 4’\{,‘(2')
s
= Ni(l - /\—i)
1— Pi .
= — " 3.16
T (3.16)
Combining (3.4) and (3.16), we obtain:
_ #Ci(1 = pi) Q-
T.(s)= 3.
(s) pCil = p:i) + 3 319

25

Define t; as the delay time for a single message on link i, one sees that ¢; is the

inverse Laplace transform of (3.17) since:
Ti(s) = f°° F(te~*tdt; = E{e~*") (3.18)
0

Denote the path delay as:
te= >t (3.19)

i€a(r)
The Laplace transform of ¢, is:
T.(s) = E{e™"} = E{e™* Lican® (3.20)

With the non-passing assumption given in the beginning of this section, each
t;, @ € a(r) is independent of one another and (3.20) becomes a product of

marginal expectations. One then use (3.17) to get:

T.(s) = [I E{e™}

t€a(r)
= H T(s)
i€a(r)

ica(r) S T Ci(1 = pi)

We have thus obtained the Laplace transform for the path delay under the
non-passing condition for the network model in Sec.3.1, This fact is stated as a

theorem as follows:

Theorem 3.1 The network model described in Sec.3.1 admits the delay distribu-

tion whose Laplace transform is given by:

Ci(1 — p;i)
Ti(s) = a
s) iegr)SJr#Ci(l - pi) 3

(S
(O]

26

For a single path r, under the non-passing condition.

Our results here is similar to [58,59,60]. But our proof is much simpler and
provides the intuitive interpretation of the model networks. In the next section,
we shall apply this result to the shortest path routing and use it to approximate

the delay distributions for optimal routing.

3.3 Delay Bounds for Two Classes of Routing Algorithms

The Laplace transform of ¢, defined in Sec.3.2 provides us all the information
one needs to derive the delay distribution of a single path. In this section, we
apply these results to the shortest path routing and the optimal routing(static
version). The Marcov routing is satisfied by these two classes of algorithms for
most cases and we prove that the path delay derived in previous sections are
applicable to the case of shortest path routing. For the case of optimal routing,
the result still provides a good approximation due to the simulation result by{9].
This implies that the analysis here can be used to provide the indices in practical

network switching problems.

We first prove the result for shortest path routing, after that, we generalize our
result for a single path to the case of multiple paths and find the corresponding
delay distribution for the optimal routing. Furthermore, the mean and delay for

these two cases can be easily derived from the delay distribution.

The delay bound for the shortest path is given by the following theorem:

Theorem 3.2 (Delay bound for the shortest path algorithms) Consider the

network of Fig.3.3. Assume that the network parameters are defined as in Sec.3.1.

O
~1

\

i2
Figure 3.3: Network with Shortest path routing

—C d

Suppose we implement the shortest path routing on the routing devices defined in
Def.3.2 where the algorithm is centralized, static and a unique path is determined
for every source- destination pair. The delay distribution is then given by Theorem
3.1 and the delay bound By for the 99% messages is given by solving the following

equation:

> biezp(—uCi(1 — pi)Bo) = ¢ + 0.99 (3.23)
i€a(r)

where

1€a(r)
by = ——
#Ci(1 = pi)
a = era(r) #Ck(l - Pk)

Mkea(r) (1Ck(1 = pi) — pCi(1 = pi))
k#1

Assume that pCy(1 — p,) # pCe(l — py), Vs # t.

Proof We first prove that the non-passing conditions in Sec.3.2 are satisfied:
Consider the network of Fig.3.3 where (s,d) = r is a source-destination pair

in the network. We denote the uniquely determined shortest path for r as P;.

28

P, = {s,i1,...,im—2,d}, where m is the path length of r. We claim that:

vr' = (23.7)3 7'7} € P = a(rl) C P. (324)

Vr = (k,1), k¢ P, =>a(r") ¢ P. (3.25)

This means that the shortest path for any two points on P, lies on the shortest
path found by r. It implies that the non-passing condition is satisfied without
the intervention of nodes that do not belong to this path since there are no other
path for messages belonging to (1,7) € P, to overtake a tagged message in this
path(Also note that the queue discipline is FCFS by Definition of the model net-

work in Sec.3.1).

Now, consider the nodes that do not belong to P,. If the non-passing condition
is not true, by (3.25) one find that there exists a path P, , Py = {jp, jp+1,---+Jq} C
Piryy, such that:

jp} jq e P"

and the only way for one message in P, to be overtaken by some other messages is
that the overtaking messages pass through another path like P, and join the queue
in P, like Fig.3.4. Also note that the processing time is zero by assumption(see
Sec.3.1) so that the only possibility for the non-passing condition to be violated is
that when the overtaking messages arrive at j,, the tagged message is still in path
Plsjo—1)- That implies there exists two distinct shortest path r,s for a single source
destination pair (s,d) but this contradicts our assumption that only one path is
possible for every source-destination pair. Therefore, the non-passing condition is
satisfied by the shortest path routing defined above.

The shortest path routing only depends on the customer class for our case and
the definition of Marcov routing(Def.3.2) is thus satz’sﬁed. One then conclude that

the the condition in Theorem 3.2. are satisfied and the path delay is given by

29

v T~
Figure 3.4: Two shortest paths

We can thus find the delay distribution by inverting the transform of (3.22)

which is given by:

' 1
t-(z) = (;egr)#a(l - Pi))[izg‘;r)(j%r) W) = aCi1 = /’i)) X
xexp(—pCi(l — pi)z)] (3.26)

Integrating (3.26) gives us the cumulative desity function(cdf) of t,:

(@) = [“ty

= 3 beap(—uCi(l — pi)z) —c (3.27)
i€a(r)
where a;, b;,c are defined as in (3.28). Setting Fi.(Bo) = 0.99 gives (3.24).
Q.E.D.

This theorem shows that our model can be applied to the network utilizing
the shortest path routing as long as the processing time at the routing devices are
small compared with the queueing delay. However, this model is still too restric-

tive to be applied to practical network problem. In a practical network, there are

30

Figure 3.5: Multiple paths networks

usually several paths employed by a single source destination pair. Therefore, we
would like to generalize the result we have obtained so far to the case of multiple

paths case.

Consider the multiple paths case in Fig.3.5 where the source-destination pair

(s,d) = r (for class r) have several paths for routing:
T1572y. . -y TK(s,d)-
where K (s, d) denotes the number of paths for j_th path for class r.Let

a(r;) = denote the set of links for j_th path for class r.

q(r;) = the probability that the j_th path is selected for class r.

The following theorem gives the Laplace transform for this multiple path
model:
Theorem 3.3 Letr;, j=1,2,...,K,q be one of the path for the source des-
tination pair (s,d). Let q(r;) be the probability that p; is chosen at s, then the

Laplace transform of t, is given by:

Kis,a)
. Ci(1 = pi)
T*(s) = r; # (3.28
]_; " J)ieg,)5+“ci(1—pf))

31

Proof

From (8.19), we have :

Substituting (8.29) into (3.20), we get:

E{e~*|r = ri}

Q.E.D.

t,= >t (3.29)
i€a(r;)
E{e™*"}
E{e—z'e“('ﬂt'}
pCi(1 = pi)
,-EEI,J, uCi(l —pi) +s
E{E{e*|r}}
K,
Yo a(r)E{e™*"|r =r1;}
=1
=1 k ica(ry FCIL = pi) +s)

Theorem 3.3 gives the multiple path delay for any (s, d) pair. Now we select one of

the optimal routing algorithms(see Gallager's[40]) to show how we approximate

the delay distributions for networks using optimal routing strategies.

The Gallager’s algorithm([40] tries to minimize the expected delay over all

links with respect to a set of routing variables {¢;;(k)} with z,5,k € {1,2,---, N}

which specifies the fraction of traffic leaving node i destined for node & via node ;.

The objective functions and the constraints for this mathematical programming

32

k1
n2

ni J
K3

Figure 3.6: Network using Gallager’s algorithms

problem are as following:

1,k

constraints:
fie =2 5:(7)9i(5) ;
si(7) = t(r) + Zisi(5)bu(s) (3.32)

$ik(s) 20, Vi,j,k

where ¢(r) is the traffic for source-destination pair (s, d), s;(j) is the inter-network
traffic for (z,7) and fix is the flow on link (¢, k). Their algorithms find the set
{6 (), Vi, 5, k} by shifting the portion of traffic sent to the non-optimal links to
the links that reduce the cost function. Since {¢i(j),V?,j, k} is totally specified
by the algorithm, we can compute the flow for each possible paths for any source-
destination pair (s,d). As an example, for a network in Fig.3.6, We can see that
there are three nodes K, K, K3 which are adjacent to node i. Taking node j as
the destination node, we can enumerate all the paths starting from node 7 going
to node j.(see Fig.3.7) Note that the tree in Fig.3.7 terminates with node j. This
tree can be generated in finite time because Gallager’s algorithm guarantee that

no looping inside the network[40].

33

Figure 3.7: The paths enumeation tree

Now we denote the set {r;,ry,---, 7} as the paths enumerated from the path

tree for r = (s,d). Each path r; represents a sequence of nodes
(S,kgi),kgi)a"'vkt(jlpd) 1=1,2,--- .M
where [; is the length of path r;.

Suppose t(r) is the traffic for (s,d), the portion of traffic for path r; can be

found by:
li
t(ri) = t(r)[] ¢k<"lk('>(d) (3.33)
J=1 1= J .
where we define:
s2 k) andd 2k
Let,

I
a(r) & I ,0(d)

J=1 =t

Using (3.28), we can find the Laplace transiorm of the delay distribution to be

34

the average of delay for each path in P,, for all ::

EQt(r) H)

JEP:, +/‘C (l—pJ)

Where ¢;(r), Pr;, 1, Cj, pi(7 = 1,2,---,1,,) are as specified before.

Taking the inverse transform of (3.34), one gets:

M; .)
t2(z) = Y a(r)(JTrC(1 - o)) x
=1

: (i) ()
kL exp pC; (1= p;’)z)
Z(H G C(_f)Jl__ o)
=1 “‘l# k) H '3 (loJ)

Rewritting (3.35), we obtain:

m M;

ti(z) =25 bijexp(—#cj(‘i)(P;))z)

=1 7=1

Where,
A’I ‘) %
e = [Tuc0-p")
=1

bi; = H[#C)—NC 1—/’]—)

k#:

where M; is the number of links on the source-destination pair r.

Now, the cumulative distribution function(cdf) of ¢ can be found :

m A,

Fi(z) =35 [byeap(—pC(1 = pNz)] — ¢

=1 =1

(3.34)

(3.35)

(3.36)

with

m M;
c=3_ 2 b;
=1 j=1
By solving
F7(B;) = 0.99
which is:
m M;
Y3 bisexp(—pC (1 = pYBY) = ¢ +0.99 (3.33)

=1 j=1

This equation gives us the delay bound for ninety-nine percent of the messages.

Note that for the optimal routing strategies like [40], the non-passing condi-
tions are violated and it seems that the approximation of delay distribution based
on the assurﬁption of Theorem 3.3 will be a poor one. However, Wong and Lam(6]
have shown that the dependence on the non-passing condition is very mild. They
also showed by simulation that even though the non-passing condition and Marcov
routing is not satisfied, the delay distribution of (3.22) is still a good approxima-

tion.

From Theorem 3.3 and (3.38) we found the delay bound for ninety-nine percent
of the messages by By and B;. They are the indices we want since our problem
has time constrains for message sojourn times (Chapter 1). However, one may in-
terested in finding other indices like mean and the variance of the delay mentioned

before. With (3.22) and (3.28), one can easily find the following theorem:

Theorem 3.4

(1) The mean and variance for a singlc path model defined in Sec 3.1 are given

36

_ 1 p
A o . (3.39)
i€P; Al —pi
1 pi |2
o = — () (3.40)
N ieZP, AL = p;

(2) The mean and variance for a multiple path model defined in Sec.3.3 are given

by:
— P
tr = q(r; (3.41)
Z GZP: A T—pi
2 p' 2 9
1=1 xEP Pi
Proof
By (3.20), we have:
T,(s) = E{e™*"} (3.43)

Differentiating (3.43) with respect to s on both sides and setting s = 0, we obtain:

%T"(s)l.mo = E{——t,e—“'}l,=0 = E{_tf} (3'44)
9 2 2 _—st, 2
6 2Tr()IS’—‘O = E{t" € }|S=0 = E{tr} (345)

From (3.22), one finds:

s} —uCi(1 — p;)

9r(s) = 3.
9 () ig:(r) (s +puCi(1 = pi))? (3.48)
9? _ 2uCi(1 — p;) -
52 = 2 Ge e (3:47)

1€a(r)

37

From the equation:

ol = E{t?} - E*{t.}. (3.48)
and (8.46),(3.47), and after simplifications one gets:
. & 1 pi
E{t;} = Y q(r)) X2 SV (3.49)
=1 iep, Nt TP
2 <l 1 Pi o
E{3} = D q(ri) Y)‘—5(1—_) (3.50)
1=1 iEP,-J i —pi

The proof for the multiple paths case is similar. Q.E.D.

It can be easily verified that (3.39) and (3.41) are consistent with Little's re-
sult[61]. We have now concluded the derivation of some delay bounds which can
be used as indices for switching in the allocation algorithms of Chapter 4. The

shortest path routing algorithms are used for simulation in Chapter 3.

CHAPTER

FOUR

COMPUTATION OF INDICES
AND THE SWITCHING ALGORITHMS

In Chapter 3, the delay distribution are derived in the forms of the Laplace
transform of path sojourn time. From Theorem 3.2 , we know that the delay
bounds are given by solving the non-linear equation of (3.23). One then applies
the numerical algorithms like Newton iteration method[62]. to compute the root
of that equation. The monotonicity of the probability cumulative density func-
tion guarantees the convergence of iterations in finite time[62]. However, we give
another approach for the computation of indices which is based on the fast algo-
rithms of Fourier transform([63]. By this approach, we show that the delay bound
can be derived similar to many signal processing problems using discrete Fourier

transform.

The O(nlog n) time complexity for FFT algorithm provides us an alternative
to implement our index rules in which the computation time is crucial for practical
use. In the following sections, we first outline the FFT algorithm for indices com-
putation in Sec.4.1. After that, we consider the switching algorithms which are
based on the “Multi-armed Bandit problem”([53,54,55]. Using the optimal policy
for this model, we show that the switching algorithm is simply the switching to

maximal-current-reward(MCR) rule. These results are given in Sec.4.2.

39

4.1 Computation of Idices
We first show that our result for delay distributions in Sec.3.2. which are given
in the form of Laplace transform can be converted into the Fourier transform. This

fact is based on the following lemmal[64]:

Lemma 4.1 Let f(t) =0, fort < 0, We denote the Laplace transform and the
Fourier transform of f(t) as L[f](s) and ®[f](w) respectively, where s = o + jw.

If L[f] ts absolute convergent, i.e. [5°|f(t)|dt < +oo, then

®[f] = L[fllo=o (4.1)

Proof Reuwrite the definition of Laplace transform, one has:
L[f] =/ f(t)e™tdt = /oo F(t)emt=itdt
0 0

= /Ooc(f(t)e"‘)e‘i“‘dt

= O[f(t)e™]
(4.2)

Under the condition for absolute convergence of L[f] and setting o = 0 gives the
result.

Using (4.1), we may write the result of Theorem 3.1 as the Fourier transform

of the delay distribution:

G- p)
=1l e o)

1=1

where m is the number of links in a(r).

40

Following the proof of Theorem 3.2, we know that in order to compute the
delay bound By, one needs to find the inverse transform of (4.3). However, instead
of finding the inverse transform directly and then solving the non-linear equations,
we can use the FFT algorithms to find the discrete points for inverse transforms

and then compute the cumulative density function,

To do this, we first define the discrete Fourier transform:

Definition 4.1 (Discrete Fourier Transform) Given z = [zo,Z1,...,Zn-1] €

C™, the n sample points of z(t), the discrete Fourier transform of z is given by:

:..Y_g [4¥07‘,13" . 7‘¥n—1]

where

and the inverse transform is defined by:

n—1
T = Z .\’1‘6—1(¥)' (4.3)
1=0

In our case, X is obtained by sampling the delay distribution of (4.3). Note
that each sample point X, is obtained by a product of m terms, the addition
and multiplication inside each term of the product is assumed to cost a constant
time. Hence, the product costs O(m) time. In practical situations, it is always
the case that m <« n since m is the number of links and is bounded by the
path length of the network but n is the number of sample points which is usually
much larger than m. Therefore. we may well assume that the sampling step takes

O(mn) ~ O(n) computation time.

41

Now, our problem is to compute (4.5) in time O(nlogn) which is the time
complexity for current FFT algorithms. We first note that (4.5) is a polynomial
of w*, if

—j(2zk
wF = eI (F)

with coefficients zg, Z1,. .., Zn-1. Furthermore, w* is a primitive n_th root of unity

which is defined by:

Definition 4.2 (Primitive n_th root of unity) 8 € C is a primitive n_th root
of unity if B # 1 satisfies:

(1) B" =

(2)TRaBF=0 j=1,2,...,n-1

With Definition 4.2 one may easily verify that w = e ¥ isa primitive n_th root
of unity. Furthermore, the following theorem which will be used to construct the

recursive relations for computing z; can be proved:

Theorem 4.1

(a) Let n = 2P and assume w is a primitive n_th root of unity then w? is a primitive
n/2_th root of unity.
(b) Wtz = —wk.

Proof see Appendiz A.2.

Now, we can write (4.5) as:

n-1
zi = Y Xiw®, k=0.1,...,n— 1. (4.6)
=0

Assume n = 27, then (4.6) can be expanded into

w21

2 = Xo+ Xjw*+ Xow?+- 4+ X,
= (Xo+ Xow*? + Xw* + ..+ X _zwk(2”—2)) +

"}'(/Ylwlc <+ X3wk3 +---+ X _lwk(2”—l))

k(2”“—1))

= (X0+X2(w2)'°+---+X _2(w?) +

+(X1 + Xa(w?)* 4+ Xy ()T)k (4.7)

n

From Theorem 4.1(a), one knows that w? is a primitive Z_th root of unity.

Hence, we find that (4.7) can be divided into two sequence each one is a discrete

Fourier transform with length 7. Define

A i ki
yk = Z }/iw’ ' (4.8)
1=0
3-1 ,
x & % zw™ (4.9)
1=0

(4.10)
A A) .
where Y; = X5, Z; = Xoi41, 1=0,1,..., 2~1and (4.7) can be written as

=k + mw*, k=0,1,...,= — L (4.11)

o3

Similarly, one can expand (4.5) using Theorem 4.1(b) into:

n—1)
T = Z_\’l‘wkl
=0

43

nol ni nn
= Xi(—w* %Y, k== —+1,...,n.
2, X gyl

nol N n

= ZXI(—wk)v ak,=0,1,--.,——1.
1=0 2

= Xo-— Xxwk’ + szk'z _ . — ‘S(n_lwk(?’-l)

= [Xo+ Xow 2+ + X,_ow* Y]

—[X1+ X3uw*P 4 4 X b)

= [‘YO + AX’2(w2)k' + -4 4¥n_2w2kl(2p—‘_l)]

’ , -1
"[Xl + Xg(wz)’c + o4 Xn_lwzk (27 1)]wk

= yk-‘kak 7k=%""an_l (412)

Combining (4.11) and (4.12), we can decompose the problem of finding the
inverse discrete Fourier transform of size n into two subproblems, each with size

2. Solving these two equations recursively gives us the points(zo, z1....,Zn_1].

The recursive algorithms based on (4.11) and (4.12) are listed below which is

due to Horowitze[65]:

Algorithm IDFT(X, w,n);

begin

if n =1 then 4 «— Xo;
else

begin

Y e [Xo. Xo, L Nos);

44

Z — [X1, X3,..., Xna);
y IDFT(Y, w?,n/2));
z «— IDFT(Z,w?,n/2));

Tk — Yk + zpw*, k=0,1,...,2°"};
Tk — Yk — zpwk, k=2r"1 .. 2°;
end;
end;
Let T'(n) denote the time complexity of IDFT with n sample points Xo, Xy,..., X, _1,

then T'(n) can be computed by the following recursive equation:

T(n)=T(2?) = 2T (2>) +cn

= 202T(2> %) + cg] +cn

= 2?T(l)4+cen+---+cn
[
4

= nT(1)+cnp=cn+cnlogn (4.13)
After we have obtained [z¢,z1,...,Z,-1], the cumulative density function of
t, can be written as:
k
Fo(k) ="z (4.14)
=0

Setting Fx = 0.99 and finding the index which achieves this value gives the delay

bound By. The overall computation time for our indices computation is seen to

45

be the sum of sampling times plus the computation time for IDFT algorithm and

finally the time for computing (4.14):
O(mn) + O(nlogn) + O(n) (4.15)

where

O(f(n))

— = s ccER

f(n)

If m < n, then (4.15) simplifies to O(nlogn), we thus concluded that we
have found a procedure for computing the delay bound for a path delay defined in
previous chapters with time complexity O(nlog n), This result make it appealing

for practical implementation. We conclude this section with the following theorem:

Theorem 4.2 The delay bound for a single path with length m defined in Chapter
3 can be computed in time O(nlogn) under the assumption : m < n, and us-

ing the IDF'T algorithms and the sampling procedure which gives spectrum points
[Xo, ..., X1] in time O(mn).

4.2 The Switching Algorithms

In previous sections, the delay bound for the 99% messages are derived and an
O(nlog n) procedure using IDFT Algorithm for the the inverse Fourier Transform
have been proposed. The bounds computed for each subnetwork can be look as

a “penalty” or “cost” for operating the subnetworks. It is non-decreasing with

16

respect to the number of messages sent to the network per unit time[l1,3]. In fact,

one can approximate this sequence by:

bn

a—n

B: =B + n=01,--- (4.16)

where n is the number of messages(of the same class) sent to the network per unit
time, a, b are constants. This follows from the delay characteristics of an M/M/1
queue[l,3]. This sequence tells us that as more and more messages sent to the

network, the 99% bounds shift to a higher value and increase without bound as

n — oo.
Now, we define the reward sequence based on the above bound sequence:

Definition 4.3 (Reward sequence) A reward sequence {X.,n > 0} for net-

work i is a sequence of non-negative numbers where each X' is defined by:
X, =[L-B]* (4.17)

where [a]* = max(a,0), Va € R, L is the time-bound specified by users. B!

is the bound sequence given in (4.16).

For our problem, we have several networks, each netwbrk is characterized by
a reward sequence {X},n > 0} defined above. Messages arrive at an input queue
according to Poisson distribution with rate A. At any instant ¢ (which is an inte-
ger), the input queue is either empty or more than one customers are waiting for

service(Fig.4.1).

If the input queue is empty the server enters "reset state” and the reward
sequence is re-evaluated according to (4.16) and (4.17). If there are more than

one customers in the waiting room the server enters "busy state”, in this state the

47

‘X21,X31,-- ‘ X&’X%’
X7 X3, X3, X5
Figure 4.1: (a) the “busy” state Figure 4.1:(b) the “reset” state

server takes one message for every time unit and allocates it to one of the sub-
networks for transmission(That is like one arm of the bandit has been pulled.).
Now, we formulate the switching problem as finding the sequence of the subnet-
works to assign those waiting customers such that the total discounted reward is

maximized:

Formally, we want:

max| ia‘r(t)] (4.18)

where a € (0,1) is the discount factor and r(¢) is the reward by operating one of

the networks.

We assume that "2, ' X: < 400, Vi=1,2,..,. M where n, denotes the n,
th times the network has been operated (at time t).

This problem has been known as the “Multiarmed bandit problem”[54],[56].
The optimal policy for this problem has been shown to be one that operates the
arm with the largest index[56]. This is called the index rule and the index was

shown in [55], [56] to be:

-1 _—m vy
Zm:t a ‘Xm

Tz o™

] (4.19)

;
Ty = SUPr>|

48

However, the calculation of this index takes considerable computation time. We

can simplify this calculation by the properties of monotonicity of our reward se-

quences.

From (4.16), it is easy to verify that:
B: >B!, Ym>n (4.20)
Since B! is a random variable, we formally define this monotonicity as follows:

Definition 4.4 (Non-increasing random reward) {X:,n > 0} is a reward

sequence, it is non-increasing if

P{X:

1 <Xin>0,1<i<oo}=1 (4.21)

The following theorem gives us the index rule which utilizes the non-increasing
properties of our reward sequence so that one only needs to send the message to the
subnetwork with maximal current index. The proof is based on the interchanging

argument:

Theorem 4.3 (Index rules for message assignment) If{X_.} is a non-increasing
sequence defined above,

Let X} denote one of the {X},n =0,1,...}
a .
5(t) = arg[‘r_nlag&{‘\;'}] (4.22)

where t is the current time, then the optimal policy is to operate 6(t) at time t.
Proof

Let C(iy,7q,...1n),V.N denote the cost of the objective function:

PR Qt"(t)

where (11,12, ..,1x) is the sequence for operating networks {X,Vn =0,1,..N} at

49

timet =1,2,..,N Assume there is some s such that

Pr{X,’;” < Xisn Nep1 >Ny} =1

Naty?

thus,

R(ZI,Z%' Tty lsylagry ,ZN) - R(Zlyi% ylstlylsy o

= i ary(t) — i a™ry(t)

=1

where r1(t), r2(t) are given by:

ra(t), Vt#s,s+1;
Tl(t) = Q’X:;', t = EN
oI Xi+1 =54 1.
Nss1?

ri(t), Vt#s,s+1;
ro(t) = a’X,‘;’:‘l, t=s;

't X t=s+1.
Substitute (4.25),(4.26) into (4.24), we have:

s Vs S+l Visgel _ A8 Viedr _ 31 Vi
o’ X 4+ a"T X = ot X0 — o’ X

o (X — Xt) + (Xt — X))

ERRLTE S T ns4d

= o’(1—a)(Xi — X

“tnyeg

Combining (4.27) and (4.28) we get:

Pr{(R(ilv'"aisais+la""iN) —R(ila"'sis+laias"'aiN)) S 0} =1

Which tells us that there ezists another sequence (i1, ,ls41s0sy""

alN)

(4.28)

- in) which

gets more reward by interchanging two arguments of the sequence of operation.

Therefore, the sequence (11, 14,2541, - in) 15 not optimal. The optimal policy

is to operate the networks with index 6(n) which chooses the network with the

mazimal current reward. QED

This theorem gives us a simple index rule for message routing. Since the
number of subnetworks are usually small. We do not consider the time complexity
of this switching algorithm here. A linear search algorithm for the maximal index

suffices for this problem.

CHAPTER

FIVE

SIMULATION RESULTS

In previous chapters, we have shown that one can approximate the delay dis-
tribution by the network model presented in Chapter 2. To control the multi-
ple subnetwork model(see Sec.2.3), we only need the utilization factors for each
communication links provided by each subnetwork(under the assumption that
the arrival processes are stationary and the channel capacities are given param-
eters.). The dynamic switching algorithms we derived are based on the “Gittins
index”(with objective function which minimizes the discounted cost). The indices
can be implemented with computation time O(nlog n) (see Sec.4.1) which makes

it practical for applications in real systems.

In this chapter, we simulate a simple two-media network and demonstrate our

simulation results for our switching algorithms.

5.1 The Simulation Scenario

In order to test our switching algorithms, we simulate a simple network given
in Fig.5.1(a). In this network, there are two subnetworks, each one uses a differ-

ent medium for transmission. The first subnetwork(Fig.5.1(b)) uses medium A

52

interarrival service time node proc. | simulation data
time(mean) mean time time files
medium A | medium B
0.5 sec 0.1 sec 0.2 sec 0.05 sec 2050 sec ell,el2
ell,eld
0.4 sec 0.1 sec 0.2 sec 0.05 sec 1640 sec e2l,e22
e23,e24
0.37 sec 0.1 sec 0.2 sec 0.05 sec 1537.5 sec edl,ed?
ed3,edd
0.3 sec 0.1 sec 0.2 sec 0.05 sec 1230 sec | e31,e33,e34
Table 5.1: data set I
interarrival service time node proc. | simulation data
time(mean) mean time time files
medium A | medium B
0.5 sec 0.12 sec 0.15 sec 0.01 sec 2050 sec ed5l,e52
e33,e54
0.4 sec 0.12 sec 0.15 sec 0.01 sec 1640 sec e61,e62
e63,e64
0.3 sec 0.12 sec 0.15 sec 0.01 sec 1230 sec | e7l,e73,e74

Table 5.2: data set II

which may be considered as a “terrestrial” network mentioned in Chapter 1. The

second subnetwork uses medium B for transmission which may be considered as

the satellite channel(also see Chapter 1).

The performance of this network for our switching strategies are evaluated for

three set of testing data. Each set of these data consists of the network parameters

for interarrival time, service time and processing time for each node. The three

data sets we used for simulation are listed in Table 5.1-Table.5.3.

For each data set, we use four routing algorithms, denoted by A1,A2,A3 and

Ad(see Table 5.4), where Al and A2 nses conventional shortest path routing al-

gorithms for subnet 1 and subnet 2 respectively while A3 and A4 uses index rules

53

~ ,
- wm o= - -/ e ad an -
s N4 n7
7
/7 > gt
© o Onb6
Figure 5.1(a) The overall network
n< Q
n7
.
O nd Onb

Figure 5.1(b) Subnet 1 (Medium A)

On2

~

OnS

L d

P——----:‘C----—-o

/
7/
@ n3

~
~

Onb

Figure 5.1(c) Subnet 2 (Medium B)

54

interarrival service time node proc. | simulation data
time(mean) (mean) _ time time files
medium A | medium B
0.5 sec 0.12 sec 0.17 sec 0.05 sec 2050 sec ell,el?2
eld.eld
0.4 sec 0.12 sec 0.17 sec 0.05 sec 1640 sec e2l,e22
e23.e24
0.35 sec 0.12 sec 0.17 sec 0.05 sec 1230 sec | e51,e53,e54

Table 5.3: data set III

Algorithms | Descriptions
Al Shortest path algorithms for subnet 1
A2 Shortest path algorithms for subnet 2
A3 Index switching(using expected delay)
A4 Index switching(using delay bound)

Table 5.4: The switching algorithms for simulation

for switching. The indices we used are:

e the expected delay
e the 99% delay bound

The performance of algorithm A3 and A4 are compared with the performance
of Al and A2. For algorithm Al and A2, we assume that the two subnetworks
have their own routing rules which are static, centralized Bellman-Ford shortest
path algorithms{4]. We also assume that the shortest paths they select initially
are the shortest paths during the whole simulation process. That is, The traffic is
static and the testing messages we sent into the network do not change the load of
the network to a significant level so that the shortest path will change to another
one. Under this assumption, we found two shortest paths for the two subnetwork
by algorithm Al and A2 respectively. For subnet 1, the shortest path found by

Al for the source destination pair (n1,n7) is the path from nl to n2, n2 to n3, n3

33

Figure 5.2: the “relative” flow for each link

to n6 and n6 to n7(see Fig.5.2). For subnet 2, the shortest path is the only path

from nl to n7(via n4).

The traffic for the network of Fig.5.1(a) are given in Fig.5.2, the number as-
sociated with each link denotes the relative flow for that link, for example the

arrival rate at link (n2,n5) is computed by:

5

5+3+0.2)

(arrival_rate_for_n2) x (

where the arrivalrate_for_n2 is computed from the flow conservation equation

(see Sec.3.1).

In the next two sections, simulation results for algorithms A3 and A4 are pre-
sented where we compare the performance of A1, A2 and A3 under the simulation

scenario described in this section in Sec.5.2. and use the same data to simulate

A4(in Sec.5.3) in order to compare its performance with A1,A2 and A3.

5.2 Simulations for the Expected Delay Index Rules
Using the switching algorithms we proposed in Chapter 4, we implemented

it with the expected delay indices on the processing node nl of Fig.5.1 which

56

is the interface for subnet 1(medium A) and subnet 2(medium B). The short-
est path algorithms have been implemented for subnet 1 which choose the path

11— >2— >3- > 6— > 7 as described in Sec.5.1.

We simulate A1, A2 and A3 with data set I, II, III for each one of them. The
delay distributions obtained for our testing messages sent to the network for data
set I, IT and III are given in Fig.5.3, Fig.5.4 and Fig.5.5 respectively. The solid
lines in these figures are the histograms (or distributions) for the sojourn time of
testing messages whereas the dotted lines are the delay histograms for the shortest

paths algorithms.

The source codes in QNAP2 and the statistics generated by the “simulation

solvers” of QNAP2[67] are listed in the Appendix.

From Fig.5.3, we found that the expected delay index used by algorithm A3
reduces the average delay for most cases. However, the “tail” of the. delay distri-
bution may be greater than those using the shortest paths algorithms Al, A2(see

Fig.5.3(al), Fig.5.4(cl), for example).

If the second subnet has a capacity approximately equal to to subnet 1 (see
Table 5.2, for example), then one finds that the delay distributions for the shortest
paths algorithms have a smaller average delay than those using indices for switch-
ing. This is true especially for light traffic conditions(see Fig.5.4(al), Fig.5.4(a2)).
The reason for this is that subnet 2 only uses two links to transmit data from nl
to n7 and has thus less chances of getting congested with other messages from

nodes n2, n3, n5 and nb.

()]
-]

Percentile

Percentile

'lellITIIIIIIKI[TIIITYITI[IIIIIIIT

Al switchir:lg by

.15
" shortest path(netl)

A3 switéhing by
expected delay 4

IIIIIITIIIIII

05 . b , , o —

.I_IL_LIII!I]llllllIllllJLJ

0 i 2 3 4 S 6 7
: Delay(sec)-—for ell,e13

Figure 5.3(al) Delay distributions for algorithms A1,A3
with data set I(i.a. time: 0.5 sec).

-2III}I]!]I]I]IFIIIIIIIII]III|T[ITII

A2 sWitching by _
s shortest path(net2)

‘‘‘‘‘ A3‘ switcﬁing by | —
—_— expected delay —

.l_‘l.L_\LL“l‘l--#-.»Jl]!lll[lllllllll

0 1 2 3 4 5 8 7
Delay(sec)——for el12,e13

Delay distributions for algorithms A2,A3

Figure 5.3(a2) - !
with data set I(i.a. time: 0.5 sec).

(W]
[09)

Percentile

Percentile

2 —] T T T T 1T P TTT rtTeT rriri LRIRLB
15 - ﬂ Al switching by .
I I EPPPeres . shortest path(netl)]
A . A3 switching by
C | expected delay =
05]
0 11 | L1 =t L Il 1 1 L L1 1 111 1.1 1 1
0 1 2 3 4 5 8 7
Delav(sec)——for e21,e23
Figure 5.3(bl) Delay distributions for algorithms A1,A3
with data set I(i.a. time: 0.4 sec).
2 T 1T 17T T T T 17T] 1 TV Tt I 1T 717 I 1 [T T TT] T 7T 171
A2 switching by N

... shortest path(net2)]

A3 switching by |
expected delay -

-

[.+. ll!l[ll L T T

0 1 2 3 4 5 6 7
Delay(sec)——for e22,e23

Figure 5.3(b2) Delay distributions for algorithms A2.A3
with data set I (i.a. time: 0.4 sec).

59

Percentile

Percentile

2 T 717 77 I T 1T 17 I T T 17 T 1 17T] 1T I T 1T T T 17T
15 ; . Al ‘switchir'lg by]
- eeeseee shortest path(netl) A
1= A3 switching by I

expected delay

05 =4] b e —
0 _'I F! Jl L =V LAj I 11 1 1‘ Ll || L I—
0 ! 2 4 5 6 7

Figure 5.3(cl)
with data set

3
Delay(sec)——for e41,e43
Delay distributions for algorithms Al,A3

I (i.a. time: 0.37 sec).

3
Delay(sec)——for e42.e43

2
L-l 1T l T 11T I T T TT ; T TT I T T T ’ T 17177 I T T T—‘
i ; i A2 switching by n
15 B ' . s-see-shortest path(net2)]
s S A3 switching by S— _
= expected delay -
05 — B S]
0 511 Lol lli n.;:TI‘fIﬁjTi“ryabqume {LJ 1|d
0 1 2 4 5 6 7

Figure 5.3(c2) Delay distributions for algorithms A2,A3
with data set I (i.a. time: 0.37 sec).

60

Percentile

Percentile

e § . =e*=++> shortest path(net2)

3
Delay(sec)——for e51,e53

2 T 1T 17 TTTT TT 17 T T 11T 1T T i
-
B !]
L b i
15 l——n Al switching by
TR sereeee shortest path(netl)
1 A3 switching by
. expected delay
= .
- -
05 :
o | 1 1 '] | S | 1411 11 1 1 1 1 1 11 1]
0 1 2 4 S 8 7

Figure 5.4(al) Delay distributions for algorithms A1,A3
with data set II (1.a. time: 0.5 sec).

A2

-2XITE[TTIT‘[llll[I1TI|IIII'lll1lllll

.switchin:g by

| switchiﬁg by
expected delay

05 | : AAAAAAAAAAAAAAAAAAAA S A— o et

Oil lill"'!Sl_ll!ll!J_LlIlllllJill!lL

|

0] 1 2 3
Delay(sec)--for

Figure 5.4(a2)

61

4 5

e52,e53

6

Delay distributions for algorithms A2,A3
with data set II (i.a. time: 0.5 sec).

Percentile

Percentile

.15

TTTTTTTTT VT T T T [P T T T T IrrrT ISR rerT

- Al switching by
st shortest path(netl)]

A3 switching by i

——— expected delay .

Lt ol L | | 1 1 1 | 1 1 11 141 l-‘

1 2 3 4 5 6 7

Delay(sec)——for e81,e63
Figure 5.4(bl) Delay distributions for algorithms A1,A3
with data set II (i.a. time: 0.4 sec).

TIIllTT]]lll!llllIIIT‘IIIIIIIIIII

A2 switching by .
©°""** shortest path(net2)

A3 switchingby _
. T expected delay 4

T ili{‘ 71 71 i T T T

.il--ii_lmilljllli'l’1111‘1!1

2 3 4 5 6 7
Delay(sec)——for e62,e63

Figure 5.4(b2) Delay distributions for algorithms A2,A3
with data set II (i.a. time: 0.4 sec).

62

Percentile

Percentile

05

Figure 5.4(cl)

2 3 4 5
Delay(sec)——for e71,e73
Delay distributions for algorithms A1,A3
with data set II (i.a. time: 0.3 sec).

2 Tl trrT | T TTT T T T T TTT TTTT
= Al switching by -
15 ****** shortest path(netl) i
Py ﬁ switching by]
L] L expected delay .
05]
0 1 11 1 1 1.4 L.l 1 I . | 4111 || 1 114
0 1 8 7

15 —-

2 ‘17111llIIIIIIITI]_[IIII_IITIIIIIIII

A2 switciling by |

*=** shortest path

A3 swit:ching byj

—— expected delay o

(net2) -

-

0 [N B

]|| []IJ_llllllj‘—"fJ-"J—lJ |

0 1

Figure 5.4(c2)

2 3

4

5

Delay(sec)——-for e72,e73

6

Delay distributions for algorithms A2,A3
with data set II (i.a. time: 0.3 sec).

63

Percentile

Percentile

2 VT 71T TTTT |ERER IR TTTT L LR TTr 11
B Al switching by 7]
.15 —
N -e=+s+ shortest path(netl)
A : A3 switching by _____-
- | expected delay -
.05
- -
o 1 .1 11 U S W | 111 11 1.1 1111 1] l—
0 1 2 3 4 5 é 7

Delay(sec)~—for e81,e83
Figure 5.5(al) Delay distributions for algorithms A1,A3
with data set III (i.a. time: 0.5 sec).

2 T ‘IT] T l 1R BRI i T T TT] R] T T 7177 | T T T
o . A2 switching by 7
15 — H " eeeeeee shortest path(net2)
4 B A3 switching by ... _
L . T expected delay =
05 : —
0 | | E | 1 " i) ,LJI | I) | l | } 11 1-—
0 1 2 3 4 S 6 7

Delay(sec)——for e82,e83

Figure 5.5(a2) Delay distributions for algorithms A2,A3
with data set III (i.a. time: 0.5 sec).

64

Percentile

Percentile

Delay(sec)——for e92,e93

Figure 5.5(b2) Delay distributions for algorithms A2,A3
with data set III (i.a. time: 0.4 sec).

'2 FTTT LRI LR ! LIRIRER 71T l LR 1T
| ‘ ! i
15 B Al switching by
- : **e*+ shortest path(netl) -
1 i A3 switching by 7
- expected delay .
.05 i
0 Ll L 1 L 1| b loal 1 A 1 1 I 1 4 1 1 11 1.1 {1
0 1 2 3 4 5 6 7
Delay(sec)——for e91,e93
Figure 5.5(bl) Delay distributions for algorithms A1,A3
with data set III (i.a. time: 0.4 sec).
'2IIITITIIIJIIIIITIIIIIIIII]IITITT]]
L , . A2 .switchiI‘lg by -
A5 — ' rmmmmeesees shortest path(net2) T
el — A3 switching by |
L BE— expecte(d delay
05 L - :
b | “«'? : : : : —
[} o/ B S S crmamy daa g Loy v Ly i b
0 1 2 3 4 S 6 7

Percentile

Percentile

s . A2 switchingby -

'2IIIITIYIIIII T LR TT 11T VT T

§ 111

Al switching by

15 i +ess shortest path(netl) .
) B A3 switching by]
T — expected delay i

.05 L

b

1

Oklllllll\JLlll_llJ 5 D S T A O 1 1 L1

0 1 8 ?

2 3 4)
Delay(sec)——for eAl,eA3
Figure 5.5(cl1) Delay distributions for algorithms A1,A3
with data set III (i.a. time: 0.35 sec).

-2Illl]llllllllllilll|IIII{ITIIIIIII

A2 :switchiflg by

N Z S _shortest path(net2)
1= 5 — A3 switching by R]
L . = expected delay 1
s oy i
0 ~,1 {1 } L] ‘ 1) .L“ETA_".’IWI.---’I"“L.I.--*‘T?1 L | L1 1 1Ll 1_
0 1 2 3 4 5 6 7

Delay(sec)——for eA2.eA3

Figure 5.5(c2) Delay distributions for algorithms A2 A3
with data set III (i.a. time: 0.35 sec).

66

The disadvantages for algorithms A3 can also be found when the capacities
for the two subnets are approximately equal and the processing time is small(see
Figure 5.4). One finds that the best strategies for routing is to choose one of the
shortest path from the two subnets since the delay distribution doest not give
better performance in this case. They may have a large delay than the shortest

path algorithms do and may even have a greater “tail”.

We concluded that in order to have a better delay performance for either the
expected delay or for the behavior of the “tail”, we cannot solely rely on the
index using expected delay. In next section, index for the delay bound are used
for this purpose. The simulation results shows that they overcome most problems

we encountered by using the expected delay as an index.

5.3 Simulations for Delay Bound Index Rule

From the simulation results of Sec.5.2, we find that algorithms using the ex-
pected delay as an'index for switching may not suffice the problem for messages
with critical time constraints. Therefore, we are interested in using the index we

derived in Chapter 3 which are concerned with the critical time constraints.

We simulate algorithms A4 which uses this index for switching for data set
I, IT and III. The delay distribution we got for these three data sets are given in
Fig.5.6, Fig.5.7 and Fig.5.8 where the delay distribution for A4 (the solid lines) are
compared with the distributions obtained from last section(the dotted lines). We
only compare A4 with Al and A3 since the delay performance for A2 is “worse”
than Al and A3 for most cases in Sec.3.2. The source codes for this algorithms

are also listed in the Appendix.

67

Probability

Probability

2 T 1T] T T TT T T 1T T T TT I T T 17T TT1TT1 T TT
s u : » Al switching by 7
i ' **t** shortest path(netl)

L A4 switching by B

u — delay bound -
05 - . - —
RE : i : ‘ :

0 I 1 I e l I N P l i1]! J § I | ' L il J |
0 1 2 3 4 5 6 7

Delay(sec)——for ell,el4

Figure 5.6(al) Delay distributions for algorithms Al,A4
with data set I(i.a. time: 0.5 sec).

2 T I. T T i [T T71 T 17T LRI T 1T
: A AARA S AR A
B A3 switching by | 7
. 15 . : —
i : . s expected delay i
- " delay bound .
05 - —
0 r Ll i 1 [LR I S Y N | I 11 1| ! ! l i1] L 1 1 LJ S i
0 1 2 3 4 5 6 7

Delay(sec)——for e13,e14
Figure 5.6(a2) Delay distributions for algorithms A3,Ad
with data set I(i.a. time: 0.5 sec).

63

Percentile

Probability

2

15

05

sweese+ shortest path(netl) B

JLIIlll[lLJllllllllllllll

Al switching by

delay bound .

0 1 2 3
Delay(sec)——for e21,e24

Delay distributions for algorithms Al,A4

Figure 5.6(bl)

4 S 6 7

with data set I(i.a. time: 0.4 sec).

ti T I | I 7 T1TT] T 17 I IREREL] 1T 1T I 1T T T
- ' A3 switching by E .y
;_ “eroeer expected delay]
i |

T A4 switchi‘ng by _
_ ~— delay bound .
;J; L 11""JL4 ir] I |1l S NN
0 1 2 4 5 6 7

Delay(sec)——for e23,e24

Figure 5.6(b2)

Delay distributions for algorithms A3,A4

with data set [(i.a. time: 0.4 sec).

69

Probability

Probability

15

05

0

05

IIII]l!IlIIII]ITIIIIIIITIITIII
T Al ‘switchingby _
___ Ji L S F— e ‘hortest path(n?tl) .
- A4 switching by —
i = delay bound]
—1:1|1|1']-1 1111i1|1111111l11111!111—

0 1 2 3 4 S 6 7

Delay(sec)-—for e4l.e44
Figure 5.6(cl) Delay distributions for algorithms A1,A4

with data set I (i.a. time: 0.37 sec).

1ll|lll]lllll—rrllllll]]l]l]lITIll
B A3 switching by]
-+++ expected delay -
| A4 switching by —]
B —— delay bound =
S s S S T NN IS W
0 1 2 3 4 5 6 7

Delay(sec)——-for e43,e44

Figure 5.6(c2) Delay distributions for algorithms A3,A4

with data set I (i.a. time: 0.37 sec)

Probability

Probability

Al sWitching by
**** shortest path(netl)

soee

A4 switching by

delay bound

]IlllI[l]lJl]lllllJ!lJlll

L |

Figure 5.7(al)

2 3
Delay(sec)—-—for e51,e54

4 5 6

7

Delay distributions for algorithms A1,A4
with data set II (i.a. time: 0.5 sec).

IlllJJ[llJllll!ll!Itllll!

-2ITIIIIIIIIIIIIIFIlT]I]Il]II]I]TIII

A3 switéhing by
cececade expected dela,y

A4 switching by .. —]

delay bound

..

Figure 5.7(a2)

2

3

4 S 6

Delay(sec)-—for e53,e54

7

Delay distributions for algorithms A3,A4

with data set II (i.a. time: 0.5 sec).

Probability

Probability

-ZT]IIITIIIIIIII!II[II'T]'IIIT[TrII

delay bound

Al .switchix:lg by]
Tt shortest path(netl)
A4 switching by .

"JjllJli[Llllellilllllllll
2 3 4) 6 7
Delay(sec)——for e61,e64

Figure 5.7(bl) Delay distributions for algorithms Al,A4

with data set II (i.a. time: 0.4 sec).

@ TllIlllll]illllflrlIIIII[T1TTTTTIT

A3 switching by
**+ expected delay .

e A4 switching by ...
' delay bound

05

-

O[_—J_Lll]lH"L._l-lilllflIlllllllLllllllll—
0 1 2 3 4 5 6 7
Delay(sec)——for e63.e64

Figure 5.7(b2) Delay distributions for algorithms A3,A4
with data set II (i.a. time: 0.4 sec).

~1
[S™]

Probability

Probability

2 T1]]T]Tl]|l|| llj]ll[l]]ll|f’l[ll
i E Al éwitching by]
shortest path(netl) .
A4 switching by B}
— delay bound -
: H H : 4

Lol 1 [| [Ll L] l L1l J 1Ll

Delay(sec)——for e73.e74

Figure 5.7(c2) Delay distributions for algorithms A3,A4
with data set II (i.a. time: 0.3 sec).

0 1 2 3 4 5 6 7
Delay(sec)—-for e71.e74
Figure 5.7(cl) Delay distributions for algorithms A1,A4
with data set II (i.a. time: 0.3 sec).
2 T]lll|lllllll[lllIlITTTIIIllIIIII
= A3 éwitching by 5 -
expected delay = —
A4 switchingby . _
delay bound
S N I | l [I | | I Ll ! l.—
0 1 2 3 4 5 6 7

Probability

Probability

2 T 1T T] T 177177] T 1T T T 1T] T T T1T il 11T
15 L - - Al switching by .. _—
L HERN v veces Shortest path(netl)
i - A4 switching by B
L delay bound]
05 - e v : - _
O _l | ! } J| il il Ll 1t 1 l J ,{ L1t .l l Lol !_‘
0 1 2 3 4 S 6 7
Delay(sec)——for eB81,e84
Figure 5.8(al) Delay distributions for algorithms A1,A4
with data set III (i.a. time: 0.5 sec).
2 T 17 177 T 1T T T] 1T 1 E T T U1 I T 1 l.]] 1T T l T T T
- A31 switching by -
15 - : S e expected delay]
ni LAY ovitcingby
L I delay bound
05 -+ o —
O ‘I 1t | i 111 ‘LJ_.J | [_L Pl ! | J L4 11 | 14]
0 1 2 3 4 5 6 7

Delay(sec)——for e83,e84

Figure 5.8(a2) Delay distributions for algorithms A3 A4
with data set III (i.a. time: 0.5 sec).

Probability

Probability

Figure 5.8(b1)

.15

.05

T T 177] T 1T T] T TrTT T T T1T7 I 7T TT l 1T]-1 TTTT
15 __ T . Al SWitChihg by _:
R B AL LI Eshortes‘t path(netl) 4
1 T R A4 switching by i
= — delay bound -
08 = L e]
O r) S T J‘ I Al 1 l | I Lt 1 1 J Lo 11 I L1 L
0 1 2 4 5 6 7

3
Delay(sec)——for e91,e94
Delay distributions for algorithms A1l,A4
with data set III (i.a. time: 0.4 sec).

T TT l T T T 7 1 LB ’ T ’l { 1T F] 1T 1TT T 17T
B A3 switching by 7
B expected delay
N Y R O N A4 switchingby]
i [— delay bound 4
_J 1! ; J o [J I N | I 1411 J j I ' L1 I—
0 1 2 3 4 S ¢} 7

Figure 5.8(h2)

Delay(sec)——for e93,e94

Delay distributions for algorithms A3,A4
with data set III (i.a. time: 0.4 sec).

~1

(1]

Probability

Probability

-2_IT11]IIITIlr|l['[l’ITI[IIIII]Y||
15— Al switchingby _
- [©**" shortest path(netl)
. ,A4 switchingby = 7
n — delay bound _
05 |- |

O_!l‘jlllm'"JlJIlllllllllllllljllll
0 1 2 4 5 6 7

3
Delay(sec)——for eAl,eA4

Figure 5.8(cl) Delay distributions for algorithms Al,A4

with data set III (i.a. time: 0.35 sec).
'ZITTTIIIITIVII[Illlllll]ll]]llll]]|
i A3 switching by
15 }— P U SO = U AR
L P e expected delay
4 __ A4 switéhing by. ___________ N
L delay bound i
.05
0 L111111""”..4..4...:»4111#111jlllijil1ljlj1|
0 1 2 4 5 6 7

3
Delay(sec)-—for eA3.eA4

Figure 3.8(c2) Delay distributions for algorithms A3,A4
with data set III (i.a. time: 0.35 sec).

From Fig.5.6, Fig.5.7 and Fig.5.8, we find that the portion of total messages
that exceeds the time bound(for example, 1.8 sec). are greatly reduced compared
the shortest paths algorithms(A1). Their average delay may be greater than those
obtained from algorithm A3 but one sees that the “tail” of the delay distribution

for A4 “drops” rapidly for several cases(see Fig.5.6(c2), for example).

Surprisingly, we find that in some cases algorithm A4 not only reduces the
delay bound but also the average delay(see Fig.5.7). This means that we may use

A4 instead of A3 to reduce both the average delay and the delay bounds.

The mean, variance and the delay bound for our previous data are shown for -
the data set III in Fig.5.9, Fig.5.10 and Fig.5.11 respectively. From these figures.
we conclude that the delay bounds of algorithm A4 are lower for most cases than
algorithms A1,A3. The variance of A4 is larger than the variance of Al but it is
lower than that of A3. The mean of the delay are lower than Al and is very close

to that of A3.

Our conclusion is that algorithm A4 which uses the delay bound as an index
for switching is the best strategy we need for our problem where the time con-
straints are considered. We do not lose much by using the delay bound as the
indices since its expected delay is very close to those obtained from algorithms

employing the expected delay indices.

-1
-1

Average Delay(séc)

.65

Al :switching by
"7 shortest path(1)
A2 :switching by
T shortest path(2)
A3 :switching by
77T expected delay
A4 :switching by
delay bound

[

AN AN A

[T |

1 1 1 ¢4

{

11

—_

‘GllllLililllllllll[llJ!

3 4

5 6

Mean Interarrival Time(sec)

Figure 5.9: the average delay for the delay distributions

78

Delay Variance(sec*sec)

ST T TT T T T T T T TR T I
- ‘\ \ -
-\ \ -
\ \
. \ \ =
.18 \ \
o \ . \]
_ \ 4 H \(-t
\ .- N\
— \ Al :switching by \ -
16 \‘ » 7'~ shortest path(1l) i...y
o \ A2 1 switching by \ -
B \ T 77 shortest path(2) \
\\ A3 : switching by \
B \ “TTT7 expected delay N
14 x\ Ad : switching by T]
- ' \\ delay bound -

3 4 - 5 .6 7
Mean Interarrival Time(sec)

Figure 5.10: the variance for the delay distributions

79

99% Delay Bound(sec)

2.2

=
o]

—
(o)}

1.4

: Al :switching by :

B == shortest path(l) -
: A2 :switching by : _

T7 7 shortest path(2)

; A3 :switching by :

1.2 T expected delay —

- A4 :switching by -
T delay bound

llllllllillllilllllllli

.3 4 S 6 7
Mean Interarrival Time(sec)

Figure 5.11: the 99% delay bounds for delay distributions

S0

CHAPTER

SIX

CONCLUSIONS

In this thesis, we propose a switching algorithm for the control of multimedia
networks or more specifically, the multi-subnetworks with objective which min-
imizes the portion of delay distributions that lies beyond the time constraints.
We started from the analytical model presented in Sec.3.1 and end up with the .

delay bound index which was shown to give better “worst case” delay performance.

By simulation, we have shown that our algorithms oﬁtperform the conven-
tional shortest path switching algorithms and the switching algorithms which
use the expected delay as an objective function for optimizations. Those algo-
rithms are based on shifting messages to links with smaller ELD(expected link
delay)[15,22,23]. We have thus find a new direction for network optimization

problems in which the objective functions are not solely the ELD’s.

We also showed that the computation time for our indices can be computed
in time O(nlog n) with the IDFT(Inverse Discrete Fourier Transform) algorithm
proposed in Chapter 4. This result show that we can implement our switching
algorithms in a real time environment where the network parameters are changing

rapidly.

S1

With recent VLSI technology and the highly regular structure like systolic
array[70]. One can even reduces the complexity of our problem to an order for
T = O(logn) and A = O(nlogn) (see [68,69]), where A denotes the chip area

required for that algorithm.

From our subnetwork model(Chapter 2), we find that our indices can be eas-
ily changed to meet different requirements of specific users. For example, we can
incorporate new heuristic rules into the index as long as the the computation
time is tolerable. By this approach, we can uses the knowledges or the “rules of
thumbs” to make a more intelligent decision. This is the goal of recent research for
Al(Artificial Intelligence) approach and expert system applications for telecom-
munications[71,72]. As the technology in Al and the capabilities of the networks
continue to grow, we expect that the ultimate communication processor will be an
“intélligent element” which can monitor or control many transmission media and

interact with many heterogeneous networks of future telecommunication systems.

APPENDIX

A.1 Proofs of Lemma 3.3

Proof: By induction, we assume that (3.2-7) is true for M = k and V.V € Z¥,

then the induction step for M =k + 1 is:

k
(Z T; ‘f".l‘k+1)N

=1

Therefore, (3.2-7) is also true for M =k + 1.

N N k v
Z(:)(Z 'Hxn‘ "L"H_lj

(n1,m2,...nk) i=1 T =)
ny+ngt-tng =y

N!
JUN =)

H:z:"'xk“

Ini =1

ZZ

nyte +nk-:

NI k+1

Z I—Ix+1 H z}

T yeeny N Ngp1=N—7J l i=1

Zf: ni=N

Q.E.D.

(1.1)

A.2 Proofs of Theorem 4.1

Proof:

a) Let w be a primitive n_th root of unity, n = 27, then
p y’ b]

One sees that item (1) of Definition 4.2 is thus satisfied. Now, from Definition

4.2, we know w satisfies the item (2) of Definition 4.2:

n—1

iwk=0

k=0

which is equal to:

1+w+w+- 4w
= 1+ + 4w H+(w+uwd+ -+
= I+ + -+’ w1l 4+w+-- +0”7?)

= (1+w)(l+w+ - +w¥) =0

That implies:
2P-1l g

Z (wQ)k =0

k=0

since w # —1. Therefore, (2) of Definition 4.2 is also satisfied and w? is a primitive

n/2_th root of unity.

— w2k+n w2k
—_ w?kwn _ w2k — 0
(1.3)
Note that 1,w,w?,...,w" ! are all distinct, w**7 # w*, so we have:
wk-{-% — _wk
Q.E.D.

oL
[\

A.3 QNAP2 Simualtion Programs :

the Expected Delay Case

SIMULOG
COPYRIGHT BY CII HONEYWELL BULL AND INRIA, 1986

©

VOO d W H

ék‘\?\bfbk\

L2 2 L2 & 4

QNAP2

etwork model b3

z

R
I

ECLARE/
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER nb_msg;

INTEGER ix, jx:
INTEGER {,3.
INTEGER nb;

XxXx=999.99;

warm_up=50.0;

tl,t2;

lambda;

ct;

fx (Ix):

ia_time; -

sva_time;

svb_time;

pc_time;

tmax;

jack_pr (N, 0:N) ;

t N

emp;
d_mean, d_var,d_bound;

N=7;

S=4;
Ix=2000;
ix_max=200;
nb_max

Nx;

QUEUE REAL d_time;
CUSTOMER REAL s_time;
CUSTOMER INTEGER s_nb:

QUEUE n(N) :
QUEUE s (N) ;
QUEUE 1(N,N);
REF CUSTOMER cx;

CLASS X,Y;

R R

R B BB R B DRI

(15-FEB-88) V 5.0

outing: Use switching algorithms at nodel for class X
ndex for switching: The estimates for the expexted delays

number of processing nodes
Backqround traffic sources

number of points for delay distr.
printing limit for delay distr.
nb of messages that exceed ix_max
number of X messag sent to netwk
number of X messag received

a large cost for disconn. links
system warm-up time

indexes for switching

temp var for thruput

storage for message delay
the delay distribution for X
sources inter_arrival time
links service time for net 1
links service time for net 2
nodes processing time
simulation time

the Jacksonial routage array

delay statistices

attributes declaration:
nb/lambda for queueing delay
starting time for a message
sequential number for a message

processing nodes
background sources
communication links

an X message

two classes of traffic
X:messages ; Y:background

REAL graph(N, 0:N)=(xxx,
5.0

N

4.0,

o

O+
[eNe Rl

1.0, 1.0, xxx, XXX, XXX,
0.2, 3.0, 5.0, xxx, XXX,
0.0, 3.0, xxx, 0.2, xxx,
2.0, 0.0, 2.0, 2.0, 5.0,
xxx, 3.0, 0.0, 3.0, 2.0,
2.0, 3.0, 3.0, 0.0, 0.2,
XXX, XXX, XXX, XXX, XXX):

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

REAL rout_pr (N,N)=
(1.0,0.0,0.0,0.0,0.0,0
0.0,1.0,0.0,0.0,0.0,0
0.0,0.0,1.0,0.0,0.0,0
0.0,0.0,0.0,1.0,0.0,0
0.0,0.0,0.0,0.0,1.0,0
0.0,0.0,0.0,0.0,0.0,1
0.0,0.0,0.0,0.0,0.0,0

INTEGER path(N):

REAL d(N,N):

& ________________________________
&

& The BELLMAN-FORD algorithm for
& the shortest path
&
PROCEDURE spl (kl,k2):
INTEGER kl1.k2;

REAL m;
INTEGER i1, 3l.nl.h:
BEGIN
FOR jl:=1 STEP 1 UNTIL N DO
BEGIN
d(1,31) :=graph (i, J1) ;
path(jl) := IF graph(k

END;
FOR h:=2 STEP 1 UNTIL N DO
FOR jl:=1 STEP 1 UNTIL N
BEGIN
m:=d (h-1, j1):

[~ NeNeNoRoNoNe)

& the connectivity and the
& cost for each links
& row 0 denctes the out flow

~
HOOODOOO
[NeNoR-NeoloNe]

Lo NN

PSRN

;

& routing probability (1,)3)

& node i1 destined for node j
& for class X messages

& path array for sp

& evolution array for min cost

computing

& the formal parameters
& k:source, l:destination

& computation variables

1, J1)=xxx THEN 0 ELSE K1;

DO

FOR nl:=1 STEP 1 UNTIL N DO
IF (d(h-1,nl1)+graph(nl, j1))<m THEN

BEGIN
m:=d (h-1,
path(j1):

END;
d(h, j1) :=m;
END;

nl) *g'raph (nl.] l)
=n1

11

:=k2;

WHILE (path(il)<>kl) AND (path(il)<>0) DO
BEGIN
FOR jX:=1 STEP 1 UNTIL N DO
rout_pr (path(il), j1) :=0;
rout_pr (path(il), il) :=1;
il:=path(il)

& clear the row

IF path(il)=kl THEN BEGIN
FOR jl1:=1 STEP 1 UNTIL N DO
rout_pr (k1, j1) :=0; & clear the row~™
rout_pr (k1,il) :=1;

* % n"):

PRINT("* * * The Shortest Path Matrix (1)

116 PRINT("1) The path array:"):

117 PRINT (path(1 STEP 1 UNTIL N)):

118 PRINT ("2) The cost matrix");

119 FOR jl:=1 STEP 1 UNTIL N DO

120 PRINT(d(j1., 1 STEP 1 UNTIL N)):

121 PRINT ("3) The routing probability matrix:");
122 FOR jl:=1 STEP 1 UNTIL N DO

123 PRINT (rout_pr (31, 1 STEP 1 UNTIL N)):
124

125 END:

126 &

127 &---mmmmeemeeemE e e e e e eSSt SSSSSsSSSomSSoT T
128 & The shortest path for the second network

129 &

130 PROCEDURE sp2 (k1,k2):

131 INTECER kl,k2;

132 INTEGER i1, j1:

133 BEGIN

134 IF k1=1 THEN

135 BEGIN

136 EOR j1:=1 STEP 1 UNTIL N DO

137 rout_pr (1, j1) :=0;

138 . rout_pr(1,4) :=1.0; !
139 END ELSE

140 IF k1=7 THEN

141 BEGIN

142 rout_pr (7,7) :=1.0;

143 END ELSE

144 IF kl1=4 THEN

145 BEGIN

146 FOR j1:=1 STEP 1 UNTIL N DO

147 rout_pr (4, j1) :=0;

148 rout_pr (4,7):=1.0;

149 END

150 ELSE

151 BEGIN

152 FOR 11:=(2.3,5,6) DO

153 BEGIN

154 FOR jl1:=1 STEP 1 UNTIL N DO

155 rout_pr (i1, j1) :=0;

156 rout_pr (11,4) :=1.

157 END:

158 END;

159

160 PRINT ("* * * The Shortest Path Matrix (II)* * *"):
161 PRINT ("1) The path array:"):

162 PRINT (path (1 STEP 1 UNTIL N)):

163 PRINT("2) The cost matrix"):

164 FOR il:=1 STEP 1 UNTIL N DO

165 PRINT(d(i1, 1 STEP 1 UNTIL N)):

166 PRINT ("3) The routing probability matrix:"):
167 FOR 1l1:=1 STEP 1 UNTIL N DO

168 PRINT (rout_pr (11,1 STEP 1 UNTIL N)): ~
169 END; _

170

171

172 &r-===-s = m-meemmm e oo - —s--~s-o-soCCoSSSSoSooTmSTTEoTTT
173 & Find the Jacksonian routing probability

174 &

175 &

[0s]
(ve]

176 PROCEDURE Jackson:

177

178 REAL r_sum; & sum of one row in jack pr
179 INTEGER i1, 31:

180 BEGIN

181 FOR 11:=1 STEP 1 UNTIL N DO

182 BEGIN

183 r_sum:=0;

184 FOR j1:=0 STEP 1 UNTIL N DO

185 r_sum:=r_sum+ (IF graph(il, j1) <>xxx THEN graph(il, jl1)
186 ELSE 0.0):

187 FOR 31:=0 STEP 1 UNTIL N DO

188 jack_pr (11, j1) :=IF graph(i1, j1)<>xxx THEN graph(il, j1) /r_sum
189 ELSE 0.0:

190 END;

191 PRINT ("* * * The Jacksonian Matrix * * *"):

192 FOR 1l:=1 STEP 1 UNTIL N DO

193 PRINT (jack_pr (11,0 STEP 1 UNTIL N)):

194 END;

195

196

197

198 &

199 &

200 & processing nodes

201 &

202 /STATION/

203 NAME=n (1) ; N

204 SERVICE (X) =

205 BEGIN

206 CST (pc_time) ;

207 cx:=n (1) .FIRST;

208 SMACRO 1_delay (nodel, node2)

209 nb:=1 (nodel, node2) .NB;

210 lambda : =REALINT (1 (nodel, node2) .NBOUT) /TIME;

211 1 (nodel,node2) .d_time:=IF lambda<>0 THEN REALINT (nb) /lambda
212 ELSE 0.0;

213 S$END

214 $MACRO n_delay (node)

215 nb:=n(node) .NB;

216 lambda : =REALINT (n (node) .NBOUT) /T

217 n(node) .d_time:=IF lambda<>0 'H-IEN REALINT(nb) /lambda

218 ELSE 0.0;

219 $END

220 $1l_delay(1l,2) s$n_delay(2) $1_delay (2, 3)

221 $n_delay (3) $l_delay(3,6) $n_delay(6) $1l_delay(6,7) $n delay (7)
222 $l_delay(1l,4) $n_delay(4) $1l_delay(4,7)

223 tl:=1(1,2).d_time+n(2) .d_time+1l(2,3) .d_time+n(3) .d_time+1(3,6).d_t
==> ime

224 +n (6) .d_time+l (6,7) .d_time;

225 t2:=1(1,4) .d_time+n(4) .d_time+1l(4,7) .d_time;

226 IF tl<=t2 THEN _

227 BEGIN

228 & PRINT(TIME, tl,"|",t2,"MESSAGE:",cx.s_nb,

229 & " sent to networkl"):;

230 TRANSIT(1(1,2));

231 END

232 ELSE

233 BEGIN

234 & PRINT(TIME, tl1,"|",t2,"MESSAGE:", cx.s_nb,

235 & " sent to network2"):

236 TRANSIT(1(1.4)):

237 END:

238 END;

239 SERVICE (Y) = CST (pc_time) ;

240 TRANSIT (Y)=1 (1.1 STEP 1 UNTIL N), jack pr (1., 1 STEP 1 UNTIL N),OUT;
241 /STATION/

242 NAME=n (2) :

243 SERVICE=CST (pc_time) ;

244 TRANSIT (X)=1(2.1 STEP 1 UNTIL N),rout_pr(2,1 STEP 1 UNTIL N):

245 TRANSIT (Y)=1(2.1 STEP 1 UNTIL N),jack pr(2,1 STEP 1 UNTIL N) . OUT;

246 /STATION/

247 NAME=n (3) .

248 SERVICE=CST (pc_time) ;

249 TRANSIT(X)=1(3.1 STEP 1 UNTIL N),rout_pr (3.1 STEP 1 UNTIL N):

250 TRANSIT(Y)=1(3.1 STEP 1 UNTIL N), jack_pr (3.1 STEP 1 UNTIL N), OUT:

251 /STATION/

252 NAME=n (4) :

253 SERVICE=CST(pc_time)J

254 TRANSIT (X)=1(4,1 STEP 1 UNTIL N),rout_pr (4.1 STEP 1 UNTIL N):

255 TRANSIT (Y)=1 (4,1 STEP 1 UNTIL N),jack pr (4,1 STEP 1 UNTIL N): & no ou
=> t

256 /STATION/

257 NAME=N (5)

258 SERVICE=CST (pc_time) ;

259 TRANSIT (X)=1(5.1 STEP 1 UNTIL N),rout_pr(s,l STEP 1 UNTIL N);
260 TRANSIT (Y)=1(5.1 STEP 1 UNTIL N), jack pr (5.1 STEP 1 UNTIL N),OUT;
261 /STATION/

262 NAME=n (6) ;

263 SERVICE=CST (pc_time) ;

264 TRANSIT(X)=1(6,1 STEP 1 UNTIL N),rout_pr (6,1 STEP 1 UNTIL N);

265 TRANSIT(Y)=1(6.1 STEP 1 UNTIL N),jack;pr(S,l STEP 1 UNTIL N}, OUT;
266 /STATION/

267 NAME=T(7) :

268 SERVICE=

269 BEGIN

270 CST (pc_time)

271 cx:=n(7) .FIRST;

272 IF cx.CCLASS=X THEN

273 BEGIN

274 ’ ct:=TIME-cx.s_time;

275 & PRINT ("MESSAGE:",cx.s_nb, "delay=",ct):

276 1x:=INTREAL (ct*10) *2+1; .
277 IF ix>Ix-1 THEN ix:=Ix-1; & (fx(1999) ,fx(2000)) is the last pa
=> 1ir

278 IF ix<l THEN ix:=1;

279 IF ix>=ix_max-1 THEN nb_max:=nb_max+l; & the delay that exceeds
=D ix_max

280 nb_msg:=nb_msg+l;

281 fx (ix+1) :=fx (ix+1) +1;

282 END;

283 END;

284 TRANSIT=0UT;

285 &

286 & background source nodes

287

&

288 /STATION/ -
289 NAME=Ss (1) ;

290 TYPE=SOURCE;

291 SERVICE=

90

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

BEGIN
EXP (1a_time) ;

& X 18 created only when system is warm-up
IF (TIME>warm_up) AND DRAW(0.45) THEN

BEGIN
ex:=s (1) .FIRST;
cx.s_time:=TIME:;
cx.s_nb:=Nx;
Nx:=Nx+1:
TRANSIT (n(1),X) ;

END

ELSE TRANSIT(n(1).Y):.

END;
/STATION/

NAME=s (2) ;

TYPE=SOURCE;

SERVICE=EXP (ia_time) ;

TRANSIT=n(2) .Y, 1;

/STATION/

NAME=s (3)

TYPE=SOURCE;

SERVICE=EXP (ia_time) ;

TRANSIT=n(3),Y,1;

/STATION/

NAME=s (S) ;

TYPE=SOURCE;

SERVICE=EXP (ia_time) ;

TRANSIT=n(5).Y,1;

/STATION/

NAME=s (6) :

TYPE=SOURCE;

SERVICE=EXP (ia_time) ;
TRANSIT=n(6),Y,1;

&

& comm.
&

links

$MACRO 1link (s_node,d_node,s_time) & definition for communnication

/STATION/ NAME=1 (s_node, d_node) ;
SERVICE=EXP (s_time) ;
TRANSIT=n(d_node), 1.

$END

&

$1ink(1, 2, sva_time)
$1ink (2, 3, sva_time)
$1link (3, 2, sva_time)
$1ink (5, 2, sva_time)
$1ink (6, 3, sva_time)
&

$1ink (1, 4, svb_time)
$link (2, 4, svb_time)
$1ink (6, 4,.svb_time)
$1ink (4, 2, svb_time)
$1ink (4,6, svb_time)
&

/CONTROL/
CLASS=ALL QUEUE;
ENTRY=BEGIN

PRINT ("Inter-

$link (1, 3, sva_time)
$1link (2,5, sva_time)
$1link (3, 6, sva_time)
$1link (S, 6, sva_time)
$1ink (6, S, sva_time)

$link (4,7, svb_time)
$1link (3,4, svb_time)

$1ink (4, 3, svb_time)

arrival time?");

ia_

PRINT ("Service time for net 17"):
PRINT ("Service time for net 27"):

91

& link stations

$1ink (5,7, sva_time)
$1ink (6,7, sva_time)
$1link (5.4, svb_time)

$1ink (4,5, svb_time)

time:=GET (REAL) ;
sva_time:=GET (REAL) ;
svb_time:=GET (REAL) ;

pc_time:=GET (REAL) ;

tmax :=GET

FOR 1x:=1 STEP 2 UNTIL Ix-1l DO & initializing the delay distr. ar

PRINT("* * * Simulation result for single SHORTEST PATH * * *");

& find the shortest path in network 1
& find the shortest path in network 2

:", d_mean) ;

for Y

352 PRINT ("Processing time?");

353 PRINT ("Simulation time?");

354

=> ray

355 fx (1x) :=REALINT (1x-1) /20.0;

356 . ;

357 TMAX=tmax

358 EXIT=BEGIN & print the delay distribution
. 359 PRINT ("nb of msg=",nb_msq) ;

360 PRINT ("* * * Delay Distribution:"):

361 FOR ix:=1 STEP 2 UNTIL ix_max-l DO BEGIN

362 x (1x+1) :=fx (1x+1) /REALINT (nb_msg) ;

363 PRINT (fx(ix), fx(ix+1), CURVE (fx, £x (ix))):

364 d_mean:=d_mean+fx (ix) *fx (ix+1);

365 d_var:=d_var+fx (ix) *fx (ix) *fx (ix+1) ;

366 END:; '

367 d_var:=d_var - d_mean*d_mean;

368 temp : =REALINT (nb_max) /REALINT (nb_msg)

369 Jx:=ix_max;

370 WHILE (temp<0.0l) AND (jx>=1) DO

371 BEGIN

372 temp : =temp+fx (jx) ;

373 Ix:=3x-2;

374 ;

375 d_bound:=REALINT (jx) /20.0;

376 PRINT ("* nb_max="', nb_max) ;

377 PRINT ("* * * Expected Delay

378 PRINT ("* * * Variance :",d_var);

379 PRINT ("* * * Delay Bound:",d_bound);

380 END; .

381 /EXEC/

382 BEGIN

383 spl(1.7):

384 sp2(4,7):

385 Jackson; & find the routing prob.

386

387

388 SIMUL;

389 END;

* * * The Shortest Path Matrix (1)

1) The path array:
1

1

2) The cost matrix

3) The routing

[=NeNoNeNeNeNo]

[eNeoNeNoNoNoNeol

?.

.2000
.2000
.2000
.2000
.2000
.2000
.2000

[oleRoNeoNeoNoNo]

0
0.
0.
0
0
0

Shortest Path Matrix

[« NeNeoNeNeNel

probability matrix:
1.000

®

-

*

2
1.000 1.000
.4000 1.000
.4000 1.000
.4000 1.000
.4000 1.000
.4000 1.000
.4000 1.000
0. 0.
1.000 0.
0. 0.
0. 1.000
0. 0.
0. 0.
0. 0.
(IT)* * =

1000.0

.000

3.000

wWwww

.000
.000
.000
.000

[eleNeoNeoNeoNeoNol

1000.0
6.000
1.400

0.8000

0.8000

0.8000

0.8000

O OOoOOoCo

1.000
1.000

1) The path array:
1 1

2 1 4 3 6
2) The cost matrix

0. 0.2000 1.000 1.000 1000.0 1000.0

0. 0.2000 0.4000 1.000 3.000 1.200

0. 0.2000 0.4000 1.000 3.000 0.6000

0. 0.2000 0.4000 1.000 3.000 0.6000

0. 0.2000 0.4000 1.000 3.000 0.6000

0. 0.2000 0.4000 1.000 3.000 0.6000

0. 0.2000 0.4000 1.000 3.000 0.6000

3) The routing probability matrix:

0. 1.000 0. 0 0. 0

0. 0. 1.000 0 0. 0.

0. 0. 0 0. 1.000

0. 0 0. 0 0. 0

0. 0 0. 0 1.000 0

0. 0 0. 0 0. 0

0. 0. 0. 0 0. 0

* ok o% e Jacksonian Matrix * * *

0. 0. 0.9091e-01 0.4545 0.4545 0.
0.3788 0. 0. 0.1515e-01 0.2273 0.3788
0.4348 0. 0.2174 0. 0.3261 0.

0. 0. 0.1538 0.1538 0. 0.1538
0.7143e-01 0. 0.3571 0. 0.2143 0.
0.1087 0. 0. 0.2174 0.3261 0.3261

1.000 0. 0 ’ 0 0. 0.

* » * Simulation result for single SHORTEST PATH * * *

Inter-arrival time?
10.5

Service time for net 17?
2 0.12

Service time for net 27
3 0.17

Processing time?
4 0.05

Simulation time?
S5 2050

x** SIMULATION ***
. TIME = 2050.00

itiﬁ.ttﬁ't."..".'ﬁ".ﬁ"ﬁ".’ﬁttﬂﬂﬁﬁﬁ'iﬁ"ﬁﬁ'ti'i"‘tt'ltilﬁﬁ.ii’

* NAME * SERVICE * BUSY PCT * CUST NB * RESPONSE * SERV NB *

.'ﬁ*t'it.ﬁ'tﬁt.'ﬁiﬁi'*iﬁ.*.'i'.'t.t.ttit'ﬁﬁ.ﬁ't'*iiikitﬂﬁﬂﬁt*'t'i'.

* - * - * - *
*n 1 *0.5002e-01*0.9816€-01+0.1036 *0.5281le-01* 4023+
* (X }*0.5002e-01%0.4370e-01%0.4636e-01*0.5306e-01* 1791+
(Y)*0.5002e-01%0.5446e-01*0.5728e-01%0.5261e-01"* 2232+
* * * * * * *
* n 2 *0.5002e-01%0.3520 *0.4485 *0.6372e-01* 14427*
(X)*0.5002e-01%0.2345€-01*0.2939e-01*0.6269e-01* 961+
(Y)*0.5002e-01*0.3286 *0.4191 *0.6380e-01* 13466*
* 3 * * * * *
*n 3 *0.5002e-01%0.2516 *0.2919 *0.5803e-01* 10311*
* (X)*0.5002e-01*0.2345e-01*0.2662e-01*0.5678e-01* 961+
* (Y) *0.5002e-01%0.2281 *0.2653 *0.5816e-01* 9350*
* * * * * * *
*n 4 *0.5002e-01*0.3458 *0.4341 *0.6280e-01* 14170*
* (X)'0.5002&-01'0.2025e-01‘0.2503e-01'0.6182e-01‘ 830*
* (Y)*0.5002e-01*0.3255 *0.4091 *0.6286e-01* 13340*

93

1000.0
6.000
1.400

0.8000

0.8000

0.8000

0.8000

0.
0.2174e
0.1538
0.2143

0.

0.

*» * % % * B» *
Reg KRRz Wo

7]

R WX+~ u

R R¥Ee Ve Be Re R BRe RNe

R

)t.tlt"btt.l‘»lt'."tl.l'.l"ﬁl."l‘l"".l.DQII‘".“II

—

5 *0.
) *0.
E g

6 *0

7 *0

a O
»
o

[8]
»*
o

*

*

5002e-01%0.3469 *0
5002e-01%0.3469 *O.
- -
.5002€-01*0.2537 *0
.5002e-01*0.2345e-01*0.
.5002e-01%0.2303 0.
* *
.5002e-01%0.2249 *O.
.5002€-01*0.4368e-01*0
.5002e-01%0.1813 *O.
* *
.5094 * 1.000 *
- *
.4960 * 1.000 .
* *
.5044 * 1.000 *
* *
.4980 « 1.000 .
* *
.5024 * 1.000 .
* *
.1191 *0.6669e-01*0.
.1166 *0.5465e-01*0
.1320 *0.1204e-01*0
] *
.1243 *0.5973e-01*0.
.1243 *0.5973e-01*0
- x
.1736 *0.1601 *0,
.1790 *0.7246e-01*0.
.1694 *0.8760e-01*0
® *
.1253 *0.7113e-01%0
.1238 *0.5804e-01*0
.1322 *0.1309e-01*0.
* *
.1737 *0.2655 *O.
.1737 *0.2655 *O.
* -
.1225 *0.3018 *0
.1225 *0.3018 *0
* *
.1228 *0.1240 *0.
.1228 *0.1240 *0.
* *
.1733 *0.2567 *0
.1733 *0.2567 *0.
* *
.1217 *0.6816e-01*0
.1217 *0.5706e-01*0
.1216 *0.1109e-01*0.
* *
.1698 *0.1652 *0
.1698 *0.1652 *0
* *
1771 *0.1732 *0
.1771 *0.1732 0.
* *
.1747 *0.1739 *0

94

»

.4427 %0

4427 *0.
*

2949 *0
2685e-01*0

2681 0.
g

2572 *0

.4927e-01+%0.
2079 *0
*

.000 *0.
L]

.000 *0
*

.000 *0
*

.000 *0
*

.000 *0
*

6840e-01%0.

.5522e-01%0

.1318e-01%0
*

6324e-01%0.

.6324e-01%0.
L]

1816 *0

7935e-01*0.

.1023 *0
*

.7421e-01%0

.6005e-01*0

1416e-01%0.
*

3619 *0

3619 *O.
*

4329 *0

4329 *0
*

1420 *0

1420 *0
*

.3404 *0.

3404 *0.
*

.7016€-01%0.
.5825e-01*0

1191e-01*0.
*

.1940 *0
.1940 *0
*

L2117 *0

2117 *0.
L 4

.2066 *0.

.4960

.5044

.4980

.502¢4

.1178
.1445

.1970
.1978
.1307
.1281
.2367
.1758
.1758

.1407
.1407

.1243

.1994
.1994

.2165

E]

.6384e-01*

6384e-01*
-

.5814e-01*
.5727e-01*

5823e-01*
-

.5718e-01*

5642e-01*

.5737e-01*

5094

1221

1316
1316

1960

1430

2367

2297
2297

1253

1306

2165

l'tl’“llll‘l‘ﬁ."ll‘l.l‘llQD".'.'.‘.‘l.l}tlt!.l...

2076

14216*
14216*
L4

10398*

961+
9437*
*

9219*
1790*
7429*
*
4023+
*
4133*
*
4064*
*
4116*
*
4079*
*
1148*
961*
187*
*

985+
985+

1890*
830*
1060*
*

1164*
961*
203*

*

3134*
3134*
*

5049*
5049*

2070*
2070*
*

3037*
3037+
*

1148*
961+
187+

1994*
1994*
-

2004*
2004*
*

2039*

R

-
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
®
*
*
*
*
*
*

)*0.

27 *0.
)*0.

*
28 *0
)*o

)*0.

*

30 *0

) *0.

32 *0.

)0

*

34 *0
)0

L3

35 *0.

)*0

*

38 *0
)y*o

L]

39 *0

)*0.

*

40 *0

)*o.

L]

42 *0.

)0
)*0

END OF SIMULATION

(10.03 %
nb of msg— 1790
*» * * Delay Distribution:
0. 0.
0.1000 0.122%e-01
0.2000 0.458le-01
0.3000 0.7318e-01
0.4000 0.1112
0.5000 0.1380
0.6000 0.1425
0.7000 0.1302
0.8000 0.9832e-01
0.9000 0.7933e-01
1.000 0.5922e-01
1.100 0.3575e-01
1.200 0.2793e-01
1.300 0.1620e-01
1.400 0.1006e-01
1.500 0.6145e-02
1.600 0.3352e-02
1.700 0.2235e-02

MEMORY USED:

OF

[oNeoNeReoNeNoNoNeoNoNoNoNoNeoNoNoNeNe)

25072 WORDS OF 4 BYTES
TOTAL MEMORY)

0

L1132 *0.1022e-01*0.
* *

.1229e-01
.458le-01
.7318e-01
L1112
.1380
.1425
L1302
.9832e-01
.7933e-01
.5922e-01
.3575e-01
.2793e-01
.1620e-01
.1006e-01
.6145e-02
.3352e-02
.2235e-02

1747 *0.1739 *0.2066 *0.
* L] *
1760 *0.1784 *0.2138 *0.
1760 *0.1784 *0.2138 *0.
* * *
.1717 *0.5068 * 1.012 *0.
.1697 *0.6868e-01%0.1206 *0
1720 *0.4381 *0.8917 *0,
] * *
.1183 *0.2933 *0.4131 0.
1183 *0.2933 *0.4131 *0.
* * *
1706 *0.2476 *0.3352 *0.
.1706 *0.2476 *0.3352 *0.
® ® L]
.1230 *0.1857 *0.2293 0.
.1230 *0.1857 *0.2293 ‘0.
* * *
1206 *0.1189 *0.1378 *0.
.1206 *0.1189 *0.1378 *0
* L *
.1223 *0.1249 *0.1410 *0.
.1223 *0.1249 *0.1410 *0
- * *
.1730 *0.2645 *0.3472 0.
1730 *0.2645 *0.3472 0.
* * *
.1210 *0.1778 *0.2112 *0.
1210 *0.1778 *0.2112 *0
. * -
1183 *0.6613e-01%0.6781e-01%0.
.1193 *0.5592e~01*0.5730e-01+*0.

1051e-01*0.
*

2076

2109
2109

3429

.2981

3500

1666
1666

2309
2309

1519
1519

1397

L1397

1381

.1381

2271
2271

1437

.1437

1213
1222
1165

MY EEEEEEEE T o N 2 N N N I

*

2039*
*

2078+
2078+
*
6052+
829+
5223%
*

5082*
5082*
*

2976*
2976*
*

3094~
3094+
E]

2021+
2021+
*

2094+
2094+
*
3135+
3135+
*
3012+
3012*
-

1146*
961*
185*

*

tﬁtﬂ**‘"tt'ﬁ'.ﬁtit"ﬁiliﬁ.tﬁi'ﬁ'!'i'ﬁtt.'t'tiﬁtit't.ﬁittﬁtt.ﬂi*ﬁi

QU dddaduauoaoooonrrULUOUUNERAAEABRRERRAWOLLWWWWWWUWLWNNINNNRNRNNNLDERE

.800
.900
.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
.000
.100

.300
.400
.500
.600
.700
.800
.900
.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
.000
.100
.200
.300
.400
.500
.600
.700

0.1117e-02
0.3352e-02
0.1117e-02

0.
0.5587e-03
0.1117e-02

0.

0.
0.5587e-03
0.5587e-03

0.

[« NoRe]

.1117e-02
.3352e-02
.1117e-02

0.
.5587e-03
.1117e-02

0.

0.
.5587e-03
.5587e-03

96

.800
.900
.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
.000
.100
. 200
.300
.400
.500
.600
.700
.800
.900
_Jmax=

a'oomxo\ooxoonoommmmmm(nmmmqq

L]
* * Variance :
*» * Delay Bound:

390
391 /END/

OOOOOOOOOOOOOOOOOOOOOO

= 0
* ted Delay : 0.6754

0.1022
1.700

OOOOOOOOOOOOQOOOOOOOOO

A.4 QNAP2 Simulation Programs:

the Delay-Bound Case

LR 2 L2 2

SIMULOG
©

QNAP2

1 &

2 & Network model B4

3

4 & Index for switching: Delay bounds
S &

6 /DECLARE/

7 INTEGER N=7;

8 INTEGER S=4;

9 INTEGER Ix=2000;

10 INTEGER 1ix_max=200;
11 INTEGER nb_max;

12 INTEGER nbl_max:
=> netl

13 INTEGER nb2_max’
==> net2
14 INTEGER Nx;
15 INTEGER nb_msg;

16 INTEGER nbl_msg:

17 INTEGER nb2_msg.
18 INTEGER ix, ix;
19 INTEGER 1, 3.

20 INTEGER nb,n_id;

21 REAL xxx=999.99:;
22 REAL warm_up=50.0;
23 REAL t1,t2;

24 REAL lambda’

25 REAL ct:

26 REAL fx(Ix):

27 REAL fx1 (Ix):

28 REAL f£x2(Ix):

29 REAL ia_time;

30 REAL sva_time;

31 REAL svb_time;

32 REAL pc_time;

33 REAL tmax;

34 REAL jack_pr(N,O:N);
35 REAL B.

36 REAL B_pct=0.99;
37 REAL bl,b2;

38 REAL tail, temp’

39 REAL d_mean,d_var,d_bound;
40 &

41

42 QUEUE REAL d_time:

43 CUSTOMER REAL s_time;
44 CUSTOMER INTEGER s_nb;
45 CUSTOMER INTEGER net_id;

47 QUEUE n(N):

48 QUEUE s(N):

49 QUEUE 1 (N,N);
51 REF CUSTOMER cx;

53 CLASS X,Y:

DB T DD

2 R PR PP RRE B RBRDRBDRDRPRBDRRDORRD

(15-FEB-88) V 5.0
COPYRIGHT BY CII HONEYWELL BULL AND INRIA, 1986

& Routing: Use switching algorithms at nodel for class X
setup

for each subnetwork

number of processing nodes
Background traffic sources

number of points for delay distr.
printing limit for delay distr.
nb of messages that exceed ix_max
nb of msgs that exceeds ix_max in

nb of msgs that exceeds ix_max in

of X messag sent to netwk
of X messag recelved

of X msgs sent to net 1
of X msgs sent to net 2

number
number
number
number

a large -cost for disconn. links
system warm-up time -
indexes for switching

temp var for thruput

storage for message delay

the delay distribution for X
the delay distribution for netl
the delay distribution for net2
sources inter_arrival time
links service time for net 1
links service time for net 2
nodes processing time
simulation time

the Jacksonial routage array
the delay bound

99 percentile

indices for delay bounds

delay statistics

attributes declaration:
nb/lambda for queueing delay
starting time for a message
sequential number for a message
subnet identifier

processing nodes
background sources
communication links

an X message

two classes of traffic

54 & X:messages ; Y:background
55 &

26 & -----memmemm=mes—me—ss=ssososoomssosooooESToemToTToTUOTTTTTT
§7 & Followings are the variabels for shortest path algoritims

S8 & ---m-mmmimmmmmmmm—s—-=mssoosos—msossosmsoTonoTTTIITTl T T
59 REAL graph (N, 0:N)=(xx 0.0;

60 5.0

61 4.0
62 XXX
63 1.0
64 1.0
65 9.0
66
67
68
69 REAL rout_pr (N, N
70 .

SEE".N?"."."
8.

~
o
BO s s~ s

10gf:

200K, .
connectivity and the
t for each links

w 0 denotes the out flow

R

(1.0,0
71 0.0,1
72 0.0,0
73 0.0,0.
74 0.0,0
75 0.0,0
76 0.0,0 ;
77 & routing probability (i, 3)
78 & node i destined for node j
79 & for class X messages
80 INTEGER path(N) & path array for sp
81 REAL d(N.N): & evolution array for min cost
82)

83 G-----mmmmmmememm=SSmososemssoSossossSsoSoSsSSSSTooTTIIETITATIOT
84 &

85 & The BELLMAN-FORD algorithm for computing

86 & the shortest path

87 &

88 PROCEDURE spl (k1,Kk2):

89 INTEGER k1,k2; & the formal parameters
30 & k:source, 1:destination
91 REAL m;

92 INTEGER 11, 3jl.nl.h; & computation variables
93 BEGIN

94 FOR jl:=1 STEP 1 UNTIL N DO

95 BEGIN

96 d(l,jl):=graph(kl,jl);

97 path(jl) := IF graph (k1, 31) =xxx THEN 0 ELSE k1.
98 END;

99 FOR h:=2 STEP 1 UNTIL N DO

100 FOR jl:=1 STEP 1 UNTIL N DO

101 BEGIN

102 m:=d (h-1,J1).

103 FOR nl:=1 STEP 1 UNTIL N DO

104 IF (d(h-1,nl)+graph(nl, j1)) <m THEN

105 BEGIN

106 m:=d (h-1,nl1) +graph (nl, 1)

107 path(jl1) :=nl;

108 ;

109 d(h, jl) :=m:

110 END;

111 11:=k2;

112 WHILE (path(il)<>kl) AND (path(i1l)<>0) DO

113 BEGIN

0OO0O0OOHOO
[eNeNoNoRoNeo el
[oX=NoReReele)

OCOOH OO0
~—s v s s

99

114 FOR jl:=1 STEP 1 UNTIL N DO

115 rout_pr (path (11), 1) :=0; & clear the row
116 rout_pr (path(11),11) :=1:
117 il:=path(1l);
118 END;
119 IF path(i1)=kl THEN BEGIN
120 FOR jl:=1 STEP 1 UNTIL N DO
121 rout_pr (k1, j1) :=0; & clear the row
122 rout_pr (kl,61il1) :=1;
123 END;
124
125 PRINT("* * * The Shortest Path Matrix (1) * * *y
126 PRINT("1) The path array:");
127 PRINT (path (1 STEP 1 UNTIL N));
128 PRINT("2) The cost matrix"):
129 FOR jl:=1 STEP 1 UNTIL N DO
130 PRINT(d(jl. 1 STEP 1 UNTIL N)):
131 PRINT("3) The routing probability matrix:"):
132 FOR j1:=1 STEP 1 UNTIL N DO
133 PRINT (rout_pr (j1, 1 STEP 1 UNTIL N)):
134
135 END;
136 &
137 &--=r-memm e eeem e e e Mo S o oSS ST SSS eSS omEe
138 & The shortest path for the second network
139 &
140 PROCEDURE sp2 (k1,k2);
141 INTEGER kl,k2;
142 INTEGER 11, j1;
143 BEGIN
144 IF k1=1 THEN
145 BEGIN
© 146 FOR j1:=1 STEP 1 UNTIL N DO
147 rout_pr (1, j1) :=0;
148 rout_pr(l,4):=1.0;
149 END ELSE
150 IF k1=7 THEN
151 BEGIN
152 rout_pr(7,7) :=1.0;
153 END ELSE
154 IF k1=4 THEN
155 BEGIN
156 FOR j1:=1 STEP 1 UNTIL N DO
157 rout_pr (4, j1) :=0;
158 rout_pr(4,7):=1.0;
159 END
160 ELSE
161 BEGIN
162 FOR 11:=(2,3,5,6) DO
163 BEGIN
164 FOR 3j1:=1 STEP 1 UNTIL N DO
165 rout_pr (i1, j1) :=0;
166 rout_pr (11, 4) :=1;
167 END;
168 END;
169
170 PRINT ("* * * The Shortest Path Matrix (II)* * *")’
171 PRINT ("1) The path array:");
172 PRINT (path (1 STEP 1 UNTIL N)):
173 PRINT ("'2) The cost matrix"):

100

174 FOR il:=1 STEP 1 UNTIL N DO

175 PRINT(d (11, 1 STEP 1 UNTIL N)):

176 PRINT ("3) The routing probability matrix:");

177 FOR il:=1 STEP 1 UNTIL N DO

178 PRINT (rout_pr{il,1 STEP 1 UNTIL N)):

179 END:

180

181

182 &--=-=-=-mmmmmmm— =T m S oo-—s-csessso-SSSSSoooooooomoes
183 & Find the Jacksonian routing probability

184 &

185 &

186 PROCEDURE Jackson;

187

188 REAL r_sum; & sum of one row in jack_pr

189 INTECER i1, 3jl;

190 BEGIN

191 FOR 11:=1 STEP 1 UNTIL N DO

192 BEGIN

193 r_sum:=0;

154 FOR j1:=0 STEP 1 UNTIL N DO

195 r_sum:=r_sum+ (IF graph(il, j1) <>xcx THEN graph (11, j1)
196 ELSE 0.0)

197 FOR j1:=0 STEP 1 UNTIL N DO

198 jack_pr (11, 1) :=IF graph(il, j1) <> THEN graph (i1, j1) /r_sum
199 ELSE 0.0;
200 END:

201 PRINT("* * * The Jacksonian Matrix * * *");

202 FOR 11:=1 STEP 1 UNTIL N DO

203 PRINT (jack_pr (11,0 STEP 1 UNTIL N)):

204 END;

205

206

207

208 &

209 &

210 & processing nodes

211 &

212 /STATION/

213 NAME=n (1) ;

214 SERVICE (X} =

215 BEGIN

216 CST (pc_time) ;

217 ex:=n (1) .FIRST;

218 SMACRO l_delay(nodel,nodez,sv_time)

219 nb:=1 (nodel, node2) .NB;

220 1 (nodel, node2) .d_time:=nb*sv_time;

221 $END

222 $SMACRO n_delay (node) -

223 nb:=n(node) .NB;

224 n (node) .d_time:=nb*pc_time;

225 $END

226 $1_delay (1, 2,sva_time) $n_delay(2) $1_delay (2, 3, sva_time)
227 $n_delay (3) $l_delay(3,6,sva_time) $n_delay (6)

228 $1_delay (6,7.sva_time) $n_delay(7)

229 $1_delay(1l.4,svb_time) $n_delay (4) $1_delay(4.7,svb_time)
230 tl:=1(1,2).d_time+n(2).d_time+l(2,3).d_time*n(3).d_time+l(3,6).d_t
=> ime

231 +n(6) .d_time+1(6,7) .d_time;

232 t2:=1(1,4) .d_time+n(4) .d_time+1(4,7) .d_time:

101

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

==>

r(rrrrrtrrrttrrrtrtrrrtr(rrrLL

& New codes for A4 algorithm &
rrrrrrrrrrrrr(rrrrrrrtrr(rrt::,
IF (bl1<=B) AND (b2<=B) THEN
IF tl<=t2 THEN
BEGIN
cx.net_id:=1;
TRANSIT(1(1.2)):
END
ELSE
BEGIN
cx.net_1id:=2;
TRANSIT(1(1.4)):

END;
IE (bl<=B) AND (b2>B) THEN
BEGIN
cx.net_id:=1;
TRANSIT(1(1.2)):

END:
IE (p1>B) AND (b2<=B) THEN
BEGIN

cx.net_id:=2;
TRANSIT (1(1.4)):

END;
IE (bl>B) AND (b2>B) THEN
BEGIN
IF bl <= b2 THEN
BEGIN
cx.net_id:=1;
TRANSIT(1(1.2)):

END;
IF bl > b2 THEN
BEGIN
cx.net_id:=2;
TRANSIT(1(1.4)):
END;

.
S Ko o o e e e e e e o S e S 5 S st

END;
SERVICE (Y) = CST (pc_time) ;

TRANSIT (Y)=1 (1,1 STEP 1 UNTIL N), jack pr(l, 1 STEP

/STATION/

NAME=n(2) ;
SERVICE=CST (pc_time) ;

TRANSIT (X)=1(2,1 STEP 1 UNTIL N) rout_pr(2,1 STEP 1
TRANSIT (Y)=1(2,1 STEP 1 UNTIL N),jack pr (2,1 STEP 1

/STATION/

NAME=n (3)
SERVICE=CST (pc_time) ;

TRANSIT (X) =1 (3,1 STEP 1 UNTIL N), rout pr(3,1 STEP 1
TRANSIT (Y)=1(3,1 STEP 1 UNTIL N), jack_pr (3,1 STEP 1

/STATION/

NAME=n (4)
SERVICE=CST (pc_time) ;

TRANSIT (X)=1 (4.1 STEP 1 UNTIL N), rout_pr (4,1 STEP 1
TRANSIT (Y)=1 (4,1 STEP 1 UNTIL N), jack_pr (4,1 STEP 1

t

289 /STATION/

290
291

NAME=n (5) :
SERVICE=CST (pc_time) ;

1 UNTIL N),OUT:

UNTIL N):
UNTIL N),OUT;

UNTIL N):
UNTIL N),OUT;

UNTIL N):
UNTIL N): & no ou

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

==>

311
312

==>

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

TRANSIT (X)=1 (5.1 STEP 1 UNTIL N),rout_pr (5,1 STEP 1
TRANSIT (Y)=1(5,1 STEP 1 UNTIL N), jack pr (5,1 STEP 1

/STATION/

NAME=n (6) ;
SERVICE=CST (pc_time) ;
TRANSIT (X)=1(6,1 STEP 1 UNTIL N), rout_pr(6,1 STEP 1 UNTIL N):
TRANSIT (Y)=1(6,1 STEP 1 UNTIL N), jack_pr (6,1 STEP 1 UNTIL N),OUT:

/STATION/

NAME=n (7)

SERVICE=
BEGIN

CST (pc_time) ;
cx:=n(7) .FIRST;

IF cx.

BEGIN

ct:

CCLASS=X THEN

=TIME-cx.s_time;

& PRINT("MESSAGE:",cx.s_nb, "delay=",ct):

ix:

IF
ir
IF

=INTREAL (ct*10) *2+1;
ix>Ix-1 THEN ix:=Ix-1; & (£x(1999),£x(2000))

ix<l THEN ix:=1;

UNTI
UNTI

L N);
L N),OUT;

is the last pa

IF ix>=ix_max-1 THEN nb_max:=nb_max+l; & the delay that exceeds

ix_max

nb_msg:=nb_msg+l;
fx (ix+1) :=fx (ix+1) +1;

o o e o e o e o e I e o o O o e e e o b e e o e e e e

& New codes for A4 algorithm &

G L o o e o o o e e e e e o e o o o o e o ot o e e e e e

n_id:=cx.net_id;

IF

n_1id=1 THEN

BEGIN

nbl_msg:=nbl_msg+l;
x1 (1x+1) :=fx1 (ix+1) +1;
IF ix>=ix_max-1 THEN nbl_max:=nbl_max+l:
tail:=REALINT (nbl_msg) * (1-B_pct) ;
temp:=nbl_max;
Ix:=ix_max;
WHILE (temp<tail) AND (jx>=1) DO
BEGIN
temp:=temp+fxl (jx) .
Ix:=3x-2;

END
bl:=REALINT (ix) /20.0;

END;
IF n_id=2 THEN
BEGIN

END

nb2_msg:=nb2_msg+l;
fx2 (ix+1) :=fx2 (ix+1)+1;
IF ix>=ix_max-1 THEN nb2_max:=nb2_max+l;
tall :=REALINT (nb2_msg) * (1-B_pct) ;
temp :=nb2_max;
Ix:=ix_max;
WHILE (temp<tail) AND (jx>=1) DO
BEGIN
temp :=temp+fx2 (x) ;
Jx:=3x-2;

b2 :=REALINT (jx) /20.0;

& PRINT("* * * message:",cx.s_nb, "bl=", bl,6 "b2=",b2);

103

350 & PRINT("received from net',n_id);

351 & PRINT("tail:", tail, 'temp=", temp):
352 rrrrr(rrrrrrrrrrrrrrrrrrrrrrrrrrr
353 END;

354 END;

355 TRANSIT=0UT:

356 &

357 & background source nodes

3s8

&

359 /STATION/

360 NAME=s (1) ;
361 TYPE=SOURCE;
362 SERVICE=
363 BEGIN

364 EXP (La_time) ;

365 & X is created only when system is warm-up
366 IF (TIME>warm_up) AND DRAW (0.45) THEN
367 BEGIN

368 cx:=s (1) .EIRST.

369 cx.s_time:=TIME;

370 ex.s_nb:=Nx;

371 Nx:=Nx+1;

372 TRANSIT(n (1) .X):

373 END

374 ELSE TRANSIT(n(1).Y):

375 END;

376 /STATION/

377 NAME=s (2) .

378 TYPE=SQURCE.

379 SERVICE=EXP (1a_time):
380 TRANSIT=m (2).Y.1:

381 /STATION/

382 NAME=s (3) :

383 TYPE=SOURCE.

384 SERVICE=EXP (ia_time) ;
385 TRANSIT=n(3).Y.1;

386 /STATION/

387 NAME=s (5) :

388 TYPE=SOURCE;

389 SERVICE=EXP (1a_time)
390 TRANSIT=n(5).Y.1.

391 /STATION/

392 NAME=s (6) ;

393 TYPE=SOURCE:;

394 SERVICE=EXP (1a_time) ;
39S TRANSIT=n (6).Y.1;

396 &

397 & comm. links

398 &

399 $MACRO link (s_node,d_node,s_time) & definition for communnication
400 /STATION/ NAME=1(s_node,d_node); & link stations

401 SERVICE=EXP (s_time) :

402 TRANSIT=n (d_node) , 1.

403 SEND

404 &

405 $link(1,2,sva_time) S$link(1,
406 $1link(2,3,sva_time) $link(2,
407 $1ink(3,2,sva_time) $link(3,
408 $link (5,2, sva_time) $link(S,
409 Slink(6,3,sva_time) $link (6,

,sva_time)
,sva_time)
,sva_time)
,sva_time) $1ink (5,7, sva_time)
,sva_time) $1ink (6,7, sva_time)

oo w

104

410 &

411 $1ink(1,4,svb_time) $1link(4,7.svb_time)

412 $1ink(2,4,svb_time) 81ink(3,4,svb_time) $§1link(5,4.svb_time)
413 $1ink(6,4,svb_time)

414 S8link(4,2,svb_time) §$1link(4,3,svb_time) $link(4,5.svb_time)
415 $1link(4,6,svb_time)

416 &

417 /CONTROL/

418 CLASS=ALL QUEUE:

419 ENTRY=BEGIN

420 PRINT ("Inter-arrival time?"); ia_time:=GET (REAL):

421 PRINT ("Service time for net 1?"): sva_time:=GET (REAL):

422 PRINT (""Service time for net 2?"); svb_time:=GET (REAL):

423 PRINT ("Processing time?"); pc_time:=GET (REAL) .

424 PRINT ("Delay bound?"): B:=GET (REAL) :

425 PRINT ("Simulation time?"): tmax : =GET (REAL) ;

426 FOR ix:=1 STEP 2 UNTIL Ix-1 DO & initializing the delay distr. ar
=> ray

427 fx (1x) :=REALINT (ix-1) /20.0;

428 END;

429 TMAX=tmax;
430 EXIT=BEGIN & print the delay distribution

431 PRINT ("'nb of msg=",nb_msqg):

432 PRINT ("* * * Delay Distribution:");

433 FOR ix:=1 STEP 2 UNTIL ix_max-1 DO BEGIN
434 fx (ix+1) :=fx (ix+1) /REALINT (nb_msg) ;

435 PRINT (fx (ix), fx (ix+1),CURVE (fx, fx(ix))):
436 d_mean:=d_mean+fx (ix) * fx (ix+1) ;

437 d_var:=d_var+fx (ix) *fx (ix) *fx (ix+1)

438 END;

439 d_var:=d_var - d_mean*d_mean;

440 temp : =REALINT (nb_max) /REALINT (nb_msqg) :

441 Ix:i=ix_max;

442 WHILE (temp<0.01)*AND (jx>=1) DO

443 BEGIN

444 temp : =temp+fx (jx)

445 Ix:i=ix-2;

446 ;

447 d_pound:=REALINT (jx) /20.0;

448 PRINT ("* nb_max=", nb_max) ;

449 PRINT("* * * Expected Delay :", d_mean):

450 PRINT ("* * * Variance :",d_var);

451 PRINT ("* * * Delay Bound:", d_bound) :

452 END;

453 /EXEC/

454 BEGIN

455 spl(1,7): & find the shortest path in network 1
456 sp2(4.7): & find the shortest path in network 2
457 Jackson; & find the routing prob.. for Y
458

459 PRINT ("* * * Simulation result for single SHORTEST PATH * * *");
460 SIMUL; ‘
461 END.

* * * The Shortest Path Matrix (1) * * *
1) The path array:
1 1 2 1 4 3 6
2) The cost matrix
0. 0 2200 1.000 1.000 1000.0 1000.0 1000.0
0. 0.2000 0.4000 1.000 3.000 1.200 6.000

0. 0.2000 0.4000 1.000 3.000 0.6000

0. 0.2000 0.4000 1.000 3.000 0.6000

0. 0.2000 0.4000 1.000 3.000 0.6000

0. 0.2000 0.4000 1.000 3.000 0.6000

-0. 0.2000 0.4000 1.000 3.000 0.6000

3) The routing probability matrix:

0. .000 0. 0. 0 0.

0. 0. 1.000 0. 0 0.

0. 0. 0 0. 0 1.000

0. 0. 0 1.000 0. 0.

0. 0. 0 0. 1.000 0.

0. 0. 0 0. 0. 0.

0. 0. 0. 0. 0 0.

* * * The Shortest Path Matrix (II)}* *
1) The path array:

1 1 2 1 4 3
2) The cost matrix

0. 0.2000 1.000 1.000 1000.0 1000.0

0 0.2000 0.4000 1.000 3.000 1.200

0 0.2000 0.4000 1.000 3.000 0.6000

0 0.2000 0.4000 1.000 3.000 0.6000

0 0.2000 0.4000 1.000 3.000 0.6000

0 0.2000 0.4000 1.000 3.000 0.6000

0. 0.2000 0.4000 1.000 3.000 0.6000

3) .The routing probability matrix:

0. .000 0. 0. 0. 0.

0. 0. 1.000 0. 0. 0.

0. 0. 0. 0. c. 1.000

0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 1.000 0.

0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0.

* * * The Jacksonian Matrix * * *

0. 0. 0.9091e-01 0.4545 0.4545 0.
0.3788 0. Q. 0.1515e-01 0.2273 0. 3788
0.4348 0. 0.2174 0. 0.3261

0. 0. 0.1538 0.1538 0. 0. 1538
0.7143e-01 0. 0.3571 0. 0.2143 0.
0.1087 0. 0. 0.2174 0.3261 0.3261

1.000 0. 0. 0. 0. 0.

* * *» Simulation result for single SHORTEST PATH * * *

Inter-arrival time?
10.5

Service time for net 1?7
2 0.12

Service time for net 2?
3 0.17

Processing time?
4 0.05

Delay bound?
5 2.0

Simulation time?
6 2050

x STMULATION ***
TIME = 2050.00

ﬂttt*tltlﬁ!!t*tt‘tl!l*tt'lii.ﬂti'*!ltﬁtl!ttﬁ!!t'.tnt*tﬂitﬁﬂiktti*iﬁ

* NAME * SERVICE * BUSY PCT * CUST NB * RESPONSE * SERV NB *

A AR R R AR KRR AR IR R A AR R R R AR TR XA NN AR KA AKX A R AR AR R AN XA XA IR KX AR X AKX

106

1.400
0.8000
0.8000
0.8000
0.8000

[eNeoNoNoNo]

1.000
1.000

1000.0
6.000
1.400

0.8000

0.8000

0.8000

0.8000

0.2174e

0.1538

0.2143
0.
0.

RKo

—~— —~—
KX3 X3

RRa

Ro

R¥a

n R¥a

7]

R RE- REr- Re R%e n

R

LA S A S A I B I A B R N N R S T N T I N TN SN N NN NS TN NS N N N N N TS S S N S ST S S SN S S S S N Y

—

1 +*0

2 *0.

.5002e-01*0

.5002e-01*0.
*

3 *0.

.5002e-01*0

.5002e-01*0
.

.5161
.5118
.4875
.5120
.5004
.1220
.1220
.1221

.1255
.1255

.1661
.1611
.1690

.1273
.1260
.1348

.1697
.1697

.1188

*®

.5002e-01*0

.5002e-01*0

.5002e-01*0
*

5002e-01*0

5002e-01*0.

.5002e-01*0
.5002e-01*0
®

.5002e-01*0

.5002e-01*0.

.5002e-01*0.
-

.5002e-01*0
.5002e-01%0.
.5002e-01*0.

*

* % % NN RN

. * »
[~ N e N

LIRS B N B N N I
[Xe) oo [N Nel oo

»
o

1188

»
o

»

1267

»
o

.5002e-01*0.

.5002e-01*0.

.5002e-01*0.
®

1.

*

iois

4496e-
.5688e-

4516

3652e-

.4150

.3437e-

3092

.2748

.4257

1649e-

4092

4331
4331

.30234

. 3469%e-

2687

.2554

.4948e-

1.

1.

.6686e-
.6686e-

.4463e-
.9276e-

.9386e-
.7932e~
.1454e-

2059
000
000
.000
.000

.000

8983e-~
.7753e-
.122%e-

1374

.3598

3598

.3978
.3978

9690e-01*0.
.4288e-01+40.
.5402e-0140

L]
.3567 0.
.2926€-01+40.

3275 *0

L]

2630 *0.
.2926e-01*0
2338 *0
*
3406 *0
1362e-01*0.
3270 *0.

*
.3435 0.
.3435 *0.

*
.2577 *0

2926e-01+0
2285 *0,
-~
.2223 *0
4287e-01*0
1795 *0.
*
000 .
*
.000 .
*
.000 .
*
.000 .
t]
.000 *

*
.8267e-01%0.
.7135e-01*0
.1131e-01*0

*
.6344e-01+%0
.6344e-01*0

»
.1254 *0.
.4385e-01*0
.8154€-01*0

*
.8716e-01*0
.7368e-01*0
.1348e-01*0

*
.2640 *0
.2640 *0.

*
.2907 *0
.2907 *0

L4
1276 "0

.1443

107

*

*0.
.5245e-01*

01*0

01*0.
.

*0.
.6243e-01"*

01*0

*0.
*

*0.
.5876e-01*
.588le-01*

*

01%0
*0
L

*0

01*0.
*0.

*

*0

*0.

*

*0.
.5931e-01*
.5882e-01*

*

01+0
*0
*
*0

01+%0
*0
*

*0.

*
*0
*
*0

*

*0.

*

*0.

*

01*0.
01*0.
.1327

01l*0
=

01*0
01*0
L4

*0

01+*0.
01*0.
-

01*0

01*0.
.1454

01*0
*

*0

*0.

*

*0.
.1626

*0

*

*0.

.5118

.4875

.1323
.1323

.1821

.1370

L2312

*

5257e-01*
5267e-01*
*
6332e-01*
6340e-01*
*

588le-01*

.6252e-01*

6057e-01*
6260e-01*
*

.6306e-01*

6306e-01"*
*

5887e-01*

.5747e-01*
.5774e-01"*
.5740e-01*

Slel

5120
5004

1326
1326

1640
1923

1356

2312

1626

* R X % R R A X F X X B F X B X N * ¥ B B X ¥ X * F F K F F B * B

1432

*

3971+
1757+
2214+

*

14619*
1199*
13420*
-

10779+
1199+
9580+
*
13957+
558+
13399+
-
14079*
14079+
®
10562+
1199*
9363+
*

9112+
1757+
7355%

*

3972*

*

4005*

-

4204*

"

4004*
*
4097*
*

1389*
1199*
190*
*

1036*
1036*
*

1545+
558+
987+
*
1404*
1199+
205+
*

3190*
3190*

®
5016+
5016*

*

2065*

.Y)*0.1267 *0.1276 *0.1443 *0.1432 * 2065+
* - - - * L *
* 1 18 *0.1731 *0.2722 *0.3601 *0.2290 ¢ 3224*
(Y)*0.1731 *0.2722 *0.3601 *0.2290 * 3224+
L] L4 * - * * -
* 1 20 *0.1132 *0.7844e-01%0.8409e-01+0.1214 * 1420*
* (X)*0.1138 *0.6657e-01%0.7171e-01%0.1226 * 1199+
(Y)*0.1101 *0.1187e-01%0.1238e-01%0.1149 * 221%
* ® t 3 * * L *
* 1 23 *0.1705 *0.1715 *0.2140 *0.2128 * 2062+
(Y)*0.1705 *0.1715 *0.2140 *0.2128 * 2062+
® * * * * * *
* 1 24 *0.1731 *0.1751 *0.2053 *0.2030 . 2074+
€ (Y)*0.1731 *0.1751 *0.2053 0.2030 . 2074
* ~ * L * * *
£ 1 26 *0.1741 *0.1715 *0.2019 *0.2050 . 2018*
(Y)*0.1741 *0.1715 *0.2019 *0.2050 . 2018+
* * * * * * *
* 1 27 +0.1747 *0.1759 *0.2155 *0.2141 . 2063*
“(Y)*0.1747 *0.1759 *0.2155 *0.2141 . 2063+
* * *® £] * * .
* 1 28 +0.1671 *0.4678 *0.8052 *0.2876 . 5739+
* (X) *0.1602 *0.4361e-01*0.5613e-01%0.2062 . 558*
* (Y)*0.1678 *0.4242 *0.,7491 *0.2964 . 5181+
* * * * * L] L 4
*1 30 *0.1213 *0.3016 *0.4231 *0.1701 . 5098+
* (Y)*0.1213 *0.3016 *0.4231 *0.1701 * 5098+
* * * L * - *
* 1 32 *0.1688 *0.2435 *0.3140 *0.2176 . 2958+
(Y)*0.1688 *0.2435 *0.3140 +0.2176 * 2958+
* * * * L *
*1 34 +0.1218 *0.1773 *0.2190 *0.1504 . 2984*
(Y)*0.1218 *0.1773 *0.2190 *0.1504 * 2984*
* * * L * * *
* 1 35 %0.1167 *0.1136 *0.1284 +0.1319 . 1993*
“(Y)*0.1167 *0.1136 *0.1284 *0.1319 = 1993+
» * * * L * *
* 1 38 *0.1199 *0.1206 *0.1368 *0.1361 * 2061%
*(Y)*0.1199 *0.1206 *0.1368 *0.1361 * 2061*
* ® * - * ® *
« 1 39 *0.1722 *0.2556 *0.3371 *0.2270 * 3041+
(Y)*0.1722 *0.2556 *0.3371 *0.2270 * 3041+
* - * * ® ‘ * *
.1 40 *0.1202 +0.1783 *0.2153 *0.1451 . 3041+
. (Y)*0.1202 *0.1783 *0.2153 *0.1451 . 3041+
* * * * * * *
*1 42 *0.1192 *0.8023e-01%0.8467e-01%0.1258 * 1380+
* (X)*0.1189 *0.6956e-01%0.7356e-01%0.1258 * 1199+
(Y)*0.1209 *0.1067e-01%0.1111e-01%0.1258 * 181+
* ® * ~ * * »

A RN AR RN R R AN R AR R R AR R RAR AR AR R AR RAAN AR NN AR R AR AR AR AR A RAAAN R RN R AR NN

END OF SIMULATION ...

MEMORY USED: 29265 WORDS OF 4 BYTES
(11.71 ¢ OF TOTAL MEMORY)
nb of msg= 1757
* * * Delay Distribution:
0. 0. 9.
0.1000 0.8537e-02 0.8537e-C2

0
0

[~ NeoRoNoNoRal

.2000
.3000
.4000
.5000
.6000
.7000
.8000
.9000
.000
.100
.200
.300
.400
.500
.600

.800
.900
.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
.000
.100
.200
.300
.400
.500
.600
.700
.800
.900
000
.100
.200
.300
.400
.500
.600
.700
.800
.900
.000
.100

O‘O‘U\U‘M(ﬂwm(ﬂ(ﬂlﬂfh.hnh;h.h»h»h.h;hp‘lthuwuMMWUMUNNNNNNNNNNHHHD—‘H)—‘HHHH

[eNeNoNoNoN-NoNoNeNeNoNeoloNoleoNeNel

o

.4265e-01
.7114e-01
.1059

.1360

.13%94

.1309

.1167

.9106e-01
.5919%e-01
.3984e-01
.2163e-01
.1366e-01
.739%e-02
.626le-02
.5122e-02
.2277e-02
.1707e-02

0

.5692e-03

109

[eRoNoNeoNoNoNoNeNoNoNeNeReNoloNoRo)

o

.426%e-01
.7114e-01
.1059

.1360

.1394

.1309

L1167

.9106e-01
.591%e-01
.3984e-01
.2163e-01
.1366e-01
.739%e-02
.6261e-02
.5122e-02
.2277e-02
.1707e-02

0

.5692e-03

* % X

.200
.300
.400
.500
.600
.700
.800
.900
.000
.100
.200
.300
400
.500
600
.700
.800
.900
.000
.100
200
.300
.400
.500
.600
.700
.800
.900
. 000
.100
.200
.300
.400
.500
600
700
.800
.900
_max= 0
* Expected Del
* * Variance :
* * Delay Bound:

\O:D:O\O\D\O\OO\DO)(D(D(DCD(DG)CD(D(D\I\D\I\IQQQ\IQQOOO\OO\O\GO\

)

462
463 /END/

ay : 0.6744
0.8476e-01
1.500

110

REFERENCES

[1] L. Kleinrock, Communication Nets - Stochastic Message Flow and Delay,
McGraw-Hill, NY, 1964.

(2] L. Kleinrock, Queueing System, Vol.1: Theory, Wiley- Interscience, NY, 1975.

[3] L. Kleinrock, Queueing System, Vol.2: Computer Applications , Wiley Inter-
science, NY, 1975.

(4] D. Bertsekas and R. G. Gallager, Data Networks, Prentice-Hall, New Jersey,
1987.

[5] M. Schwartze, Telecommunication Networks, Addison-Wesley, New York,
1987.

[6] R. J. Cypser, Communications Architecture for Distributed Systems, Addison
Wesley, NY, 1978.

(7] G. D. Schultz, D. B. Rose, C. H. West and J. P. Gray, “Erecutable Description
and Validation of SNA”, IEEE Transaction on Communication, vol.COM-
28, no.4, Apr.,1980.

(8] P. E. Green, Computer Network Architecture and Protocols, Plenum:New
York, 1982.

9] J. W. Wong and S. S. Lam “Queueing Network models of pachet-switchin
g g
networks”, Proc. Nat. Telecomm. Conf., Houston, TX, 1980.

[10] J. W. Wong, “Distribution of end-to-end delay in message switched net-

works”, Computer Network, vol.2, 1978.

111

[11] F. Baskett, K. M. Chandy, R. R. Muntz and F. Palacios, “Open, Closed and
Mized Networks of Queues with Different Classes of Customers”, JACM,
22, 1975.

[12] R. L. Disney, R. L. Farrell and P. R. Morais, “A characterization of M/G/!1

queues with renewal departures”, Management Sci., 20, 1973.

[13] E. Reich, “Waiting Times when Queues are in Tandem”, Ann. Math. Statis-
tics, 28, 1957.

[14] E. Reich, “Notes on Queues in Tandem”, Ann. Math. Statistics, 34, 1963.

[15] G. L. Fultz, “Adaptive Routing Technigques for Message Switching Networks”,

Ph.D. dissertation, Dept. of Computer Sci., Univ. of California, Los Ange-
los, July, 1972.

16] D. G. Cantor and M. Gerla, “Optimal Routing in a packet Switching Com-
g
puter Network”, IEEE Tranc. Comput., vol.23, Oct.,1974.

(17] L. Kleinrock and S. S. Lam, “Packet-Switching in a Slotted Satellite Chan-
nel”, in AFIPS Nat. Comput. Conf. Proc., vol.42, June 1973.

(18] S. S. Lam, “Packet-switching in a Multi-access Broadcast Channel with Ap-
plication to Satellite Communication in a Computer Network”, Ph.D. dis-

sertation, Dept. of Compt. Sci., Univ. of California, Los Angeles, Apr.,
1974.

[19] N. Abramson, “The ALOHA System”, Computer Communication Networks,
N. Abramson and F. F. Kuo, Eds. Englewood Cliffs, NJ: Prentice-Hall, 1973.

[20] F. F. Kuo and N. Abramson, “Some Advances in Radio Communications
for Computers”, in Dig. Papers-COMPCON ’73, Sancisco, CA, Feb. 1973.

[21] P. Kaiser, J. Midwinter and S. Shimada, “Status and Future Trends in Ter-
restrial Optical Fiber Systems in North America, Europe and Japan”, IEEE
Commun. Mag., vol.25, Oct., 1987.

112

[22] L. Fratta, M. Gerla and L. Kleinrock, “The Flow Deviation Methods - An
Approach to Store and Forward Communication Network Design”, Networks,

3, 1973.

[23] W. Chou and H. Frank, “Routing Strategies for Computer Network Design”,
Symp. Computer Commun. Networks, Brooklyne, New York, Apr., 1972.

[24] J. R. Jackson, “Job Shop-Like Queueing System”, Management Sci., vol.10,
Oct.,1963.

[25] H. Kobayashi and M Reiser, “On Generalization of Job Routing behavior in
Queueing Network Model”, Res. Report RC5679, IBM Thomas J. Watson
Res. Center, Yorktown Heights, NY, Oct., 1975.

(26] L. Kleinrock, “4 Conservation Law for a wide class of Queueing Disciplines”,
Naval Res. Log. Quart., vol.12, 1965.

[27] M. Gerla, W. Chou and H. Frank, “Cost-Throughput treads in Computer
Networks using satellite communications”,Proc. Int. Conf. Commun., Min-
neapolis, MN, 1974.

(28] D. Huynh, H. Kobayashi and F. F. Kuo, “Optimal Design of Mized-Media
Packet Switching Networks: Routing and Capacity Assignment”, IEEE Tranc.

Commun. com-25, no.l, Jan., 1977.

[29] K. Maruyama, “Optimization of Mized-Media Communication Networks”,

Computer Networks, no.2, 1978.

(30] D. Huynh, H. Kobayashi and F. F. Kuo, “Design issues for Mized-Media
Packet Switching Networks”,

(31] D. L. A. Barber and D. W. Davies, “The NPL Data Network”, Proc. Conf.
Laboratory Automation, Novosibiribrsk, U.S.S.R., Oct.,1970.

(32] S. Butterfield, R. Rettberg and D. Walden, “The Satellite IMP for the ARPA
Network”, in Proc. Tth Hawaii Int. Conf. System Sciences-Subcon. Com-

put. Nets, Jan, 1974

113

[33] B. D. Wesler and R. B. Hovey, “Public Packet-Switching Networks”, Data-
mation, July 1974.

[34] CONTEL/ Federal System, “System Specification for the Military Airlift
Command(MAC) Command and Control(C2) Information Processing Sys-
tems(IPS)”, IPS-S-102, March 1987.

[35] N. Abramson, “The Aloha System — Another Alternative For Computer Com-
munications”, Proc. Fall Joint Computer Conf., AFIPS, Conf., 37, 1970.

[36] M. Gerla and L. Kleinrock, “On the Topological Design of Distributed Com-
puter Networks”, IEEE Tranc. Commun., COM-25:48-60, 1977.

[37] A. Kershenbaum and R. R. Boorstyn, “Centralized Teleprocessing Network
Design”, Networks, 13, 1983.

[38] C. L. Monma and D. D. Sheng, “Backbone Network Design and Performance
Analysis: A Methodology for Packet Switching Networks”, IEEE J. Select.
Areas: Commun., SAC-4. 1986.

[39] T. P. Yum, “The Design and Analysis of a Semi-dynamic Deterministic
Routing Rule”, IEEE Tranc. Commum.. vol. COM-29, no.4, Apr., 1981.

[40] R. G. Gallager,“4 Minimun Delay Routing Algorithm Using Distributed

Computation”, IEEE Tranc. Commun., vol. com-25, No.1, Jan., 1977.

[41] H. Rudin, “On Routing and Delta-Routing: A Tazonomy and Performance
Comparison of Techniques for Packet-Switching Networks.”, IEEE Tranc.

Commun., vol. com-24, No.1, Jan., 1977.

(42] R. R. Boorstyn and A. Livne, “4 Technique for Adaptive Routing in Net-
works”, IEEE Tranc. Commun., com-29, no.4, Apr., 1981.

(43] A. K. Agrawala, E. G. Coffman, J. R. Garey and S. K. Tripathi , “4 Stochas-
tic Optimization Algorithm Minimizing Erpected Flow Times on Uniform

Processors”, Preprint, 1983.

114

[44] R. L. Larsen, “Control of Multiple Exponential Servers With Applications to
Computer Systems”, Ph.D. Thesis, Tech. Rep. no. TR-1041, University of
Maryland, College.Park, Apr., 1981.

[45] L. Vinpiotis and A. Ephremides, “Eztensions of Optimality of the Threshold
Policy in Heterogeneous Multiserver Queueing Systems”, Tech. Rep., TR-
87-15, System Res. Center, Univ. of Maryalnd, College Park, 1987.

[46] A. Ephremides,Communication Networks: Lecture Notes, Electrical Engi-’
neering Dept., Univ. of Maryland, College Park, Spring 1988.

[47] A. Ephremides, P. Varaiya and J. Walrand, “4 Simple Dynamic Routing
Problem”, IEEE Tranc. Automatic Control, vol.ac-25, no.4, Aug., 1980.

(48] T. P. Yum and M. Schwartz, “The Join-Biased-Queue Rule and its Appli-
cation to Routing in Computer Communication Networks”, IEEE Tranc.

Commun., vol.com-29, no.4, Apr., 1981.

[49] P. R. Kumar and J. Walrand, “Individual Optimal Routing in Parallel Sys-
tems”, SIAM J. Control and Optimization, May, 1984.

[50] T. P. Yum and H. C. Lin, “Addaptive Load Balancing for Parallel Queues with

Traffic Constrains”,IEEE Tranc. Commun., vol.com- 32, no.32, Dec., 1984.

[51] W. Chou, A. W. Bragg and A. A. Nilsson, “The Need for Adaptive Routing
in Chaotic and Unbalanced Traffic Environment”, IEEE Tranc. Commun.,
vol. com-29, No.4, Apr., 1981.

[52] J. L. Yuan, “A4 Dynamic Routing Algorithms for Multimedia Networks”term
paper, ENEE426/Univ. of Maryland, College Park, Spring, 1988.

[33] P. P. Varaiya, J. C. Walrand and C. Buyukkoc, * Ertensions of the Multi-
armed Bandit Problem: The Discounted Case”’. IEEE Tranc. Auto. Control.

vol.ac-30, no.5, May, 1985.

(54] J. C. Gittins, “Bandit Process and Dynamic Allocation Indices”,J. Roy. Statis-
tics Soc.. vol.41, 1979.

[55] J. C. Gittins and D. M. Jones, “A Dynamic Allocation Index for Sequential
Design of Ezperiments”, Progress in Statistics, Euro. Meet. Statis., vol.l,

1972.

[56] P. Varaiya and J. Walrand, “Interconnection of Marcov Chains and Quasi-
Reversible Queueing Networks”, Adv. Appl. Prob., 12, 1980.

[57] J. Walrand,An Introduction to Queueing Networks, Prentice-Hall, New Jer-
sey, 1988.

[58] J. Walrand, “Sojourn Times and the Overtaking Conditions in Jackson Net-
works”, Adv. Appl. Prob., 12, 1980.

[59] H. Daduna, “Passage Times for Overtake -Free Paths in Gordon-Newell Net-
works”, Adv. Appl. Prob., 14, 1982.

[60] B. Melamed, “Sojourn Times in Queueing Networks”, Opera. Res.,IT, 1982.

[61] J. D. C. Little, “4 Proof of the Queueing Formula L = AW 7, Oper. Res.,
9, 1961.

[62] S. D. Conte and C. Boor, Elementary Numerical Analysis ~An Algorithm
Approach,-3rd Ed., 1980.

[63] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation
of Complez Fourier Series”, Math. of Comput., 19, 1965.

[64] W. Kaplan, Advanced Mathematics for Engineers, Addison-Wesley, 1981.

[65) E. Horowitze and S. Sahni, Fundamentals of Computer Algorithms, Com-

puter Series Press, Inc., 1982.

[66] W. Lin nd P. R. Kumar, “Optimal Control of a Queueing System with Two
Heterogeneous Servers”, IEEE Tranc. Automatic Control, 1984.

[67) QNAP2 Reference Manual, Institut National de Recherchee en Informatique
et en Automatique(INTRA), France, 1984.

116

(68] G. Bilardi and M Sarrafzadeh, “Optimal Discrete Fourier Transform in
VLSI”, Proc. International Workshop on Parallel Computing and VLSI.,
Amalfi, Ttaly, May 1984.

[69] J. Ja Ja, “High Speed VLSI Network for Computing the Discrete Fourier
Transform”, Conf. on Advanced Research in VLSI, Boston, MA., 1984.

[70] H. T. Kung, “Why Systolic Architecture?”, Computer Magazine, 37-46., 1982.

[71] K. J. Maclish, “Mapping the Integration of the Artificial Intelligence into
Telecommunications”, IEEE J. Select. Areas in Commun., vol.6, no.5, June

1988.

[72] K. J. Macleish, S. Thiedke and D. Vennergrund, “Ezpert System in Central
Office Switch Maintenance”, IEEE Commun. Mag., Sep., 1986.

