
Engineering Programming
in MATLAB : A Primer

February, 2000

Mark A. Austin

Institute for Systems Research,
University of Maryland,

College Park,
Maryland 20742, U.S.A.

Copyright c©2000 Mark A. Austin. All rights reserved. These notes may not be reproduced
without expressed written permission of Mark Austin.

2 Engineering Programming in Matlab

Contents

I Introduction to Engineering Computations 3

1 Introduction to Engineering Computations 6
1.1 Applications of Computers in Engineering 6
1.2 Recent Advances in Computing 7

Advances in Computing Since 1970 7
1.3 Computer Hardware Concepts 9

Hardware Components in a Simple Computer 9
1.4 Operating System Concepts 12
1.5 Computer Networking Concepts 12

Client-Server Network Architectures 13
The Internet 14
Internet Access 15
Protocols for Internet Communication 15
Internet Domain Names and Addresses 16
Internet Services 17
The World Wide Web 18

1.6 Hardware-Software Life Cycle 22
1.7 Principles of Engineering Software Design 24

Models of Software Systems Development 25
Components of Software Systems Development 27
Modular Program Development 30
Abstraction 31
Top-down and Bottom-up Software Design 32

1.8 Computer Programming Language Concepts 33
High- and Low- Level Computer Languages 33
Compiled and Interpreted Programming Languages 34
Procedural and Object-Oriented Programming Languages 35

0

The Syllabus 1

1.9 When to Program in MATLAB? 35
1.10 Review Questions 36
1.11 Review Exercises 37

II MATLAB Programming Tutorial 38

2 Introduction to MATLAB 41
2.1 Getting Started 41
2.2 Professional and Student Versions of MATLAB 42

Entering and Leaving MATLAB 42
Online help 43

2.3 Variables and Variable Arithmetic 44
Defining Variables 44
Arithmetic Expressions 46
Numerical Precision of MATLAB Output 49
Built-In Mathematical Functions 50
Program Input and Output 52

2.4 Matrices and Matrix Arithmetic 54
Definition and Properties of Small Matrices 55
Reading and Saving Datasets 60
Application of Mathematical Functions to Matrices 61
Colon Notation 62
Submatrices 63
Matrix Arithmetic 64
Matrix Element-Level Operations 70

2.5 Control Structures 72
Logical Expressions 72
Selection Constructs 75
Looping Constructs 76

2.6 General-Purpose Matrix Functions 78
Sorting the Contents of a Matrix 78
Summation of Matrix Contents 79
Maximum/Minimum Matrix Contents 79
Random Numbers 80

2.7 Program Development with M-Files 82
User-Defined Code and Software Libraries 82
Program Development Cycle 83
Script M-Files 86

2 Engineering Programming in Matlab

Function M-Files 86
Handling Name Conflicts 92

2.8 Engineering Applications 93
2.9 Review Questions 112
2.10 Programming Exercises 115

3 MATLAB Graphics 124
3.1 Simple Two-Dimensional Plotting 124

Histograms, Bar Charts, and Stem Diagrams 130
Multiple Plots 132

3.2 Three-Dimensional Plots 134
3.3 Mesh and Surface Plotting 135
3.4 Contour Plots 138
3.5 Subplots 139
3.6 Hard Copies of MATLAB Graphics 142
3.7 Preparing MATLAB Graphics for the World Wide Web 143
3.8 Review Questions 143
3.9 Programming Exercises 144

4 Solution of Linear Matrix Equations 149
4.1 Definition of Linear Matrix Equations 149

Geometry of Two- and Three-dimensional Systems 150
4.2 Hand Calculation Procedures 151
4.3 Types of Solutions for Systems of Linear Matrix Equations 152
4.4 Case Study Problem : Three Linear Matrix Equations 154
4.5 Singular Systems of Matrix Equations 156
4.6 Engineering Applications 157

Structural Analysis of a Cantilever Truss 157
Analysis of an Electrical Circuit 163
Least Squares Analysis of Experimental Data 166
Distribution of Temperature in Chimney Cross-Section 172

4.7 Review Questions 181
4.8 Programming Exercises 182

Part I

Introduction to Engineering
Computations

3

Chapter 0 5

Introduction

This text begins with a tutorial describing the concepts on which modern engineering com-
putations are built. In our experience, students are much better prepared to learn a new programming
language if they are already familiar with these basic concepts.

After briefly explaining the range of application programs that are found in engineering or-
ganizations, Chapter 1 quickly reviews the major contributions of computer technology over the past
thirty years. This historical review helps us to see where and how technology has evolved, and pro-
vides perspective for where computing and computer technologies are likely to head in the next five
to ten years. We then examine the hardware components in a simple computer, the components and
purposes of a simple operating system, and the role computer networks are playing in modern-day
applications of engineering computing. The latter includes introductions to client/server computing,
the Internet, and the World Wide Web (WWW).

Chapter 2 introduces the principles upon which modern engineering software systems are
built. Topics include the hardware-software life cycle, the economics of software development,
top-down and bottom-up development strategies, software modularity, and information hiding. We
conclude this chapter with an introduction to programming language concepts, including high- and
low-level programming languages, compiled versus interpreted languages, scripting and markup
languages, and so forth.

Chapter 1

Introduction to Engineering
Computations

1.1 Applications of Computers in Engineering

During that past three decades, remarkable advances have occurred in the processing speed
of computers, the capacity of computers to store, manipulate and present large quantities of data
and information, and the ability of computers to communicate with other computers over networks.
Evidence of these advances can be found in present-day engineering offices where computers are
used in at least four broad capacities:

1. For storage and manipulation of data and information. Modern databases can store and
manipulate a variety of data and information, including commercial off-the-shelf products,
materials, and services; experimental data; the results of a numerical computations; models
of designs, design documents and drawings; Geographic Information Systems (GIS) imagery;
and so forth.

2. Forcommunication over computer networks. Networking tools and technologies allow for
the exchange of data and information over networks, and for computers to jointly contribute
to the solution of large engineering analyses. Perhaps the greatest use of computer networks
is for communication via E-mail.

3. Fordesktop publishing. Word processing packages such as LaTeX and Microsoft Word, and
picture editors such as Corel Draw and Photoshop enhance an engineer’s ability to write and
edit publications.

4. Fornumerical and symbolic computations. Engineering analysis programs (e.g., programs
for control systems and finite element analysis; MATLAB and Mathematica) are needed for
the solution of engineering problems. The majority of engineers use commercial software for
numerical and symbolic calculations, requiring preparation/programming of input files while
some engineers will write their own software.

6

Chapter 1 7

From a business point of view, the most useful application programs will directly improve the per-
formance and reliability, productivity, and economic competitiveness of engineering systems devel-
opment. The participating application programs should be fast and accurate, flexible, reliable, and
of course, easy to use. And they should work together. A good example of the last requirement
can be found in modern-day computer-aided design (CAD) systems where engineering analysis
programs are integrated with project management tools, databases of project requirements, organi-
zational resources, and commercial off-the-shelf products, materials, and services.

An unfortunate problem caused by these advances is the gap many engineers are finding
between their knowledge of these technologies and the opportunities they afford. Solutions to this
problem are complicated by the large number of activities in which engineers participate and the
inability of many present-day engineering application programs to operate across a variety of hard-
ware platforms and operating systems. Keeping up-to-date with computational technologies is really
a lifelong endeavor because some of the application tools and computer programming languages we
will use in five to ten years are only just being invented.

1.2 Recent Advances in Computing

A good way of beginning to understand where computers and programming languages
might be headed in the near future, is to take a look at where they have come from in the recent past.
We therefore begin this section with a little history.

Advances in Computing Since 1970

For more than a decade now, computers have been providing approximately 25% more
power per dollar per year. Together with the aforementioned advances in technology and market
driven forces, these changes have stimulated the exploration of many new ideas and paradigms.
Figure 1.1 summarizes, for example, the major “modes of operation” and “key technologies for
computing” versus decade for the past 30 to 35 years (this diagram has been adapted from an article
in Scientific American [16]). The highlights are:

1970s :In the early to mid 1970s, mainframe computers were commonplace. They had a compu-
tational speed of 1 to 2 MIPS (millions of instructions per second) and were largely viewed
as machines for research engineers and scientists. Compared to today’s standards, computer
memory was very expensive, and human-computer interaction was primitive. In fact, scien-
tists and engineers interacted with a computer by sitting at a terminal and typing commands
on a keyboard. The computer would respond by sending text to the terminal screen.

8 Engineering Programming in Matlab

BATCH TIME-SHARING DESKTOP NETWORKS

Decade 1960s 1970s 1980s 1990s --
==

Technology Medium-Scale Large-Scale Very-Large Ultra-Scale
Integration Integration Scale Integration

Integration

Users Experts Specialists Individuals Groups.

Objective Calculate Access Present Communicate

Location Computer Terminal Desktop Mobile.
Room Room

Connectivity Peripherals Terminals Desktops Laptops
Palmtops

User Punch and Try Remember and See and Point Ask and Tell
Activity (computer cards) Type (drive) (delegate)

(interact)

Data Alpha-numeric Text Fonts Sound
Vector Graphs Video

Languages Cobol, FORTRAN PL/1, Basic Pascal, C C++, Java
SQL Perl, Tcl/Tk

HTML, VRML
==

Figure 1.1. Paradigms of computing versus decade

Most software developers wrote computer programs dedicated to a specific task (e.g., finite ele-
ment analysis; control systems package; an accounting or stock control system). Many of
these packages were written in FORTRAN and run in “batch mode.” The ease with which
FORTRAN could be used to evaluate mathematical formulae – hence the name For-mula
Tran-slation – was adequate for most engineering applications, and it can reasonably be ar-
gued that the choice of language was suitable for its time (unfortunately, some engineers and
educators still think it is adequate).

1980s :In the 1980s desktop publishing systems were developed for individuals at work and home.
Computers such as the Macintosh presented users with a screen containing window, scroll bar,
and button/icon interface components, that could be defined and manipulated with a mouse

Chapter 1 9

device by simply pointing and clicking icons on the graphical interface.

1990s :The use of computers in engineering is now at a point where mainframe computers are be-
ing replaced by high speed engineering workstations and modern Personal Computers (PCs)
having bit-mapped graphics (a bit is short for binary digit, either a 1 or 0), global network con-
nectivity (e.g., cellular communications; fiber optic; the World Wide Web), and multimedia
(i.e., two or more of the following; graphics, voice, digital sound, video) [13]. Laptop com-
puters now provide mobility, without compromising too many of the computational features
available on PCs.

It is important to note that computers once viewed as a tool for computation alone, are now seen
as an indispensable tool for computations and mobile communications. Access to this information
has expanded from “experts” in the 1970s to “groups of individuals” today. A whole host of new
programming languages, operating systems, and application programs have been written to support
the new modes of functionality and day-to-day operation enabled by these technology advances.
Consider, for example, an engineer who has access to a high speed PC with multimedia interfaces
and global network connectivity, and who happens to be part of a geographically dispersed develop-
ment team. The team members can use the Internet/E-mail for day-to-day communications, to share
project information among team members, to conduct engineering analyses at remote sites, and to
access information from databases on project components, materials, and services. Online assembly
of joint ventures, online bidding of projects, and online verification of project performance against
design standards may become commonplace in the near future.

1.3 Computer Hardware Concepts

The three main components in a computer are the hardware (including the computer net-
works connecting individual computers), the operating system, and the application programs that
operate on individual computers and across computer networks. In our opinion, programmers
should have a basic understanding of the hardware and operating system components in a simple
computer because many computer programs are written to interact with a computer’s input/ouput
(I/O) devices and its operating system.

Hardware Components in a Simple Computer

Figure 1.2 is a schematic of the main hardware components in a typical (simplified) per-
sonal computer. Viewed from a high-level of abstraction, a computer is an assembly of processor,
memory, and input/output (I/O) modules. A particular computer may have one or more modules of
each type, with these modules being connected in some way to produce the main function of the
computer.

10 Engineering Programming in Matlab

INPUT AND OUTPUT MASS STORAGE

RANDOM ACCESS

VIDEO CIRUITRY AND MEMORY.

Serial Ports....

Parallel Ports...

Keyboard

Sound....

Hard Disk..

CD-ROM.

Floppy Disk.
BUSSES.

BUSSES.
BUSSES.

DATA

DATA

DATA

DATA

DATA

DATA

INSTRUCTIONS

INSTRUCTIONS

INSTRUCTIONS

DATA

DATA

CENTRAL PROCESSING UNIT (C.P.U.)

READ ONLY MEMORY

(R.O.M.)

MEMORY (R.A.M.)

DVD

Figure 1.2. Hardware model of a personal computer

In Chapter 2 we will see that a computer program is nothing other than a list of instructions
that can be followed mechanically by the computer. Machine instructions are expressed as binary
numbers – that is, information represented as a sequence of zeros and ones. A computer can execute
a program only if it is expressed in a machine language that can drive the mechanical operations of
the computer.

Thecentral processing unit(CPU) is the engine that controls the operations of the com-
puter by executing instructions. In a conventional CPU, instructions are fetched from main memory,
decoded, and executed one at a time. This process is entirely mechanical, and so if a computer pro-
gram is to execute without error, the machine code instructions must be complete and unambiguous
in their intent. Computers are designed so that they can be easily connected to external devices such
as printers and keyboards. A second purpose of the CPU is to handle interrupts. When a device
sends an interrupt signal to the CPU, it will halt what it is doing, take care of the device request,
and then resume the original computation. The ability of a CPU to work on the solution of multiple
tasks is calledmultitasking .

Within the CPU thecontrol unit controls the fetch, decode, and execute cycles for instruc-
tions stored in memory. Thearithmetic control unit carries out arithmetic and logical operations
on words of data. A word of data is as long as the length of the hardware register in bits. The word
length of a computer refers to the size of the unit of data in bits that a CPU can process at a time.
Computers with a large word length process data faster than computers with a small word length.

Chapter 1 11

Term Abbreviation Number of Bytes/Bits
===
Byte B 1 Byte = 8 Bits
Kilobyte KB 1024 = 2ˆ10 Bytes
Megabyte MB 1,048,576 = 2ˆ20 Bytes
Gigabyte GB 1,073,741,824 = 2ˆ30 Bytes
Terabyte TB 2ˆ40 Bytes
===

Table 1.1.Terms used to quantify storage

The first processor had 4-bit word lengths. Currently, 32-bit PCs and engineering workstations are
commonplace. 64-bit computers will dominate the marketplace in a few years.

Theinternal storage unit (not to be confused with the computer’s primary memory) is fast
internal memory that temporarily stores and manipulates data. It also contains busses (i.e., wires)
for communication of the CPU with I/O devices, and mass storage known as random access memory
(RAM) and read only memory (ROM).

The speed of a CPU is closely linked to the size of computer chips from which it is con-
structed. Broadly speaking, the more transistors a chip has, the more information it can process.
State of the art manufacturing processes in 1997 allowed for chips having a miniaturization of
1/290-th of a human hair-width. The result, Pentium processor technology, has a maximum speed
of 200 to 230 millions of cycles per second (i.e., 200 to 230 MHz). Pentium Pro chips (manufac-
tured at miniaturization of 1/400-th of a human hair-width) will be able to run at speeds of up to
500 MHz. Predictions are that by the year 2001, next-generation Intel chips will contain 64 bit
processing and operate at 1000 MHz.

The primary memory in a computer, called RAM (an acronym forrandom access mem-
ory, stores data and low-level program instructions as sequences of binary digits. Present day PCs
and engineering workstations have 16 to 128 Megabytes (MB) of RAM (see Table 1.1 for a defini-
tion of terms) plus someread only memory(ROM).Mass storageis where programs, data, images
and so forth, are permanently stored. For example, standard CD-ROMs store up to 650 MB, which
is enough memory for approximately 70 minutes of audio/music. The new digital video disc (DVD)
format, also sometimes called digital versatile disc, will be able to store up to 12 times as much data
(8.5 GB using both sides of the disk). This is enough capacity to hold a full-length feature film with
Dolby multichannel digital audio.

A bus is an electronic pathway in a digital computer that provides a communication path
for data to flow between the CPU and its memory, and between the CPU and peripheral devices
connected to the computer (e.g., monitor, printer, keyboard and mouse, network interface). Com-

12 Engineering Programming in Matlab

puter systems are designed so that they can be easily expanded by adding new devices. When a new
device is added to a computer, a software package known as adevice driver must be installed so
that the CPU can communicate with the new device. In Figure 1.2, busses provide multiline paths
for rapid data transfer between different sections of the main computer board.

1.4 Operating System Concepts

An operating system is the set of programs that provides an interface between the com-
puter hardware and the computer users. The operating system manages the sharing of a computer’s
resources and its memory contents, the low-level details of loading and executing programs, file
storage and retrieval, assignment of processes to the screen and keyboard I/O devices, and commu-
nication with other computers. The termoperating system kerneldescribes the set of programs in
an operating system that implements the most primitive of that system’s functions, including those
for process management, memory management, basic I/O control, and security. Together these op-
erating system features give the computer much of its functionality, including an environment for
writing and running programs. The operating system and its components are also the first programs
to run when the computer is turned on.

Two of the most popular operating systems are UNIX and WINDOWS 95 (tm), and fortu-
nately, there are many similarities in their basic design and functionality. When you are just starting
to learn how a new operating system works, understanding how the file system works is the most im-
portant (and potentially confusing) first step. In UNIX and WINDOWS 95, for example, you need
to know how hierarchies of files are handled by the operating system and the operations that can be
used to assemble, manipulate, and navigate a file system hierarchy. You may also need to learn how
to “remote login” to another computer over a computer network. Interested readers should refer to
Appendix 1 for a detailed discussion of these concepts for UNIX.

1.5 Computer Networking Concepts

A computer network is simply two or more computers connected together. Computer
networks enable humans and computers to communicate by sending messages, and to share data
and information resources by exchanging files. Two types of computer network are as follows:

1. Local Area Network (LAN) : A LAN is a network where computers are connected together
directly. Usually the connection will be some type of cable.

2. Wide Area Network (WAN) : A WAN is simply a network of LANs connected together. The
connections in present-day WANs are becoming a mixture of cable, fiber optic, and satellite
communications.

Chapter 1 13

Communication among LANs is handled by special-purpose computers calledrouters. Routers
connect LANs to form a WAN. WANs can then be connected to form even larger WANs.

Client-Server Network Architectures

The sharing of information across computer networks is often implemented as two (or
more) programs running on separate computers. One program, called the server, provides a par-
ticular resource. A second program, called the client, makes use of that resource. The server and
client programs may be running on different machines located in separate rooms or even separate
countries. Computer networks, where one server provides information to many clients, are said to
have client/server architectures.

Kernel Kernel Kernel Kernel

Client Client

Network

SCHEMATIC OF SIMPLIFIED CLIENT - SERVER NETWORK

HOW CLIENT S RECEIVE DATA AND INFORMATION FROM A SERVER

Client Server

Server

KernelKernel

Client

Client sends message to Server

Server sends data / information to client

machine.

Figure 1.3. Model of communication in client-server system

Figure 1.3 shows, for example, a simplified network where one server machine is connected to
three client machines. Any one of the client machines can send a message to the server machine
requesting data, information, or even, access to certain operating system or application-package
processes. The server machine will respond by sending the requested information/service to the
client.

Client/server network architectures are increasing in popularity because of the advantages
they afford. By localizing data, information, and operating system/application package processes

14 Engineering Programming in Matlab

on a single server machine, and providing access to client machines on an as-needed basis, main-
tenance of operating system software and application program software is simplified considerably.
Moreover, by moving much of the processing power from stand-alone client machines to powerful
server machines, an opportunity exists to design client machines having “minimal” operating sys-
tem functionality. These so-called “network computers” are expected to retail for considerably less
than current PC computers.

The Internet

Millions of computers are now connected together in a massive worldwide network of
computers called the Internet. The wordInternet literally means “network of networks,” and on
any given day it connects roughly 20 million users in more than 50 countries – see, for example, the
countries shaded in black in Figure 1.4. The Internet is rather unique in the sense that nobody owns,
is in charge of, or pays for the entire cost of running the Internet.

Development of the Internet dates back to 1969 when the Defense Advanced Research
Projects Agency arm of the Department of the Defense commissioned the construction of an experi-
mental computer network. Work on the Advanced Research Projects Agency Network (ARPANET)
centered around a perceived problem in the Department of Defense - how to keep U.S. military sites
in communication in the event of a nuclear war. If just a few metropolitan areas were wiped out,
communications could be severely disrupted. Two years later the network was connecting 15 nodes,
all of them research centers. The Internet has since passed through the watchful eyes of many uni-
versities and research organizations, and grown in size to include millions of computer hosts.

===
Number of Number of

Date Host Computers Date Host Computers
===
Aug. 81 213 Jan. 89 80,000
May 82 235 Oct. 90 313,000
Aug. 83 562 Oct. 91 617,000
Oct. 84 1,024 Oct. 92 1,136,000
Oct. 85 1,961 Oct. 93 2,056,000
Nov. 86 5,089 Oct. 94 3,864,000
Dec. 87 28,174 Jul. 95 6,642,000
Jul. 88 33,000 Jul. 96 12,881,000
===

Table 1.2.Number of hosts on the Internet 8/81 to 7/96

Table 1.2 shows the number of hosts on the Internet versus time for August 1981 through

Chapter 1 15

Figure 1.4. Countries having access to the Internet

July 1996. The estimate for the year 2000 is that 40 million people will be connected to the Internet.

Internet Access

The majority of present day home users access the Internet using a modem and phone
lines – the upper speed, or bandwidth, at which information can be transmitted is 33.6 kilobits
per second. A modest increase in bandwidth to 64 or 128 kilobits per second is possible with
Integrated Services Digital Network (ISDN) technology. With 64 kilobits/sec bandwidth connection
to the Internet, users can reserve part of the bandwidth channel for voice or fax calls. Most large
research organizations and universities are connected to the Internet with one or more T1 lines
having bandwidth 1.46 megabits/sec. In the near-future, significant increases in bandwidth (i.e., 10
megabits/sec). may be possible with cable modems.

Protocols for Internet Communication

Before two computers can exchange data and information over a network, they must agree
on a specification, or protocol, for communication. Protocols cover issues such as how data will
be formatted, conventions for control and coordination of information exchange, and handling of
errors.

At the network level, the Internet Protocol (IP) specifies how data are to be physically

16 Engineering Programming in Matlab

transmitted from one computer to another, and the Transmission Control Protocol (TCP) ensures
that all the data sent using IP are received without error. Together these protocols are known as
TCP/IP, and they form the foundation of many other high-level application-oriented protocols for
sending packets of information (e.g., files, E-mail, web pages) across networks.

Internet Domain Names and Addresses

The Internet sends packets of information across a network using a model that is simply an
electronic counterpart to the way letters are posted inside an envelope containing a delivery address
and a return address. Perhaps the delivery address is the location of your Internet provider and the
return address is the location of your home.

Every computer on the Internet has its own unique Internet address. You cannot send
an E-mail message to someone, transfer a file via FTP, or access web pages located on a specific
computer, unless you know his or her Internet address. In our “letter-and-envelope” analogy, there
is the numerical form of an Internet address (it looks like xxx.xxx.xxx.xxx), and its vernacular
counterpart. Although the numerical form is somewhat akin to a postal zip code, and an important
part of the address delivery, people naturally prefer to work with addresses written in textual terms.
Computer domain names follow a three-part format:

person’s userid @ domain name of computer(s)
ˆ ˆ ˆ
| | |

Part 1 the "at" sign Part 3

For example, the internet addressaustinisr.umd.edu has the person-idaustin and the do-
main nameisr.umd.edu . The numerical counterpart ofisr.umd.edu is 128.8.111.4 . As
these examples show, there is never blank space between components of the Internet address.

One important point to note is that user ids need not be unique. For instance, two people
with the family name Austin can have the login nameaustin as long as they operate on separate
domains.

austin@isr.umd.edu
austin@kiwi.berkeley.edu

However, the domain name of the computer(s) must be unique.

Computer domain names are composed of subdomain names that follow the nomenclature
outlined in Tables 1.3 and 1.4. For example, in the computer addressisr.umd.edu , the subdo-
main nameedu tells us that the computer is located at an educational institution. The subdomain

Chapter 1 17

===
Domain Meaning Domain Meaning
===

com Commercial mil Military
edu Educational net Networking
gov US Government org Nonprofit

===

Table 1.3.Organizational domain names

===
Domain Meaning Domain Meaning
===

at Austria dk Denmark
au Australia fr France
br Brazil jp Japan
ca Canada nz New Zealand
de Germany (Deutschland) uk United Kingdom

===

Table 1.4.Some geographical top-level domains

nameumdstands for the University of Maryland. Finally, the subdomain nameisr represents the
collection of computers at the Institute for Systems Research at the University of Maryland.

Internet Services

Using the Internet means sitting at a computer and having access to a number of basic
services, including:

1. E-mail : You can send or receive electronic messages from anyone on the Internet. Anything
that can be stored in text file can be mailed. Facilities also exist for converting binary files
(e.g., an executable computer program) into a format suitable for transmission via E-mail.

2. Telnet : The Telecommunications Network (Telnet) program allows users to remotely login to
computers over a network. The computer may be in the next room, or perhaps, on another
continent.

3. Gopher : Gopher allows a user to request information from an extensive list of gopher servers
on the Internet.

18 Engineering Programming in Matlab

4. File Transfer : The File Transfer Protocol (FTP) enables the copying of files from one com-
puter to another. Anonymous FTP is a system where an organization makes certain files
available for public distribution - you can access such a computer by logging in with the
user-id “anonymous.” Although no special password is required, it is customary to enter your
E-mail address.

5. Usenet :An abbreviation for “user’s network,” Usenet is a collection of more than 5000 discus-
sion groups centered around particular topics. Newsgroups exist for every topic imaginable,
including of course, those dedicated to the Internet and its development.

More recently these basic services have been supplemented by the World Wide Web (WWW), al-
lowing easy access to a wide array of media.

The World Wide Web

By providing millions of users in homes, schools, and industry with access to a wide array
of media via an easy-to-use graphical user interface, the Web has captured the honorable distinction
of being the most exciting part of the Internet.

Development of the Web began in March 1989, when Tim Berners-Lee of the European
Particle Physics Laboratory (part of a larger organization known as CERN) proposed the project
as a means of transporting research and ideas effectively throughout the CERN organization. The
initial project proposal outlined a simple system of using networked hypertext (see the next section)
to transmit documents and communicate among members in the high-energy physics community.
The first graphical user interface to the Web was written by the Software Design Group at the
National Center for Supercomputing Applications (NCSA). They named their graphical interface
Mosaic. Mosaic, and the now famous Microsoft Internet Explorer and Netscape browsers, provide
mouse-driven graphical user interfaces for displaying hypertext and hypermedia documents con-
taining forms, paragraphs, lists, and tables in a variety of fonts and font styles. Graphics images
can be linked to text and vice versa. Sound and video files can be pointed to by documents, and
down-loaded over the Internet by simply clicking on the appropriate link.

Today’s browsers are simply the beginning of where web development is headed. To help
ensure that web browsers will be accepted as common business tools, software developers are busy
integrating browser technology with office productivity suites (e.g., E-mail, word processors, graph-
ics, spreadsheets, databases) and in the case of engineering firms, design and analysis software.
Work is also currently underway to incorporate encryption technology and client authentication
abilities into web servers, thereby allowing users to send and receive secure data. These features
will ensure that sensitive data is kept private, a prerequisite for commercial transactions over the
Internet.

Chapter 1 19

underway to incorporate

encryption technology and

...... Work is also currently

WEBSTER’S
DICTIONARY

Encryption is

Electronic Commerce

MOVIE : Technologies for

Selecting a piece of hypertext can take you to more hypertext, images, sounds, and movies.

Encryption Technology

Applications of

Figure 1.5. How hypertext works

Hypertext and Hypermedia

Hypertext is basically the same as regular text with one important exception – hypertext
contains connections within the text to other documents. (See Figure 1.5.) Suppose, for instance,
that you were able to somehow select (with a mouse or with your finger) the phrase “encryption
technology” in the previous paragraph. In a hypertext system, you would then have one or more
documents related to encryption technology appear before you - a textual description of the appli-
cations of encryption technology, or perhaps Webster’s definition of encryption. These new texts
would themselves have links and connections to other documents. Continually selecting text would
take you on a free-associative tour of information. In this way, hypertext links, called hyperlinks,
can create a complex virtual web of connections.

Hypermedia is hypertext with a difference - hypermedia documents contain links not only
to other pieces of text, but also to other forms of media such as sounds, images, and movies. Images
themselves can be selected to link to sounds or documents. Hypermedia simply combines hypertext
and multimedia.

Suppose that you are a project manager in a large multinational engineering organization.
Here are some examples of how web-based hypermedia might be used:

1. By clicking a mouse button on a part in an engineering drawing, you are able to see the pathway
of project requirements leading to that part being incorporated in the design.

20 Engineering Programming in Matlab

2. A web-based system might provide up-to-the-minute information on the status of a particular
project. Clicking on the textual description of a project requirement could start an audio track
describing an engineer’s rational for the requirement.

3. By looking at an organization’s floor plan, you are able to retrieve information about an office
by simply touching a room. An inventory of office equipment, detailed office drawings, and
information on the office occupant and their current projects might appear by clicking on the
right, center, and left mouse buttons.

4. You are reading a research paper to understand why a new technology is needed by your orga-
nization. By selecting text in a research paper, you are able to view a movie of the technology
being tested in a laboratory setting. Then by clicking on a mouse button you are able to down-
load and execute an engineering analysis package demonstrating how the technology works
for simple case-study problems.

In the implementation of these applications, we expect that the use of hypermedia will elevate a
reader’s ability to “understand” and “navigate” the concepts presented beyond what is likely to
occur with a serial presentation (e.g., a regular book). Realizing this goal requires at the very least,
good judgment, attention to detail in document design, and user testing.

How Does the Web Work?

Web software is designed around a distributed client/server architecture (see Figure 1.3).
A web client, called a web browser if it is intended for interactive use, is a program that can send
requests for documents to any web server. A web server is a program that, upon receipt of a request,
sends the document requested (or an error message if appropriate) back to the requesting client.
Because the task of document storage is left to the server and the task of document presentation is
left to the client, each program can concentrate on those duties and progress independently of each
other.

Send me "Company Floor Plan"

Hypermedia HTML document containing

the "Company Floor Plan"WEB BROWSER WEB SERVER

Figure 1.6. Web server and web client transactions

Figure 1.6 shows the sequence of transactions that would take place when the “Company Floor

Chapter 1 21

Plan” is downloaded from a web server and displayed on a web browser. The sequence of events is
as follows:

1. A user working at the web client selects a hyperlink in a piece of hypertext connecting to another
document such as “Company Floor Plan.”

2. The web client uses the address associated with that hyperlink to connect to the web server at a
specified network address and asks for the document associated with “Company Floor Plan.”
(See the upper half of Figure 1.6.)

3. The web server responds by sending the text and any other media within that text (pictures,
sounds, or movies) to the client. The web client renders the information for presentation on
the user’s web browser window. (This step is shown along the lower half of Figure 1.6.)

The language that web clients and servers use to communicate with each other is called the Hy-
pertext Transfer Protocol (HTTP). All web clients and servers must be able to speak HTTP to send
and receive hypermedia documents. For this reason, web servers are often called HTTP servers,
and “World Wide Web” is often used to refer to the collective network of servers speaking HTTP as
well as the global body of information available using the protocol.

Uniform Resource Locators

The Web employs what are called Uniform Resource Locators (URLs) to represent hyper-
media links and links to network services within HTML documents. Almost any file or service on
the Internet, including FTP, Gopher, and Telnet, can be represented with a URL. Table 1.5 contains
some examples.

==
Uniform Resource Locator Description
==

http://www.ence.umd.edu/ Connects to an HTTP server and retrieves
an HTML file.

ftp://rtfm.mit.edu/pub/usenet/ Opens an FTP connection to the usenet
frequently-asked questions stored at
rtfm.mit.edu

gopher://gopher.tc.umn.edu/ Connects to a gopher menu at the University
Minnesota home site, inventor of the Gopher.

==

Table 1.5.Some examples of URLs

22 Engineering Programming in Matlab

A URL is always a single unbroken line of letters and numbers with no spaces. The first
part of a URL (before the two slashes) specifies the method of access;http is perhaps the most
common. Typically, the second part of the URL is the address of the computer where the data or
service is located. Further parts may specify the names of files, the port to connect to, or the text to
search for in a database.

Sites that run web servers are often named with awwwat the beginning of the network
address. For example, the Department of Civil Engineering web server at the University of Maryland
has the URL:

http://www.ence.umd.edu/welcome.html

welcome.html is the name of the HTML file for our department home page. You can ask your
web browser to connect to this web server by simply specifying the URL in the location window.

1.6 Hardware-Software Life Cycle

In engineering circles, advances in computer hardware and applications programs are
driven by market competition and the need to design, analyze, manufacture, and control complex
engineering systems. The complexity of an engineering system can be due to a number of factors
including its size (i.e., a large number of interacting parts), nonlinear relationships between the in-
put/output (I/O) parameters, incomplete information, enhanced performance specifications, and so
forth. In any case, without the assistance of modern-day computer hardware and engineering appli-
cations programs, development of these systems would simply be intractable, if not impossible.

ENGINEERS / CUSTOMERS
DEVELOPMENT OF

SOFTWAREHARDWARE

DEVELOPMENT OF

STAKEHOLDERS

DEVELOPERS

Figure 1.7. Hardware-software lifecycle

Figure 1.7 is a high-level view of components in the hardware-software lifecycle. Typically, it be-
gins with a group of engineers/customers, developers and stakeholders (e.g., owners of a company)
reaching consensus on the need for a new product and its pathway of development. Sometimes
the results can be really impressive. Since the mid-1980s, for example, manufacturers of computer
hardware have doubled the computational speed of their products every 12 to 18 months.

Chapter 1 23

ECONOMICS OF COMPUTING / SYSTEMS DEVELOPMENT

H

S

H

S

H = Hardware S = Software

TASK - ORIENTED PROGRAMS / MODULES

CENTRALIZED OPERATIONS

INTEGRATED SYSTEMS / SERVICES

DISTRIBUTED OPERATIONS

Systems Integration

1970’s and early 1980’s 1990’s

C
os

t
of

 D
ev

el
op

m
en

t

Figure 1.8. Economics of software development and integration.

The economic challenges and difficulty in following up on hardware advances with appro-
priate software developments are reflected in Figure 1.8. In the early 1970s, software consumed
approximately 25% of total costs, and hardware 75% of total costs for development of data in-
tensive systems. For the most part, computer systems were stand-alone, and software developers
wrote computer programs dedicated to a specific task (e.g., finite element analysis, control systems
package).

Currently, the development and maintenance of software typically consumes more than
80% of total project costs. This change in economics is the combined result of falling hardware
costs, increased software development budgets, and a need to solve more difficult problems than in
the past. Whereas one or two programmers might have written a complete program twenty years

24 Engineering Programming in Matlab

ago, teams of programmers are now needed to write today’s large software programs. Moreover, for
organizations that have made large investments in software, there is great reluctance to discard soft-
ware just because a new technology has come along. What management would like to see instead are
the benefits of improved communications without having to reinvest in the basic application-specific
software. The objectives of systems integration are to try to bring this situation under control, to
ensure that the pathway forward maximizes return for the organization, and protects a company’s
past investments in software and hardware [7]. Systems integration is not a technical discipline in
itself, but rather an approach to the management of organizations that recognizes the different ways
its parts interact. Understanding an organization’s structure and management practices is critically
important because it is a prerequisite to computer automation.

If software developments for engineering/business applications are to have any chance of
keeping up with advances in computer hardware and networking, future developments will need to
pay close attention to software design and reuse of functions, libraries, modules, program architec-
tures, and programming experience. A key component of the solution lies in the judicious choice
of programming language(s). In addition to having the ability to compute and evaluate formulae,
programming languages now need to handle and manipulate large quantities of data and informa-
tion, and lend themselves to rapid development of interactive graphics applications in parallel and
networked computing environments. Recently developed languages such as Perl, Tcl/Tk, and Java
are expected to play a central role in making this happen [1, 11, 17].

1.7 Principles of Engineering Software Design

The discipline of software engineering is concerned with the design and implementation
of computer programs that work, are correct, and are well written. Software engineering principles
can be applied to small and large computer programs alike:

Small Computer Programs.Small computer programs are characterized by the data structures and
algorithms they employ, design of the program architecture, and the computational efficiency of the
program implementation.

Novice computer programmers tend to write programs that are small, composed of per-
haps only a few hundred lines of source code. When you are learning to program in a new language,
becoming familiar with its syntax, data types, and control structures are the most important things
because without them you cannot transform a small-scale task into step-by-step programming in-
structions.

Large Computer Programs. In real-world engineering environments it is now commonplace for
computer programs to be hundreds of thousands (even millions) of lines long. Many of them are
so complex that even the best human minds cannot simultaneously comprehend all the details. It is

Chapter 1 25

therefore vitally important that the design and implementation of large computer programs be based
on established procedures for software development, including attention to program specification
and design, organization, coding, testing, and maintenance of software [3, 10]. Careful planning of
these activities is needed because:

1. Large programs are most often written by programming teams. Team members must be able
to understand one another’s work. When the planning, design, and coding of a project takes
several years, communication of work among employees is of utmost importance.

2. Large programs are often developed within the constraints of short time-to-delivery contract
schedules. Programming teams may not have the luxury of starting again, even after a key
design flaw is identified.

3. Well-organized programs are easier to debug. A little extra time spent planning the layout
of a program may be saved many times over when it comes time to debug and upgrade the
software. Indeed, some estimates place maintenance at 60 to 80% of the overall cost of a
software project.

4. Large programs often evolve through a series of versions or updates. The programmer making
updates is likely to be a person other than the original developer.

Models of Software Systems Development

Models of software systems development are an important component of large computer
program development because they provide the project participants with a framework for knowing
what is expected, and when. In some cases, the model may also form the basis of legal agreements,
with contract payments being tied to successful completion of a task identified in the model.

Figure 1.9 is a schematic of two models of software system development that are currently
in use. The waterfall model [14] views the software development process as a sequence of stages
that includes requirements specifications, design and testing, integration, and maintenance (we get
to the details of each step in a moment). Each phase of sequential development is completed, via
formal review, before the next phase begins. The waterfall model of development is appropriate
when the problem and solution method are well understood.

The spiral model of development, shown in Figure 1.9b, is simply a sequence of waterfall
models with risk analysis and control incorporated at regular stages in the project [2]. This risk-
oriented approach to iterative enhancement recognizes that implementation options are not always
clear at the beginning of a project. For example, a software project that is scheduled for development
over a number of years may need technology that has not yet come to market. Maybe the technology
will evolve as expected, and maybe it will not. The radial direction of Figure 1.9b corresponds to

26 Engineering Programming in Matlab

Requirements

Definition

System Design

Detailed Design

Integration and

Test

Operations

and Maintenance

DESIGN [HOW] BUILD [WHO]ANALYSIS [WHAT]

(a). Waterfall model of systems development

Service

Plan Next Phase.

Plan Next Phase.

Plan Next Phase.

Operational

Prototype.

Integration and Test.

REVIEW

Requirements Plan.

Life Cycle Plan.

Determine Objectives and Alternatives.

Objectives and Alternatives.

Risk Analysis.

Risk Analysis.

Risk Analysis.

Requirements

Validation.

Testing of

Components.

Prototype 2.

Prototype 1.

Preliminary

Design.

Detailed

Design.

(b). Spiral model of systems development

Figure 1.9. Models of development for software systems: (a) Waterfall, (b) Spiral

Chapter 1 27

the cumulative cost incurred in the project, and the angular direction corresponds to progress made
in completing each cycle of the spiral. Each cycle of development has the following phases:

1. Identify the design and development objectives for the cycle, as well as the alternatives that are
possible to achieve the goals.

2. Evaluate different alternatives based on objectives and constraints. Where appropriate, identify
uncertainties and risks. Risk means “something that can go wrong” as the consequence of
incomplete information, or perhaps, as the result of human errors.

3. Develop strategies such as simulation, prototyping, and benchmarking for resolving uncertain-
ties and risks.

4. Plan the next stage, allowing for any of the possible lifecycle models to be used.

Of course many variations on the waterfall and spiral models are possible. For example, some
companies develop software incrementally, using a model that is essentially a chain of waterfall
models with each link in the chain corresponding to development of a software release. Subsequent
releases add capability to previous releases and fix bugs found in previous versions. The second
observation tends to be a sore point with many involved in the software industry and leads them to
make comments such as “never buy software that is younger than Version 3.0.” Clearly they think
that it takes at least two software versions just to find and eliminate insidious startup bugs.

Components of Software Systems Development

The key steps in the development of a large software project are as follows:

Requirements Specification.The objective of the requirements specification is to state the goals
of the program as carefully as possible. The goals could include, for example, expected input
(keyboard/files/IO board) and output. The requirements should also identify any known limitations,
possible errors, and accuracy issues.

The importance of the requirements specification is partly due to the economics of project
development at the beginning of the software lifecycle. As indicated in Figure 1.10, decisions made
at the beginning of the software lifecycle are inexpensive to make, yet have the greatest commitment
of funds. Without a clearly defined requirements specification there is a greatly increased chance of
project failure.

Table 1.6 shows the results of a study by Hewlett-Packard to quantify the relative costs, in
terms of money and/or time, of correcting design errors. From an economic point of view, the last
thing a manufacturer wants is discovery of a fatal error in the engineering system by a customer !

28 Engineering Programming in Matlab

75

50

25

100 Commence ProductionDefine Concept

FUNDS COMMITTED

FUNDS EXPENDED

PRODUCT LIFE - CYCLE

C
U

M
M

U
L

A
T

IV
E

 P
E

R
C

E
N

T
A

G
E

Figure 1.10.Funding commitments in product lifecycle.

Project Phase Bug Description Relative Cost

Design Design team 1

Implementation Programmers 10-20

Quality assurance QA personnel 70-100

Shipment to customer Customer Very expensive

Table 1.6.Cost of correcting design errors

Analysis. Carefully analyzing a problem and its possible solutions is of utmost importance. Either
you have to develop an algorithm yourself, or find one that is already available. Do not hesitate to
look for established techniques; for example, an engineering problem might involve solving a set
of linear equations using a standard numerical algorithm such as Gaussian Elimination. To develop
algorithms from scratch when an already well-thought out and documented technique is available is
a waste of time.

Design.The next most important phase of program development is to develop a viable design that
you believe will work. Studies indicate that up to 50% of all errors in the software lifecycle are

Chapter 1 29

made during the design phase of the software; the remaining errors tend to be programming and
syntax errors (as described previously). Unfortunately, design errors are also the most expensive to
repair since many appear only at run-time, and often after the software has been delivered to the
customer.

Implementation. The implementation phase focuses on the specification, writing, and documenta-

tion of modules of code. When the details of specification are particularly complicated, pseudocode
is often inserted as an intermediate step.Pseudocodeis simply a high-level description of the
code (or algorithm) to be implemented, where the semantics are less strict than the programming
language itself.

Always document program source code so that it can be understood by you and others at
a later date. Documentation includes recording details of your specific solution – how the analy-
sis phase will transfer to the program, what language-specific constructs were used, what method
of problem decomposition was used, and any important restrictions in your software design. An
executable program is the result of the implementation phase.

Test and Verification. In many engineering industries, such as airplane flight control, airport traffic
control, nuclear power plant control, medical instruments, and communications network control,
reliability of software is the most sought after attribute. The software must execute as expected
and without errors. Obtaining software that performs with a high degree of confidence requires a
solid program design, a careful implementation, and a carefully designed suite of test problems that
may illuminate software bugs and weaknesses. The identification of bugs and weaknesses is highly
desirable, because this is the point at which fixing them is easy.

Maintenance. It is frequently stated that up to three quarters of a programmer’s time is spent on
maintaining existing software. Maintenance activities include (1) repair of coding (and design)
errors, (2) adapting the software to changes in the computing environment (e.g., an update in the
operating system), and (3) adapting the software to changes in the customers’ requirements. Ask
yourself how much code you have written in the past that is still in use (by you or others)? Can you
easily understand programs that you wrote years ago? Would it be easy to change or modify your
programs for a new purpose?

Reuse rate(%) Average lines per year Average errors/1000 lines
Japan 80 12,447 1.96
USA 30 7,290 4.44

Table 1.7.Reuse of code in the US and Japan

Table 1.7 shows how important it is to write code that can be reused and easily modified

30 Engineering Programming in Matlab

for a new purpose. If you are busy reinventing the wheel while other developers are reusing their
software, eventually you will not be able to compete. These issues have to be taken into account
before and during development of new programs. Once you have written a program without consid-
ering these issues, it is difficult and erroneouss to shoehorn or force the code into a new application.
We must learn to take into account the need for future changes in programs and to design programs
accordingly.

Modular Program Development

The goal of modular programming is to break a complex task or program into an ensemble
of weakly coupled (independent) modules. Each module should be viewed as an independently
managed resource, with access highly restrained. Programs consisting of well-designed modules are
much simpler to design, write, and debug than equivalent programs that are poorly designed [5, 12].
Guidelines for the design of program modules are:

1. Psychological studies indicate that the average human can only simultaneously comprehend
seven (plus or minus two) pieces of information. Hence, one module should have no more
than seven subordinate modules.

2. There should be separation between the controller and worker modules.

3. Every module must perform a task appropriate to its place in the hierarchy.

4. Every module should only receive as much information as it needs to perform its function, and
ideally, they should exchange as little information as possible.

Modules should enforce the principle of information hiding, namely, that all information about a
module should be private to the module unless it is explicitly declared public [12]. Public data
should be avoided because it exposes implementation details that make reuse unlikely and mainte-
nance difficult. A key benefit of information hiding is the opportunity it affords for updating the
internal details of a module (here we assume that the details of the public interface will not change)
without affecting other modules in the system.

Coupling. Coupling measures the extent to which different modules in a system are interconnected
with one other. See Figure 1.11. In design we should keep the interfaces as minimal and as simple
as possible. Designing for minimal coupling among modules helps to ensure that errors occurring
in one module will not propagate across the whole system.

Cohesion. Cohesion is a concept that describes how strongly the attributes and functions of a
module are connected together. Ideally, a module should just perform one task. In design we should
keep related functions together and unrelated functions apart.

Chapter 1 31

HIGHLY - COUPLED SYSTEM LOOSELY - COUPLED SYSTEM

Figure 1.11.(a) highly coupled and (b) loosely coupled systems

The attributes of system coupling and cohesion work together. Generally speaking, mod-
ules with components that are well related will have the capability of plugging into loosely coupled
systems. Modules should be designed within the framework of a well-defined language or gram-
mar. If this principle is followed, then large programs may be divided into smaller modules (which
may be compiled separately), and independent modules may be assembled together (i.e., bottom-up
design). Modules designed within the framework of a language are easier to maintain and extend.

Abstraction

Programmers often apply techniques of abstraction to the development process, meaning
that they concentrate on the essential features of one part/module of the computer program, and ab-
stract from details of the computer program that are not immediately relevant to the current module.
In the development of computer software, two types of abstraction are common:

1. Procedural. Software development is based on a stepwise refinement of the system’s abstract
function. This type of abstraction is most common in programming languages such as C,
MATLAB, and FORTRAN.

2. Data. Software development is based on the system data and the operations that can be applied
to the data. Implementations of data abstraction correspond to objects and the operations
that can be applied to the objects. This type of abstraction is common in object-oriented
programming languages such as C++ and Java.

32 Engineering Programming in Matlab

Top-down and Bottom-up Software Design

Techniques of abstraction are often used in conjunction with a combination of top-down
and bottom-up development strategies, as shown in Figure 1.12.

DECOMPOSITION

NEW PROBLEM

SUB-PROBLEMS

(a). Top-down design

COUPLED MODULESINDEPENDENT MODULES

COMPOSITION

(b). Bottom-up design

Figure 1.12.Schematics of top-down and bottom-up design

Top-down software development begins at the conceptual level and passes through three stages:

1. Thehigh-level designestablishes the important subsystems of the design, the purpose and
intended behavior of each subsystem, and the relationship among subsystems. As already
mentioned, a good design corresponds to subsystems that are as uncoupled as possible.

2. The intermediate-level designbreaks subsystems into modules. Each module should have
one well-defined purpose, hide its data from other modules, and have a minimal number of
connections to other modules in the program [9].

3. Thelow-level designinvolves detailed specification of algorithms and data structures.

Chapter 1 33

You should notice that top-down design delays detailed decisions about the program flow and data
structures until they absolutely have to be made.

The strategy of bottom-up design starts with low-level procedures, modules, and subpro-
gram library routines, and tries to combine them into higher-level entities. A key benefit of bottom-
up design is its use of already implemented code. For example, numerical linear algebra packages
are one area where libraries are routinely linked to C programs for finite element and numerical
analysis, solution of differential equations, and solution of engineering control problems.

Top-down and bottom-up designs are extreme strategies for generating a hierarchical pro-
gram structure and are often at odds with each other. Often the result of a top-down design is
software modules that are of a one-time-only form. They are not amenable to reuse because they
were designed as components without a preconceived vision of their future use. Similarly, generic
modules suitable for bottom-up design may contain many features not needed to solve a specific
task.

Software designers never embark on the construction of a new system without first consid-
ering available libraries/modules. Conversely, they never build software modules without a precon-
ceived vision of their future use. A balance of the above-mentioned criteria is usually needed and
desirable.

1.8 Computer Programming Language Concepts

Computer programs are composed of data and software instructions. The software in-
structions in a computer program tell the computer hardware how to execute a particular task by
manipulating various types of data in a precise manner. Programming languages facilitate the de-
velopment of these software instructions by providing constructs for organizing computations. The
best programming languages enable the writing of good computer programs by being easy to read,
understand, and modify.

High- and Low- Level Computer Languages

In the earliest days of computing computers were programmed by entering instructions
and data into the computer in binary form. These so-calledmachine languagescorrespond to the
instruction set of a particular computer hardware. They are entirely machine dependent (i.e., very
low-level), and can be very tedious and error prone to program.

Programming in machine languages was quickly replaced by programming in symbolic
assembly languages, which make the instructions easy to write and understand by using mnemonics
for the machine instructions. For example, the sequence of symbols STO M R1 would store the

34 Engineering Programming in Matlab

contents of register 1 in memory locationM . Symbolic assembly languages are still low-level, and
tend to be machine dependent. An “assembler” converts the assembly language into corresponding
binary code and generates a binary program for execution.

Easy-to-readhigh-level languageshave been around since the early 1950s. The term
“high-level” means that many of the details in a program’s development are handled automatically,
thereby providing a pathway for programmers to write less code to get the same job done. For
example, a number of high-level programming languages have been designed with the keywords
if andfor for the construction of simple branching and looping control structures. Once the pro-
gram source code has been written, a compiler (see details below) will automatically generate the
low-level machine instructions to implement the control structures. Whereas one line of assembly
language code must be manually written for each low-level program instruction, high-level pro-
gramming languages generate (on average) about five machine instructions for each line of code
written. Because programmers write approximately the same number of lines of source code per
day, irrespective of the development language, application programs can be implemented in a high-
level language much faster (and more cheaply) than in an assembly language [4]. Examples of
high-level programming languages are FORTRAN, C, C++, and Java. These languages are good
for building software components from data structures and algorithms from scratch.

Compiled and Interpreted Programming Languages

Because computer hardware can only follow very low-level machine code instructions,
which are difficult for humans to understand and manipulate, engineers usually write computer
programs in a high-level programming language.

HIGH LEVEL LOW LEVELCOMPILER

LANGUAGE MACHINE LANGUAGE

A compiler translates the computer program source code into machine code instructions. The com-
piler can be thought of as a type of machine; it only understands a limited range of commands. If
the compiler does not receive proper input, it can only try to interpret the error, report what is wrong
(i.e., error messages), and exit. C, C++, and FORTRAN are among the programming languages that
are compiled. Good programmers have some idea into what the code they write compiles (assembly
language, bytecode, or machine code), because it is the efficiency of compiled code that matters,
not the original number of lines of source code.

In aninterpreted computer program, high-level statements are read one by one, and trans-
lated and executed on the fly (i.e., as the program is running). Scripting languages such as Tcl/Tk
and Perl are interpreted, as are application programs written in the MATLAB programming lan-

Chapter 1 35

guage.

The Java programming language is both compiled and interpreted. High-level Java source
code is compiled into a low-level bytecode, and then interpreted by a Java Virtual Machine. Do
not worry if some of the details seem a little murky at this point – we fill in the details of how this
happens in the Java tutorial.

Procedural and Object-Oriented Programming Languages

Programming languages such as FORTRAN, C, and MATLAB are procedural because
they enable a complex problem to be decomposed into a hierarchy of functions. Each function has
a well-defined set of input parameters and will return a well-defined set of output values.

Programming languages such as C++ and Java are object-oriented because they view com-
plex problems as an assembly of data items together with sets of methods (i.e., functions) that can
manipulate the data.

1.9 When to Program in MATLAB?

As indicated in Figure 1.1, the number of programming languages engineers are using is
steadily increasing. This trend is due in part to the expanding range of tasks for which engineers are
now using computers, and in part by the limited range of tasks current programming languages can
handle well. Since computer languages are usually designed with the solution of a certain range of
problems in mind, the selection of the right language for the job at hand is of utmost importance.

UseMATLAB if you need to solve a problem that can be conveniently represented by
matrices, solved using operations from linear matrix algebra, and presented using relatively simple
two- and three-dimensional graphics. Computing the solution to a family of linear equations, and
representing, manipulating, and displaying engineering data are perhaps the two best examples of
problems for which MATLAB is ideally suited.

Not only is the MATLAB programming language exceptionally straightforward to use (ev-
ery data object is assumed to be an array), but the MATLAB program code will be much shorter
and simpler than an equivalent implementation in C or FORTRAN or Java. MATLAB is therefore
an ideal language for creating prototypes of software solutions to engineering problems, and using
them to validate ideas and refine project specifications. Once these issues have been worked out,
the MATLAB implementation can be replaced by a C or Java implementation that enhances perfor-
mance, and allows for extra functionality – for example, a fully functional graphical user interface
that perhaps communicates with other software package over the Internet.

36 Engineering Programming in Matlab

Since the early 1990s the functionality of MATLAB has been expanded with the develop-
ment of toolboxes containing functions dedicated to a specific area of mathematics or engineering.
Toolboxes are now provided for statistics, signal processing, image processing, neural nets, various
aspects of nonlinear and model predictive control, optimization, system identification, and partial
differential equation computations. MATLAB 5.0 also comes with an Application Program Inter-
face that allows MATLAB programs to communicate with C and FORTRAN programs, and vice
versa, and to establish client/server relationships between MATLAB and other software program.

1.10 Review Questions

1. Have you been able to acquire an account and logon to a computer system at your school or
company? Otherwise, do you have access to a PC that you can use to compile and run C,
MATLAB, and Java programs while reading this book?

2. Do you understand the basic purpose of the computer components, such as the floppy disk, hard
disk, memory (RAM and ROM), CPU, video display, keyboard, mouse, and so forth?

3. What are the main purposes of an operating system?

4. What is a computer network?

5. Briefly describe how a client/server system works. Can a computer act as both a client and a
server at the same time?

6. Why were the Internet and the World Wide Web originally developed?

7. What technology has enabled web search engines, such as Yahoo and AltaVista, to index tens
of millions of web pages in just a few years of time?

8. What is hypermedia?

9. What are the basic steps involved in the development of software? Why is the process broken
down into several steps? Why would you use one language rather than another? Are they all
the same?

10. Briefly explain the termsabstraction, modularity , coupling, cohesion, and information
hiding?

11. What are the goals of top-down and bottom-up design?

12. What is the difference between procedural abstraction and data abstraction?

13. Why are present-day applications programs written in high-level programming languages?

14. Why does it typically take much longer to write an application program in assembly language
than in a high-level programming language?

15. What do the acronyms HTML and VRML stand for? What is the relationship between Java
and VRML?

Chapter 1 37

16. For what types of problems is the MATLAB programming language suited? How has the
functionality of MATLAB recently been expanded?

17. For what types of problems is the C programming language suited?

18. For what types of problems is the Java programming language suited?

19. Why does it sometimes make sense to develop a software package using more than one pro-
gramming language?

1.11 Review Exercises

1.1 Acquire an account on a UNIX machine and login to your account. When you have logged in
successfully, try to “navigate” the file system. For example, start by typing thepwd command.
This command prints the working directory, or your current location in the file system. Now
try cd .. which moves your current directory up to the parent directory. Now tryls to
list the files in your directory. Now that you are in your parent directory, you can get back
to your personal directory by typingcd (for change directory). By usingcd .. andcd
followed by a directory name, try to navigate and show the directory structure around your
“home directory” on the UNIX system. Make a tree-type drawing of the structure.

1.2 Login to a UNIX machine and try the commandsrm, ls , cd , mkdir , rmdir and cat .
Experiment with the online UNIX manual – that is, typeman (for manual) command, as in
man mkdir .

Try specifying options to the commands on your computer system (e.g.,ls -l in UNIX).
Almost all operating system commands have options so that you can specialize the operation
of the command. You will eventually learn how to do this with your C programs (it is con-
venient when you include command line options because it lets the user specify particular
features of the program without having to ask every time the program is run). You can find
the available options for an operating system command viamanprogram on UNIX systems.

1.3 Use the operating system commands explained in Appendix 1 to build a simple directory
structure under your UNIX home directory or under the root (C:) on your WINDOWS/NT
system. Do not hesitate to create many directories; they are, after all, free!

1.4 Can you get some experience with a text editor such as “vi” or “emacs” on a computer? You
will need to have experience with this because you will use an editor to enter your programs
before they can be compiled and run. Most PCs come with a basic text editor, and there are
many public domain editors you can get free of charge.

Part II

MATLAB Programming Tutorial

38

40 Engineering Programming in Matlab

Introduction

MATLAB is a great programming language for solving problems that can be conveniently repre-
sented by matrices, that lend themselves to a solution with operations from linear matrix algebra and
that can be presented using relatively simple two- and three-dimensional graphics. Computing the
solution to a family of linear equations and representing, manipulating, and displaying engineering
data are perhaps the two best examples of problems for which MATLAB is ideally suited.

As we soon see, not only is the MATLAB programming language exceptionally straight-
forward (almost every data object is assumed to be an array), but also MATLAB program code will
be much shorter and simpler than an equivalent implementation in C, FORTRAN, or Java. MAT-
LAB is, therefore, an ideal language for creating prototypes of software solutions to engineering
problems, and using them to validate ideas and refine project specifications. Once these issues have
been worked out, the MATLAB implementation can be replaced by a C or Java implementation
that enhances performance and allows for extra functionality (e.g., a fully functional graphical user
interface that perhaps communicates with other software package over the Internet).

Chapter 13 is an introduction to programming in MATLAB Version 5.0 and includes all
the basic concepts you need to know. Topics include variables and variable arithmetic, matrices
and matrix arithmetic, control structures, built-in matrix functions, M-files, and so forth. Four
engineering applications are solved at the end of Chapter 13. Where appropriate, pointers are given
to equivalent or similar implementations of these problems in C and Java. A brief introduction to
MATLAB graphics is contained in Chapter 14. Many other texts weave MATLAB graphics into the
introductory sections of MATLAB programming. However, in an effort to keep the tutorial length
short, we separate graphics from programming. Chapter 15 covers the solution of linear matrix
equations in MATLAB. We demonstrate the power of MATLAB by working step by step through
the formulation and solution of a variety of engineering applications involving families of matrix
equations and, where applicable, MATLAB graphics.

Chapter 2

Introduction to MATLAB

2.1 Getting Started

The MATrix LABoratory program (MATLAB) was
initially written with the objective of providing scientists and
engineers with interactive access to the numerical computation
libraries LINPACK and EISPACK. These libraries are carefully
tested, high-quality programming packages for solving linear
equations and eigenvalue problems [6, 15]. MATLAB enables
scientists and engineers to use matrix-based techniques to solve
problems without having to write programs in traditional lan-
guages such as C and FORTRAN. Currently, MATLAB is a
commercial matrix laboratory package that operates as an in-
teractive programming environment with graphical output. The
MATLAB programming language is exceptionally straightfor-
ward to use since almost every data object is assumed to be an array. MATLAB is available for
many different computer systems, including Macintosh, PC, and UNIX platforms.

The purposes of this tutorial are two-fold. In addition to helping you get started with MAT-
LAB, we want you to see how MATLAB can be used in the solution of engineering problems. The
latter objective is achieved through the presentation of a series of engineering application problems.
Throughout this tutorial, we assume that you

1. Will read a few sections and then go to a UNIX workstation or PC/Macintosh to experiment
with MATLAB

2. Are familiar with the operating system on your computer

3. Have access to supplementary material on matrices, matrix arithmetic/operations, and linear
algebra

41

42 Engineering Programming in Matlab

2.2 Professional and Student Versions of MATLAB

Professional and student editions of MATLAB Version 5 are available. The functionality
of the student edition of MATLAB is limited in the following way; each matrix is limited to 16,384
elements, large enough to study problems having 128-by-128 matrices. From this point on, we
assume that you have installed (follow the instructions accompanying the software disks) the student
version of MATLAB on your computer.

Entering and Leaving MATLAB

The procedure for entering and leaving MATLAB on UNIX and Mac/PC platforms is as
follows.

UNIX Platform. A MATLAB session may be entered by simply typing

prompt >> matlab

Hereprompt >> is the operating system prompt. A window should open and start MATLAB.
When you run MATLAB under the window system, whether you start from the menu or a system
prompt, a small MATLAB logo window will appear while the program is loading and disappear
when MATLAB is ready to use. MATLAB will present the (double arrow) prompt

>>

You are now in MATLAB. From this point on, individual MATLAB commands may be given at the
program prompt. They will be processed when you hit the “return” key. A MATLAB session may
be terminated by simply typing

>> quit

or by typingexit at the MATLAB prompt.

Macintosh and PC Platforms. Click on the icon for MATLAB or STUDENT-MATLAB. Most of
your interaction with MATLAB will take place in a Command window, where you will be presented
with the prompt

EDU>>

The procedure for leaving MATLAB is the same as any other program operating on these platforms.

Chapter 2 43

Both PC and Macintosh platforms come with a variety of programming and application
development tools. For example, the PC platform supports an integrated M-file editor, a visual M-
file editor, and performance profiler. The Macintosh platform comes with an M-file debugger and
Workspace browser.

Online help

Online help is available from the MATLAB prompt, both generally (listing all available
commands)

>> help
[a long list of help topics follows]

and specifically

>> help demo
[a help message on MATLAB’s demo program follows].

Theversion command will tell you which version of MATLAB you are using. Thehelpdesk
command

>> helpdesk

will initiate the execution of a World Wide Web (WWW) browser for MATLAB Online Reference
Documentation. Check it out.

44 Engineering Programming in Matlab

2.3 Variables and Variable Arithmetic

MATLAB supports a variety of data types for the desktop solution of engineering com-
putations. Some problems will require the representation ofscalar numbers or variables whose
values are scalar numbers. Other types of computations require the use of complex numbers con-
taining real and imaginary components. Moreover, solutions to a range of engineering problems
may be expediently computed through the use of one-dimensional arrays and/or multidimensional
matrices of scalars and complex numbers. This section explains how variables work in MATLAB.

The names and (data) types of MATLAB variables do not need to be declared because
MATLAB does not distinguish between integer, real, and complex values. In fact, any variable can
take integer, real, or complex values. Like most programming languages, variable names in MAT-
LAB should be chosen so that they do not conflict with function or subroutine names, command
names, or the names of certain values. However, name conflicts are bound to occur and we deal
with this topic below in the subsection entitled “handling name conflicts.”

Defining Variables

The equality sign is used to assign values to variables:

>> x = 3

x =

3

>>

As we soon see, variable names can be assigned to scalars, vectors (i.e., one-dimensional matrices),
and matrices. Generally speaking, variable names will be a mixture of letters, digits, and the under-
score character. The first character in a variable name must be a letter. Although variable names can
be of any length, MATLAB Version 5. requires that they be unique within the first 31 characters. It
is also important to bear in mind that variable names in MATLAB are case sensitive, meaning that
variablesx andX are distinct. Indeed, at this point,X is not even defined.

Table 2.1 shows some of the special built-in variable names and numbers used in MATLAB.
The following script shows how you can learn their values from the MATLAB interpreter.

>> eps
eps =

Chapter 2 45

==
Variable Name Meaning Value
==

ans Represents a value computed in an expression
but not stored in a variable name.

eps Represents the floating point precision for 2.2204 e-16
the computer being used. It is the smallest
amount with which two values can differ in
the computer.

"i" and "j" Imaginary unit in a complex number. sqrt(-1)
pi Pi 3.1415926 ..

NaN Represents "not a number." NaNs crop up in
undefined expressions (e.g., division by zero)
and in matrix elements where data is missing.

inf Infinity typically results from a division by (|><|)
zero or an arithmetic overflow.

clock The current time is represented in a six element
row vector containing year, month, day, hour,
minute, and seconds.

date The current date is represented in a character
string format.

flops Floating point operations count.
==

Table 2.1.Special Variable Names and Numbers in MATLAB

2.2204e-16
>> pi

ans =

3.1416

>> help pi

PI 3.1415926535897....
PI = 4*atan(1) = imag(log(-1)) = 3.1415926535897....

>>

Points to note are:

1. The machine’s round-off, the smallest distinguishable difference between two numbers as rep-
resented in MATLAB, is denotedeps .

2. The variableans keeps track of the last output that was not assigned to another variable. You
can use this property in a sequence of calculations where the output of one computation is

46 Engineering Programming in Matlab

used in the following calculation.

Program output can be suppressed by simply appending a semicolon (;) to command lines, as in

>> x = 3;
>> x

x =

3

>>

More than one command may be entered on a single line if the commands are separated by commas
or semicolons. To see how MATLAB handles these cases, try typing the command sequence

>> x = 3, y = 4; z = 5 % define and initialize variables x, y, and z.

In MATLAB, the %symbol indicates the beginning of a comment and, as such, the MATLAB
interpreter will disregard the rest of the command line.

Arithmetic Expressions

Table 2.2 summarizes the meaning and order of evaluation of MATLAB operators in arith-
metic expressions involving scalars and variables. With the exception of the left division operator,
arithmetic expressions in MATLAB follow a fairly standard notation. The MATLAB commands

>> 2+3; % Compute the sum "2" plus "3"
>> 3*4; % Compute the product "3" times "4"
>> 4ˆ2; % Compute "4" raised to the power of "2"

are examples of basic arithmetic operations. The lower half of Table 2.2 shows the precedence and
order of operator evaluation for arithmetic expressions. Operators having the highest precedence
(i.e., a low precedence number) are evaluated first. So, for example, power operations are performed
before division and multiplication, which are done before subtraction and addition. For example,

>> 2+3*4ˆ2;

generatesans = 50 . That is,

Chapter 2 47

Meaning Of Arithmetic Operators
==

Operator Meaning Example
==

ˆ Exponentiation of "a" raised to the 2ˆ3 = 2*2*2 = 8
power of "b".

* Multiply "a" times "b". 2*3 = 6
/ Right division (a/b) of "a" and "b". 2/3 = 0.6667
\ Left division (a\b) of "a" and "b". 2\3 = 3/2 = 1.5
+ Addition of "a" and "b" 2 + 3 = 5
- Subtraction of "a" and "b" 2 - 3 = -1

==

Precedence Of Arithmetic Expressions
==

Operators Precedence Comment
==

() 1 Innermost parentheses are evaluated first.
ˆ 2 Exponentiation operations are evaluated

right to left.
* / 3 Multiplication and right division operations

are evaluated left to right.
\ 3 Left division operations are evaluated right

to left.
+ - 4 Addition and subtraction operations are

evaluated left to right.
==

Table 2.2.Meaning and Precedence of Arithmetic Operators

2 + 3*4ˆ2 <== exponent has the highest precedence.
==> 2 + 3*16 <== then multiplication operator.
==> 2 + 48 <== then addition operator.
==> 50

Arithmetic expressions involving operators of equal precedence are evaluated left to right. Of
course, parentheses may be used to group terms or to make them more readable. For example,

>> (2 + 3*4ˆ2)/2

generatesans = 25 . That is,

(2 + 3*4ˆ2)/2 <== evaluate expression within
parentheses. Exponent has

48 Engineering Programming in Matlab

highest precedence.
==> (2 + 3*16)/2 <== then multiplication operator.
==> (2 + 48)/2 <== then addition operator inside

parentheses.
==> (50)/2 <== then division operator
==> 25

Even though the addition operator has lower precedence than the divide operation, the order of
evaluation can be easily altered with the use of parentheses. The second key use for parentheses
is for function calls, that is, a function name followed by parentheses containing zero or more
arguments. In this case, the function calls associated with a set of parentheses will be evaluated;
innermost levels of parentheses first. For example, the step by step order of evaluation for

>> 4.0*sin(pi/4 + pi/4)

is

4*sin(pi/4 + pi/4) <== begin evaluation of left-hand
side multiplication.

==> 4*sin(pi/4 + pi/4) <== evaluate expression within
function parentheses, starting
with leftmost division.

==> 4*sin(0.7854 + pi/4) <== evaluate right-hand side
division.

==> 4*sin(0.7854 + 0.7854) <== evaluate sum.
==> 4*sin(1.5708) <== sin(pi) function call.
==> 4*1.0 <== finish evaluation of left-hand

side multiplication.
==> 4.0

In this example,sin(x) is a function call to compute the sine of anglex measured in radians.

MATLAB has a flops function for counting the number of floating point operations
needed to complete a MATLAB command or block of MATLAB commands. We can easily verify,
for example, that five floating point operations are needed to evaluate the arithmetic expression

>> 4*sin(pi/4 + pi/4);
>> flops

ans =

5
>>

Chapter 2 49

Numerical Precision of MATLAB Output

All arithmetic is done to double precision, which for 32-bit machines means to about 16
decimal digits of accuracy. MATLAB automatically prints integer values as integers and floating
point numbers to four decimal digits of accuracy, with blank lines being inserted between textual
lines of output. Exponential format is automatically used when the value of a number falls outside
the range of numbers that can be printed using the default format.

===
MATLAB Command Meaning Example
===
format short Default -- 4 decimal places 20.1235
format long Output printed to 20.12345678901234

14 decimal places
format short e Exponential format with 2.0123e+01

4 decimal places
format long e Exponential format with 2.012345678901234e+01

14 decimal places
===

Table 2.3.Formatting Options for MATLAB Output

A summary of formatting options for the printing of the variable

>> a = 20.12345678901234

is shown in Table 2.3. Two useful commands areformat long , which instructs MATLAB to
display floating point numbers to 16 digits of accuracy, andformat compact , which instructs
MATLAB to abbreviate its output by removing all blank lines. Consider, for example, the script of
code

>> x = 2.345 % define variable "x".

x =

2.3450

>> format compact % "compact" version of output.
>> format long % "double precision" output.
>> xˆ30
ans =

1.271409381050112e+11
>>
>> format short % switch back to "default" output.

50 Engineering Programming in Matlab

To save space in this tutorial, all our calculations from this point on are conducted with theformat
compact in place.

Built-In Mathematical Functions

MATLAB has a platter of built-in functions for mathematical and scientific computations (see Table
2.3). You should remember that the arguments to trigonometric functions are given in radians. Also
bear in mind that MATLAB has functions to round floating point numbers to integers: They are
round , fix , ceil , andfloor .

Example. Verify that

sin(x)ˆ2 + cos(x)ˆ2 = 1.0

for some arbitrary values ofx . The MATLAB code is

>> x = pi/3;
>> sin(x)ˆ2 + cos(x)ˆ2 - 1.0
ans =

0
>>

Alternatively, we can write the arithmetic expression in terms of theans variable storing the angle.

>> pi/4;
ans =

0.7854
>> sin(ans)ˆ2 + cos(ans)ˆ2 - 1.0
ans =

0
>>

Active Variables. When you want to know the active variables, you can usewho. For example,

>> who
Your variables are:
ans x

>>

The commandwhos gives a detailed listing of the active variables, together with information on
the number of elements, and their size in bytes.

The commandclear removes an item from the active variable list. For example, try
typing clear x .

Chapter 2 51

Trigonometric Functions
===
Function Meaning Example
===

sin (x) Compute the sine of x (x is in radians). sin(pi) = 0.0
cos (x) Compute the cosine of x (x is in radians). cos(pi) = 1.0
tan (x) Compute the tangent of x (x is in radians). tan(pi/4) = 1.0
asin (x) Compute the arcsine of x. Complex results asin(pi/2) = 1.0

are obtained if abs(x) > 1 for some elements.
acos (x) Compute the arccosine of x. Complex results acos(pi/2) = 0.0

are obtained if abs(x) > 1 for some elements.
atan (x) Compute the arctangent of the elements of x. atan([0.5 1.0]) =

0.4636 0.7854
atan2 (x,y) Compute the four-quadrant inverse tangent of atan2 (1,2) =

the real parts of x and y. This function 0.4636
returns an angle between -pi and pi.

exp (x) Compute eˆx where e is the base for natural exp(1.0) = 2.7183
logarithms.

log (x) Compute the natural logarithm of x to the log(2.7183) = 1.0
base e.

log10 (x) Compute the logarithm of x to the base 10. log10(100.0) = 2.0
===

Mathematical Functions
===
Function Meaning Example
===

abs(x) Return absolute value of x abs(-3.5) = 3.0
ceil(x) Round x toward positive infinity ceil (-3.8) = -3
fix(x) Round x toward the nearest integer towards fix (-3.8) = -3

zero.
floor(x) Round x toward minus infinity. floor (-3.8) = -4
rem(x,y) Return the remainder of x/y. In C, this func-

tion is implemented as the modulo operator.
round(x) Round x to the nearest integer. round(3.8) = 4
sign(x) Return -1 if x is less than 0, 0 if x equals sign(3) = 1

zero, and 1 if x is greater than zero.
sqrt(x) Compute the square root of x. sqrt(3) = 1.7320...
===

Table 2.4.Common Trigonometric and Mathematical Functions

52 Engineering Programming in Matlab

Program Input and Output

Throughout this tutorial, we employ a variety of techniques for input and output (I/O) of
MATLAB variables and matrices. We see, for example, that variables and matrices can be defined
explicitly, with built-in functions, and using data that are loaded into MATLAB from an external
file. In this section we are concerned only with I/O of variables and introduce other features of I/O
as needed.

MATLAB has two functions for the basic input of variables from the keyboard and for
formatted output of variables.

Input of Variables from the Keyboard. MATLAB has a built-in function “input” that enables the
value of variables to be specified at the keyboard. For example, the command

A = input(’Please type the value of Coefficient A :’);

will print the message

Please type the value of Coefficient A :

enclosed between single quotes on the computer screen. MATLAB will then wait for a numerical
value to be typed at the keyboard, followed by the return key. In this particular case, the result of
the numerical input will be assigned to variableA.

Formatted Output of Variables. MATLAB uses the functionfprintf for formatted output of
messages and numbers. The general syntax is as follows:

fprintf(format , matrices or variables)

The first argument contains the text and format specifications to be printed, and it is followed by
zero or more matrices and variables. MATLAB’s format argument operates in an almost identical
manner to formatted output in the C programming language. For example, the specification%f is
used for floating point numbers, and%eis used for exponential notation. The command

fprintf(’Volume of sphere = %f\n’ , 3.4)

generates the output

>> fprintf(’Volume of sphere = %f\n’ , 3.4)
Volume of sphere = 3.400000
>>

Chapter 2 53

The contents of the function argument between single quotes’....’ is called a format string. The
sequence of characters%f is an example of a conversion specification. Conversion specifications
begin with a percent sign (%) and are followed by one or more formatting options for output left/right
justification, numeric signs, size specification, precision specification, decimal points, and padded
zeros. In this particular case, the%f simply tellsprintf() to output the contents of3.4 as a
floating point number. By default, the floating point number will be printed with six decimal places
of precision.

We use the’ \n’ escape character to print a carriage return and advance the screen output
(or cursor) to the beginning of a new-line. Omitting a newline character inprintf statements will
result in long stream of output on the same line – the output will either run off the right-hand side
of the computer screen, or possibly jump to the next line automatically (actual behavior will depend
on the computer system).

One of the neat features ofprintf() is its ability to accept a variable number of argu-
ments. In practical terms one argument value must be added to the argument list ofprintf() for
every field with a%specifier in the string constant. For example, the script of code

>> myPi = pi;
>> fprintf(’myPi = %5.3f 2*myPi = %5.3f\n’, myPi, 2*myPi)
myPi = 3.142 2*myPi = 6.283
>>

shows how a single call tofprintf() can print two floating point numbers.

Alternative Conversion Specifications. Our approximation ofπ could have been printed using
a number of user-defined formatting options; for example, the left- and right-hand columns of the
following table

Modified printf() statement Output
====================================== =====================
fprintf(’myPi = %f \n’, myPi); myPi = 3.141593
fprintf(’myPi = %14.7f \n’, myPi); myPi = 3.1415927
fprintf(’myPi = %14.7e \n’, myPi); myPi = 3.1415927e+00
fprintf(’myPi = %14.7E \n’, myPi); myPi = 3.1415927E+00
fprintf(’myPi = %14.7g \n’, myPi); myPi = 3.141593
fprintf(’myPi = %14.7G \n’, myPi); myPi = 3.141593
fprintf(’myPi = %-14.7f \n’, myPi); myPi = 3.1415927
fprintf(’myPi = %-14.7e \n’, myPi); myPi = 3.1415927e+00
====================================== =====================

show modifications to the print statement shown above. The format specification%14.7f tells
printf() to output the contents ofmyPi as a floating point number in a field 14 digits wide

54 Engineering Programming in Matlab

(including the decimal point), with 7 digits of precision to the right-hand side of the decimal point.
To ensure that the specification has enough width for the decimal point and the minus sign (if
needed), the total number of digits in the output field should be at least 3 larger than the number of
digits appearing after the decimal point.

The floating point specificationse andE tell printf to output the floating point number
in exponential format. Unless the floating point number to be printed equals zero, the number
before the lettere will represent a value between 1.0.. and 9.99... The two-digit part after thee
represents an exponent value expressed as a signed decimal integer. The floating point number will
be approximately equal to the first component multiplied by 10 raised to value of the exponent.
The total number of digits in the output field should be at least 7 larger than the number of digits
appearing after the decimal point. The floating point specificationsg andG tell printf to select
the better of thef or e formats. Although the rules for selecting the format are implementation
dependent, as a general guideline, if the number to be printed falls within the range-of-conversion
specification, use of thef format is likely. Otherwise, the floating point number will be printed in
exponential format. In the seventh and eighth print statements, the output is left justified by inserting
a minus (-) at the front of the conversion specification.

Saving and Restoring Variables. To save the value of the variablex to a plain text file named
x.value use

>> save x.value x -ascii

To save all variables in a file namedmysession.mat in reloadable format, use

>> save mysession

To restore the session, useload mysession . PC and Macintosh versions also come with aFile
menu for saving and retrieving data.

2.4 Matrices and Matrix Arithmetic

A matrix (or array) of ordermby n is simply a set of numbers arranged in a rectangular
block ofmhorizontal rows andn vertical columns. We say

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 (2.1)

Chapter 2 55

is a matrix of size(m× n). Sometimes we say “matrix A has dimension(m× n).” The numbers that
make up the array are called theelements of the matrix and, in MATLAB, no distinction is made
between elements that are real numbers and complex numbers. In the double subscript notationaij
for matrix elementa(i,j) , the first subscripti denotes the row number, and the second subscript
j denotes the column number.

By definition, a row vector is simply a (1×n) matrix and a column vector is a (m× 1)
matrix. The ith element of a vector

V =
[
v1 v2 v3 v4 · · · vn

]
(2.2)

is simply denotedvi. The MATLAB language has been designed to make the definition and manip-
ulation of matrices and vectors as simple as possible.

Definition and Properties of Small Matrices

Matrices can be introduced into MATLAB by explicitly listing the elements through the
use of built-in matrix functions and by M-files and external data files. We explain how matrices are
defined in M-files and external files in a moment. For now, consider the statements

>> A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16];

and

>> A = [1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16]

Both statements create a four-by-four matrix and assign its contents to a variableA. In the explicit
declaration of matrices, a matrix is entered in row-major order, meaning all the first row, then all the
second row, and so forth. Matrix rows are separated by a semicolon or a new line, and the elements
within a row of a matrix may be separated by commas as well as a blank. The elements of a matrix
are enclosed by brackets. Matrix elements that are floating point numbers are specified in the usual
way (e.g., 3.1415926). Blank spaces must be avoided when listing a number in exponential form
(e.g., 2.34e-9).

Row and column vectors are declared as matrices having either one row or column, respec-
tively.

56 Engineering Programming in Matlab

Accessing Matrix Elements. The matrix element located in the ith row and jth column ofA is
referred to in the usual way:

>> A(1,2), A(2,3)
ans =

2
ans =

7
>>

Similarly, the elements in a row or column vector may be accessed by simply typing the vector
name followed by the index number inserted between brackets. For example,

>> V = [5 4 3 2 1]; % declare a row vector having 5 elements
>> V (2) % access the second element in vector V
ans =

4
>>

The elements of vectors and matrices may be easily modified with statements of the form

>> A(2,3) = 10; % modify matrix element A (2,3)
>> V(2) = 10; % modify vector element V (2)

Size of a Matrix. The MATLAB functionsize returns a one-by-two matrix containing the number
of rows and columns in a matrix. The script of code

>> size ([1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15])
ans =

3 5
>>

shows how thesize function returns the number of rows and columns in a 3-by-5 matrix.

Equal Matrices. Two matricesA and B are equal if they have the same number of rows and
columns, and all the corresponding elements are equal (i.e.,aij = bij for i = 1 · · ·m andj =
1 · · · n). In MATLAB, a copy of the matrix

>> A = [1 2 3; 4 5 6];

can be made by simply writing

Chapter 2 57

>> B = A
B =

1 2 3
4 5 6

>>

Square Matrices. If a matrix has the same number of rows as columns (i.e.,m= n), then we say
that it issquare and that the matrix is oforder n . The group of elementsa11, a22 · · · ann are
called the principal diagonal elements.

Empty Matrices. MATLAB allows for the definition of matrices where one or more dimensions of
the matrix may be empty, that is, contain no matrix elements. For example, the statement

>> A = [];

defines an empty matrixA. The MATLAB function isempty() can be used to test whether a
matrix is empty (see Table 2.5 for more details on calling this function).

Defining Matrices with Built-In MATLAB Functions. Table 2.5 shows that MATLAB has a
variety of built-in functions for the definition of small matrices. The script of code

>> eye (3,4)
ans =

1 0 0 0
0 1 0 0
0 0 1 0

>>

shows, for example, how a matrix of 3 rows and 4 columns with 1s along the matrix diagonal is
generated by the function calleye(3,4) .

Diagonal Matrix. A square matrixA whose elementsaij = 0 for all i 6= j is called adiagonal
matrix. We writeA = diag(a11, a22, a33, · · · , ann) . A diagonal matrix whose elements on the
principal diagonal are all 1 is called theunit matrix or identity matrix . This special
matrix has notationI.

Let X be a row or column vector containingn elements.diag(X) is the (n×n) diagonal
matrix with the elements ofX placed along the diagonal. Consider, for example

>> X = [4 3 2 1];
>> diag(X)
ans =

58 Engineering Programming in Matlab

===
Function Meaning Example
===
eye (n) Returns a n-by-n identity matrix. eye (3)
eye(m,n) Returns a m-by-n matrix of ones along the eye (3,4)

matrix diagonal and zeros elsewhere.

zeros(n) Returns a n-by-n matrix of zero elements. zeros (3)
zeros(m,n) Returns a m-by-n matrix of zero elements. zeros (3,4)
===

Table 2.5.Defining Small Matrices with MATLAB Functions

4 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

>>

Conversely, ifA is a square matrix thendiag(A) is a vector containing the diagonal elements of
A. Consider, for example

>> A = [1 2 3; 4 5 6; 7 8 9];
>> diag (A)
ans =

1
5
9

>>

Lower and Upper Triangular Matrices. A lower triangular matrixL is one whereaij = 0 for all
entries above the diagonal. An upper triangular matrixU is one whereaij = 0 for all entries below
the diagonal. That is,

L =


a11 0 · · · 0
a21 a22 · · · 0

...
...

. . .
...

am1 am2 · · · amn

 U =


a11 a12 · · · a1n

0 a22 · · · a2n
...

...
.. .

...
0 0 · · · amn

 (2.3)

Chapter 2 59

The MATLAB functionstriu andtril extract the upper and lower sections of a matrix, respec-
tively. For example, the script

>> U = triu(A)
U =

1 2 3
0 5 6
0 0 9

>> L = tril(A)
L =

1 0 0
4 5 0
7 8 9

>>

extracts the upper and lower triangular sections of matrixA defined in the previous section. The
function callstriu(A,k) andtril(A,k) generate square matrices of values fromA with zeros
below/above thek-th diagonal. For example, the script of code

>> U1 = triu(A, 1);
>> U2 = triu(A,-1);

generates the matrices

U1 =

 0 2 3
0 0 6
0 0 0

 andU2 =

 1 2 3
4 5 6
0 8 9

 (2.4)

Building Matrices from Blocks. Large matrices can be assembled from smaller matrix blocks. For
example, with matrix A in hand, we can enter the following commands:

>> C = [A; 10 11 12]; <== generates a (4x3) matrix
>> [A; A; A]; <== generates a (9x3) matrix
>> [A, A, A]; <== generates a (3x9) matrix

As with variables, use of a semicolon with matrices suppresses output. This feature can be especially
useful when large matrices are being generated. IfA is a 3-by-3 matrix, then

>> B = [A, zeros(3,2); zeros(2,3), eye(2)];

will build a certain 5-by-5 matrix. Try it.

60 Engineering Programming in Matlab

Reading and Saving Datasets

Suppose that the array of numbers

1 10.0
2 15.0
3 14.0

.... data items removed from file ...

28 9.0
29 4.0
30 0.0

is stored in a filerainfall.dat and that each row of the file corresponds to the date and daily
rainfall measurement (inmm) for one calendar month. The command

>> load rainfall.dat

will read the contents ofrainfall.dat into an array calledrainfall , having 30 rows and 2
columns. The command

>> save rainfall.dat rainfall -ascii

will save the contents of arrayrainfall in the data filerainfall.dat . The array elements
will be written in ASCII using 8 digits of accuracy. The command

>> save

will save arrayrainfall , and all the other matrices and variables in the MATLAB workspace, in
a nonreadablemat file calledmatlab.mat . The contents ofmatlab.mat can be reloaded into
MATLAB at a later date by simply reissuing theload command. For an extensive list ofsave
andload command options, see the online documentation.

Chapter 2 61

Application of Mathematical Functions to Matrices

In your high school mathematics classes you probably learned thatsin(x) is the sine of
an anglex measured in radians. A typical MATLAB command could be

>> x = pi/4;
>> sin (x)
ans =

0.7071
>>

MATLAB makes an important departure from traditional mathematics in the way it deals with
matrices and the mathematical and trigonometric functions listed in Table 2.3. Instead of only
allowing for the computation of mathematical formulae on a single variable (as demonstrated in the
previous example), MATLAB enables mathematical formulae to be computed on the entire contents
of a matrix by writing only one line of code. So how does this work? When we write the statement

>> x = pi/4;

we naturally think ofx as being a variable. However, MATLAB, treatsx as if it were a matrix
containing only one element. The same numerical result can be obtained by writing

>> sin ([pi/4])
ans =

0.7071
>>

If the dimensions of the input matrix are expanded to something like

>> x = [1 2 3 4 5; 6 7 8 9 10]
x =

1 2 3 4 5
6 7 8 9 10

>>

then the command

>> sin(x)
ans =

0.8415 0.9093 0.1411 -0.7568 -0.9589
-0.2794 0.6570 0.9894 0.4121 -0.5440

>>

62 Engineering Programming in Matlab

generates a two-by-five matrix containing the sine computations for each of the matrix elements in
x . In other words, MATLAB systematically walks through all the elements inx and computes the
sine of the corresponding matrix element.

We will soon see that this feature of MATLAB applies to nearly all the functions listed
in Table 2.3. The true benefit of this feature lies in the development of MATLAB software for the
solution of problems requiring repetitive calculations. Because the need for looping constructs can
be eliminated in many cases, the complexity of user-written code needed to implement a numerical
algorithm in MATLAB can be significantly simpler than counterpart implementations in C and Java,
for example.

Colon Notation

A central part of the MATLAB language syntax is the “colon operator,” which produces a
list. For example

>> -3:3
ans =

-3 -2 -1 0 1 2 3
>>

The default increment is by 1 but that can be changed. For example

>> x = -3 : .3 : 3
x =

Columns 1 through 7
-3.0000 -2.7000 -2.4000 -2.1000 -1.8000 -1.5000 -1.2000

Columns 8 through 14
-0.9000 -0.6000 -0.3000 0 0.3000 0.6000 0.9000

Columns 15 through 21
1.2000 1.5000 1.8000 2.1000 2.4000 2.7000 3.0000

>>

In this particular case you may think ofx as a list, a vector, or a matrix, which begins at -3 and
whose entries increase by .3, until 3 is surpassed. Generally speaking, the colon operator can be
used anywhere in MATLAB code where a generated list is appropriate. Consider, for example, the
block of statements for generating a table of sines

>> x = [0.0:0.1:2.0]’ ;
>> y = sin(x);
>> [x y]

Chapter 2 63

The first command generates a column vector of elements ranging from zero to two in increments of
0.1. You should note that becausesin operates entrywise, the second command generates a column
vectory from the vectorx . The third command takes thex andy column vectors and places them
in a 21-by-2 matrix table. Go ahead, try it.

Colon notation can also be combined with the earlier method of constructing matrices. For
example, the command

>> A = [1:6 ; 2:7 ; 4:9];

generates a 3-by-6 matrixA.

Submatrices

Any matrix obtained by omitting some rows and columns from a given matrixA is called a
“submatrix” ofA. A very common use of the colon notation is to extract rows, or columns, as a sort
of “wildcard” operator, which produces a default list. For example,

>> A(1:4,3)

is the column vector consisting of the first four entries of the third column ofA. A colon by itself
denotes an entire row or column. So, for example,

>> A(:,3)

is the third column ofA, andA(1:4,:) is the first four rows ofA. Arbitrary integral vectors can
be used as subscripts. For example, the statement

>> A(:,[2 4])

generates a two column matrix containing columns 2 and 4 of matrixA. This subscripting scheme
can be used on both sides of an assignment statement. The command

>> A(:,[2 4 5]) = B(:,1:3)

replaces columns 2,4, and 5 of matrix A with the first three columns of matrix B. Note that the entire
altered matrixA is printed and assigned. Try it.

64 Engineering Programming in Matlab

Matrix Arithmetic

The following matrix operations are available in MATLAB:

Operator Description Operator Description
==

+ addition ’ transpose
- subtraction \ left division
* multiplication / right division
ˆ power

==

These matrix operations apply, of course, to scalars (1-by-1 matrices) as well. If the sizes of the
matrices are incompatible for the matrix operation, an error message will result, except in the case
of scalar-matrix operations (for addition, subtraction, and division as well as for multiplication) in
which case each entry of the matrix is operated on by the scalar.

Matrix Transpose. The transpose of am×nmatrixA is then×mmatrix obtained by interchanging
the rows and columns ofA. For example, the matrix transpose of

A =

[
1 2 3 4
5 6 7 8

]
isAT =


1 5
2 6
3 7
4 8

 (2.5)

The matrix transpose is denotedAT . In MATLAB, the transpose of a matrix is computed by fol-
lowing the matrix name with the single quote [apostrophe]. For example,

>> A = [1 2 3 4; 5 6 7 8];
>> A’
ans =

1 5
2 6
3 7
4 8

>>

We say that a square matrixA is “symmetric” ifA = AT , and it is “skew-symmetric” ifA = - AT .

Matrix Addition and Subtraction. If A is a (m × n) matrix andB is a (r × p) matrix, then the
matrix sumC= A + B is defined only whenm = r andn = p (see Figure 2.1a). The matrix sum is a
(m× n) matrix Cwhose elements are

Chapter 2 65

cij = aij + bij (2.6)

for i = 1, 2, · · ·m andj = 1, 2, · · · n. For example,

if

A =

[
2 1
4 6

]
and

B =

[
4 2
0 1

]
,

then

C = A + B =

[
2 1
4 6

]
+

[
4 2
0 1

]
=

[
6 3
4 7

]
. (2.7)

The MATLAB commands for this computation are

>> A = [2 1; 4 6];
>> B = [4 2; 0 1];
>> C = A + B
C =

6 3
4 7

>>

Matrix subtraction is identical to matrix addition, except thatcij = aij − bij for i = 1, 2, · · ·m and
j = 1, 2, · · · n. The matrix addition and matrix subtraction operations requiremn floating point
operations (flops).

Dot Product. Let

X =
[
x1 x2 x3 · · · xn

]
(2.8)

be a row vector containingn elements and

66 Engineering Programming in Matlab

C (i , j) A (i , j) B (i , j)m

n p

r

xC (i , j) m

n p

r

Column j of BRow i of A

Figure 2.1. Schematics of (a) matrix addition and (b) matrix multiplication

Y =


y1

y2

y3
...

yn

 (2.9)

be a column vector containing the same number of elements. The dot product, also sometimes called
the scalar product or inner product, is a special case of matrix multiplication (see the next section)
and is defined by

X ∗ Y =
n∑
i=1

xi · yi (2.10)

For example, the dot product of row vectorX = [1, 2, 3, 4, 5] , with its matrix trans-
pose, can be computed in MATLAB by simply typing

Chapter 2 67

>> X = [1, 2, 3, 4, 5];
>> Y = X’;
>> X*Y

ans =
55

>>

The results of this computation can be easily verified by hand

X*Y = [1 2 3 4 5]*[1 2 3 4 5]’
= 1*1 + 2*2 + 3*3 + 4*4 + 5*5
= 1 + 4 + 9 + 16 + 25
= 55

The dot product operation on two vectors containingn elements requiresn floating point operations
(flops).

Matrix Multiplication. Let A andB be (m × n) and(r × p) matrices, respectively. The matrix
productA · B is defined only when interior matrix dimensions are the same (i.e.,n = r). The
matrix productC= A · B is a(m× p) matrix whose elements are

cij =
n∑
k=1

aik bkj (2.11)

for i = 1, 2, · · ·m andj = 1, 2, · · · n. From a geometric point of view,cij is the dot product of
the ith row ofA with the jth column ofB (see Figure 2.1b.). Assuming that matricesA andB are as
defined in the previous section:

C = A · B =

[
2 1
4 6

]
·
[

4 2
0 1

]
=

[
2 · 4 + 1 · 0 2 · 2 + 1 · 1
4 · 4 + 6 · 0 4 · 2 + 6 · 1

]
=

[
8 5

16 14

]
.

(2.12)

The MATLAB commands for this operation are

>> A = [2 1; 4 6];
>> B = [4 2; 0 1];
>> C = A*B
C =

8 5
16 14

>>

68 Engineering Programming in Matlab

Computation of the matrix product requires2mnp flops. When the dimensions of the matrices are
approximately equal, then computational work is2n3 flops.

Example. Because the number of rows equals the number of columns in square matrices, square
matrices can always be multiplied by themselves. The triple matrix product of

>> A = [2 1; 4 6];

can be evaluated by writing

>> A*A*A
ans =

48 56
224 272

>>

or by simply writing

>> Aˆ3
ans =

48 56
224 272

>>

Example. A magic square is a square matrix that has equal sums along all its rows and columns.
For example,

>> magic(4)
ans =

16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

>> magic(4)

In this particular case, the elements of each row and column sum to 34. Now we can use matrix
multiplication to check the “magic” property of magic squares:

>> A = magic(4);
>> b = ones(4,1);
>> A*b; <== (4x1) matrix containing row sums.
>> v = ones(1,4);
>> v*A; <== (1x4) matrix containing column sums.

Chapter 2 69

Scalar Multiplication of Matrices. Scalars multiply matrices on an element-by-element basis. For
example, with matrixA in place

>> 2*A % multiply elements of matrix "A" by "2".
ans =

4 2
8 12

>> A/4 % right division of "A" by "4".
ans =

0.5000 0.2500
1.0000 1.5000

>> 4\A % left division of "A" by "4".
ans =

0.5000 0.2500
1.0000 1.5000

>>

Matrix Division. Left and right division of matrices is a generalization of left and right division in
variable arithmetic. LetA andB be two matrices. Right division of two matrices, written

>> A/B

corresponds to the solution of the linear matrix equationsA.X = B . Similarly, left division of two
matrices is written

>> A\B

and corresponds to the solution of the linear matrix equationsX.A = B . We discuss the nature of
these solutions in more detail in Chapter 15.

Matrix Inverse. The inverse of a square matrixA, denotedA−1, is given by the solution to the
matrix equations

A · A−1 = A−1 ·A = I.

In MATLAB, A−1 can be computed withinv(A) .

Arithmetic on Submatrices. MATLAB provides for the computation of arithmetic operations on
submatrices. Suppose that matrixA is

>> A = [1 2 3 4 5 6;
7 8 9 10 11 12;

13 14 15 16 17 18;
19 20 21 22 23 24];

>>

70 Engineering Programming in Matlab

Columns 2 and 4 ofA can be multiplied on the right by the 2-by-2 matrix[1 2;3 4];

>> A(:,[2,4]) = A(:,[2,4])*[1 2;3 4]
A =

1 14 3 20 5 6
7 38 9 56 11 12

13 62 15 92 17 18
19 86 21 128 23 24

>>

Matrix A is altered and printed.

Matrix Element-Level Operations

MATLAB has a special convention whereby a dot positioned in front of the arithmetic
operations listed in the upper half of Table 2.2 will force entry-by-entry computation of the matrix
operation. By definition, the matrix addition and matrix subtraction operations are already computed
on an element-by-element basis. Matrix operations such as multiplication and left and right matrix
division are not. The best way of seeing how this works is to simply walk through a couple of
examples.

Example. We start with

>> [1,2,3,4].*[1,2,3,4]
ans =

1 4 9 16
>>

Here the expression[1,2,3,4].*[1,2,3,4] evaluates to

[1,2,3,4].*[1,2,3,4] ==> [1*1 ,2*2 ,3*3 ,4*4]
==> [1 , 4 , 9 , 16].

The same result can be obtained with[1,2,3,4]. ∧2. Similarly, the expression

>> [1,2,3,4]./[1,2,3,4]
ans =

1 1 1 1
>>

evaluates to a vector of 1s.

Example. Suppose that we wish to verifysin(x)2 + cos(x)2 = 1 for a variety of argument values
x . The block of code

Chapter 2 71

>> x = [-pi : pi/4 : pi];

creates a one-by-nine arrayx containing values that range from−π to π in increments ofπ/4. The
command

>> sin(x).ˆ2 + cos(x).ˆ2

generates the output

ans =
1 1 1 1 1 1 1 1 1

>>

The order of evaluation is as follows. First, one-by-nine matrices are computed forsin(x) and
cos(x). Element-level operations square each element insin(x) and then each element incos(x).
The output is simply the sum of the latter two matrices.

72 Engineering Programming in Matlab

2.5 Control Structures

Control of flow in the MATLAB programming language is achieved with logical expres-
sions, branching constructs for the selection of a solution procedure pathway, and a variety of loop-
ing constructs for the efficient computation of repetitious operations.

Logical Expressions

In MATLAB, a logical expression involves the use of relational and logical operands for
the comparison of variables and matrices of the same size. Table 2.5 summarizes the six relational
operators and three logical operators in the MATLAB programming language.

Relational Operators
===
Operator Description
===

< Less than
> Greater than

<= Less than or equal
>= Greater than or equal
== Equal
˜= Not equal

===

Logical Operators
===
Operator Description Precedence
===

˜ Not 1
& And 2
| Or 3

===

Table 2.6.Summary of Relational and Logical Operators

Relational operators allow for the comparison of variables, and matrices of the same size. In the
case of variable comparisons, the outcome will be 1 if the comparison is true, and 0 otherwise.
Indeed in MATLAB, as in other languages such as C and Java, true is represented by a nonzero
integer (usually one) and false is represented by zero. To see how this works in practice, we look at
the script of code:

>> 3 < 5

Chapter 2 73

===
Function Description
===
any(x) For vector arguments x, any(x) returns 1 if any of the

elements of x are nonzero. Otherwise, any(x) returns 0.
When x is a matrix argument, any(x) operates on the columns
of x, returning a row vectors on 1s and 0s.

all(x) For vector arguments x, all(x) returns 1 if all the
elements of the vector are nonzero. Otherwise it returns 0.
For matrix arguments x, all(x) operates on the columns
of x, returning a row vector of 1s and 0s.

find (x) This function finds the indices of the nonzero elements
of x. The function argument can be combined with logical
and relational expressions.

isnan (x) isnan(x) returns 1s where the elements of x are NaNs and
0s where they are not. Recall that NaN means "Not a Number".

finite (x) finite(x) returns 1s where the elements of x are finite
and 0s where they are not.

isempty(x) In MATLAB, an empty matrix has a zero size in at least
one dimension. isempty(x) returns 1 if x is an empty
matrix and 0 otherwise.

===

Table 2.7.Logical Functions in MATLAB

ans =
1

>> a = 3 == 5
a =

0
>>

In the first example,3 is less than5, so the result of the relational expression is true (i.e., 1).
The second example contains both an assignment “=” operator, and an equality “==” operator.
Because the precedence of evaluation for the “==” operator is higher than the assignment operator,
the relational comparison is made first, and then the result is assigned to variablea. In this particular
case,3 is not equal to5, and so variablea assumes a value of 0 (i.e., false).

When relational operands are applied to matrices of the same size, as in

74 Engineering Programming in Matlab

>> A = [1 2; 3 4];
>> B = [6 7; 8 9];
>> A == B

ans =
0 0
0 0

>> A < B
ans =

1 1
1 1

>>

the result will be a matrix of 0s and 1s giving the value of the relationship between corresponding
entries.

Logical expressions can be combined by using the logical operands,and , or , andnot (see
the lower half of Table 2.5). The following table shows how the logical operators can be combined.

===
A B A & B A | B ˜A

===
True True True True False
True False False True False

False True False True True
False False False False True

===

Logical operands also apply to matrices of the same size. In the script

>> A = [1 2; 3 4];
>> B = [6 7; 8 9];
>> A & B
ans =

1 1
1 1

>>

all the matrix elements inans evaluate to 1 because matricesA andB contain only nonzero matrix
elements.

MATLAB also has an ensemble of built-in functions for the evaluation of logical expres-
sions involving matrices. A summary of their capabilities is given in Table 2.5.

Chapter 2 75

Selection Constructs

Generally speaking, a selection construct enables the details of a program’s problem-
solving procedure to be tied to the evaluation of one or more logical expressions. The following
diagram shows the syntax for three commonly used selection constructs in the MATLAB program-
ming language:

If-end construct If-else-end construct If-elseif-end construct
================ ===================== =======================

if < condition1 >, if < condition1 >, if < condition1 >,
< program1 > < program1 > < program1 >

end; else elseif < condition2 >,
< program2 > < program2 >

end; elseif < condition3 >
< program3 >

.....

elseif < conditionN >
< programN >

end;

In each of these constructs, the block of statements<program1 > will be executed when the
logical expression<condition1 > evaluates to true. Otherwise, the program control moves to
the next program construction. For the leftmost construct, this means theend of the selection
construct. For the if-else-end construct, the block of statements<program2 > will be executed
when<condition1 > evaluates to false. For example, in the block of statements

>> a = 2; b = 1;
>> if a < b,

c = 3;
else

c = 4;
end;

>> c
c =

4
>>

the logical expression a<b evaluates to false, thereby causing the second block of program state-
ments to be executed.

Another variation is the “if-elseif-end” construct. MATLAB will systematically evaluate
the sequence of logical expressions<condition1 >,<condition2 > · · · <conditionN >

76 Engineering Programming in Matlab

until one evaluates to true. After the corresponding block of<program > statements has been
executed, the program control will jump to the end of the “if-elseif-end” construct.

Looping Constructs

MATLAB provides a number of looping constructs for the efficient computation of similar
calculations. The syntax for thewhile andfor looping constructs is

While-loop construct For-loop construct
===================== =====================

while < condition1 >, for i = <array of values>
< program1 > < program1 >

end end

In the while looping construct, the block of statements<program1 > will be executed while the
logical expression<condition1 > evaluates to true. For example, the following script

A "while looping" construct Iteration No i i < 4 y
=========================== ==================================

>> i = 2; 1 2 true 8
>> while (i < 4), 2 3 true 12

y = 4*i, 3 4 false
i = i + 1,

end
>>

shows a simple while loop and an analysis of the values involved in the looping construct.

In the for looping construct, the block of statements<program1 > will be executed for
each of the vectorsi defined by the column elements in<array >. For example, the looping
construct

A "for looping" construct Iteration No i c
========================= =========================

>> for i = [2,4,5,6,10], 1 2 4
c = 2*i 2 4 8

end 3 5 10
>> 4 6 12

5 10 20

Chapter 2 77

executes five times. The values for the variablei during execution are successively2, 4, 5, 6, and
10 . When<array > is a two-dimensional matrix, the values ofi will be vectors corresponding
to the matrix columns of<array >. For example, an extension of our previous example is

A "for looping" construct Iteration No i c
========================= ==================================

>> for i = [2 4 5 6 10;
1 2 3 4 5], 1 [2 1]’ [4 2]’

c = 2*i 2 [4 2]’ [8 4]’
end 3 [5 3]’ [10 6]’

>> 4 [6 4]’ [12 8]’
5 [10 5]’ [20 10]’

Looping constructs may be nested of course. Here is an example of the contents of a matrix being
initialized inside a nested for loop:

MATLAB source code i j A(i,j)
======================= =====================================

>> for i=1:2, 1 1 A(1,1) = 1/1 = 1.0
for j=1:2, 1 2 A(1,2) = 1/2 = 0.5

A(i,j) = i/j; 2 1 A(2,1) = 2/1 = 2.0
end 2 2 A(2,2) = 2/2 = 1.0

end
>>

There are actually two loops here, with one nested inside the other; they define A(1,1), A(1,2),
A(2,1), and A(2,2) in that order.

Programming Tip. Looping constructs in the MATLAB programming language need to be used
with care. The first potential problem is withwhile loops and the implicit danger of the program
control becoming trapped inside a loop because<condition1 > never evaluates to false.

A second important issue is performance. Generally speaking, MATLAB code written
with the for andwhile looping constructs will execute much slower than if MATLAB’s implied
looping constructs are employed. For example, the block of MATLAB code

>> x = [0 : 0.1 : 2.0];
>> y = zeros(1,21);
>> for i = 1:21,

y(i) = sin(x(i));
end

>>

78 Engineering Programming in Matlab

will have faster execution if it is simply written

>> x = [0 : 0.1 : 2.0];
>> y = sin(x);

This is because the former looping constructs are interpreted, and MATLAB’s implied looping
constructs are executed as a low-level compiled code.

2.6 General-Purpose Matrix Functions

MATLAB has an ensemble of built-in matrix functions that are useful for general-purpose
engineering and scientific computations.

Sorting the Contents of a Matrix

Whenx is a matrix,sort(x) sorts each column ofx in ascending order. For example

>> x = [1 3 4;
5 -4 16;

-4 -8 -10];
>> sort(x)
ans =

-4 -8 -10
1 -4 4
5 3 16

>>

sort(x) also returns an index matrixi , containing a mapping between elements in thex matrix
and they (sorted) matrix. For example

>> [y, i] = sort(x)
y =

-4 -8 -10
1 -4 4
5 3 16

i =
3 3 3
1 2 1
2 1 2

>>

In colon notationy(:,j) = x(i(:,j),j) . Hence, by walking down the first column of the
index matrix i , we see that matrix elementsx(3,1) , x(1,1) , and x(2,1) have increasing
values.

Chapter 2 79

Summation of Matrix Contents

Whenx is a vector,sum(x) returns the sum of the elements ofx . Whenx is a matrix,
sum(x) returns a row vector with the sum over each column. For example,

>> sum ([1 3 4;
5 -4 16;

-4 -8 -10])
ans =

2 -9 10
>>

Watch out for this function being used in statistical analysis of experimental data and least squares
analysis.

Maximum/Minimum Matrix Contents

Maximum/Minimum Matrix Contents

The MATLAB function max(A) returns the maximum element in vectorA, andmin(A)
returns the minimum element in vectorA. WhenA is a matrix,max(A) will return a row vector
containing the maximum value in each column ofA. Similarly, min(A) will return a row vector
containing the minimum value in each column ofA. For example, the script of code

>> A = [1 2 3 4; 5 6 7 8];
>> max (A)
ans =

5 6 7 8
>> min (A)
ans =

1 2 3 4
>>

shows how the maximum and minimum values of each column ofA are computed.

Some MATLAB functions can return more than one value. In the case ofmax, the inter-
preter returns the maximum value and also the column index where the maximum value occurs. For
example, the script of code

>> [m, i] = max(A)
m =

5 6 7 8
i =

2 2 2 2
>>

80 Engineering Programming in Matlab

shows how the maximum value in each column ofA is located at index 2.

Random Numbers

The MATLAB function rand returns numbers and matrices of numbers containing ele-
ments that are uniformly distributed between zero and one. Theoretical considerations indicate that
the average value of these elements should be close to 0.5.

For example, the function callrand(3) will return a three-by-three matrix with random
entries. The function call

>> A = rand(10,30);

generates a 10-by-30 matrix of elements uniformly distributed between zero and one, and assigns
the result to matrixA. The average value of the matrix elements can be computed by simply writing

>> average = sum(sum(A))/300
average =

0.5059
>>

In the nested function callsum(sum(A)) , the sum of the elements in each matrix column is
computed, and then the sum of the matrix column sums is evaluated. The average value of the
matrix elements corresponds to the sum of matrix element values inA divided by the total number
of matrix elements, 300 in this case.

The functionrandn generates matrices with elements chosen from a normal distribution
with mean 0.0 and variance 1.0.

The mean value and scatter of uniform and normally distributed random numbers may be
adjusted by multiplying the contents ofrand andrandn by suitable linear transformations. For
example, to obtain a 3-by-5 matrix of elements uniformly distributed between -1 and 1, we can
simply write:

>> B = 2*rand(3,5) - ones(3,5)
B =

-0.1650 0.8609 -0.8161 0.4024 -0.4751
0.3735 0.6923 0.3078 0.8206 -0.9051
0.1780 0.0539 -0.1680 0.5244 0.4722

>>

Sequences of random numbers will be generated when the functionsrand andrandn are called
repeatedly. Sequences of random numbers that are repeatable – in other words, the same sequence of

Chapter 2 81

random numbers will be the same each time the MATLAB program is executed – can be generated
by initializing a seed number. The syntax is

>> rand (’seed’, n);
>> randn (’seed’, n);

wheren is the seed number (greater than unity). Further information on initializing sequences of
random numbers in MATLAB can be obtained by typinghelp rand .

82 Engineering Programming in Matlab

2.7 Program Development with M-Files

We have so far assumed in this tutorial
that all MATLAB commands will be typed in
at the keyboard. Practical considerations dic-
tate that this mode of operation is suitable only
for the specification of the smallest problems,
perhaps a handful of MATLAB commands or
less. A much better problem-solving approach
is to use a text editor to write the commands
in an M-file, and then ask MATLAB to read
and execute the commands listed in the M-file.
This section describes two types of M-files.
Script M-files correspond to a main program
in programming languages such as C. Function
M-files correspond to a subprogram or user-

Figure 2.2: Matlab Graphic

written function in programming languages such as C. An M-file can reference other M-files, in-
cluding referencing itself recursively.

User-Defined Code and Software Libraries

Computer programs written in MATLAB are a combination ofuser-defined code– that
is, the computer program code we write ourselves – and collections of external functions located
in software libraries or MATLAB toolboxes. Software library functions are written by computer
vendors, and are automatically bundled with the compiler. Software libraries play a central role in
the development of C programs because the small number of keywords and operators in C is not
enough to solve real engineering and scientific problems in a practical way. What really makes C
useful is its ability to communicate with collections of functions that are external to the user-written
source code. This is where much of the real work in C programs takes place.

The ANSI C standard requires that certain libraries are provided with all implementations
of ANSI C. For example, the standard library contains functions for I/O, manipulation of character
strings, handling of run-time errors, dynamic allocation and deallocation of memory, and func-
tions for C program interaction with the computer’s operating system. Mathematical formulae are
evaluated by linking a C program to the math library. Engineering application programs may also
communicate with graphical user interface, numerical analysis, and/or network communications
libraries.

Generally speaking, if there is a library function that meets your needs, by all means use

Chapter 2 83

it. The judicious use of library functions will simplify the writing of your C programs, shorten the
required development time, and enhance C program portability. Software is said to be portable if it
can, with reasonable effort, be made to execute on computers other than on the one on which it was
originally written.

Program Development Cycle

When you are a novice programmer, the two most important issues you are likely to be
concerned about are learning the syntax of the C language and becoming familiar with the step-by-
step details of planning, writing, compiling, running, testing, and documenting small C programs.
The pathway of C program development is summarized in Figure 2.3. The key steps are as follows:

1. Develop Pseudocode.Pseudocode is a nickname for an English description of ideas that will
eventually be translated into a programming language. Like most engineering design pro-
cesses, development of pseudocode descriptions is inherently iterative. Pseudocode descrip-
tions begin with general high-level statements of the required problem solving procedures and
are successively refined until they look “more or less” like a program. For us, pseudocode is
a description of the program steps that can eventually be written in C.

Beginning the program development cycle with a pseudocode problem description is impor-
tant because it forces us to deal with design issues at an early stage, when corrections and
changes are easy to make. For example, with a pseudocode description of a problem solving
procedure in hand, the correctness of an algorithm can be tested by stepping through it in your
head or on scratch paper. Most experienced programmers will attest to the fact that errors in
logic are the most difficult to find, especially in the latter stages of program development.
Getting programs to compile (syntax, structure, etc.) is the easy part.

2. Edit Program. The pseudocode is translated into a C program by using a text editor for
the creation of source code files containing a description of the problem to be solved. Most
computer systems support a variety of text editors. Because some of them will be much easier
to learn and use than others, it is a good idea to ask your instructor for advice on the best place
to start and for information on basic editor commands to insert and modify text.

All file names in our C programs will consist of a base name with an optional period and
suffix. The first character of the file name must be a letter, possibly followed by more letters
and numbers. C source code files are where the C language description of our engineering
problem descriptions will go and, by convention, they will be stored in files having names
with a .c suffix. Header files contain function declarations and symbolic constants, and act
as an interface between user-defined C code and one or more external software libraries. By
convention, header file names will have a.h suffix. We soon see that object files are generated

84 Engineering Programming in Matlab

Executable

ProgramLinker

Loader /

Input

Object Code

Program
Compiler

Source Code

ProgramWrite

Pseudo-code

Output

Test /

Verification

Document

Program

Program Design Errors

Syntax Errors

Programmer edits source

code file to correct errors

create source code file(s).

Programmer uses editor to
Libraries

Software

Figure 2.3. Program Development Cycle for MATLAB (needs fixing!!!!)

by the compiler and have a.o suffix. The suffix convention is used by compilers to identify
the type of information stored in a file.

3. Compile Program. A C compiler is a computer program that translates high-level problem
descriptions, written in the C language, into equivalent low-level language descriptions that
can be understood by a particular type of computer (i.e., the computer hardware). You should
think of the C compiler as a type of machine that only understands the grammatical rules of
the C programming language. If the compiler does not receive proper input it can only try
to interpret the error, report what is wrong by printing error messages, and exit. If the rules
of the language are satisfied, however, the compiler will generate one or more object files
containing low-level machine language instructions. The linker is a software program that
resolves all cross references among object files, connects the user-written code to relevant
software library modules and, finally, generates a single executable program file. The chain
of “compilation activities” is summarized by the center row of blocks in Figure 2.3.

4. Performance Analysis.Performance analysis consists of an evaluation of the program perfor-
mance with respect to the design specifications. As indicated on the right-hand side of Figure
2.3 most computer programs will receive some form of input from the keyboard, or perhaps
from a file, and generate output to the computer screen, or perhaps to a file. The critical
question to ask at this point is “does the computer program do what it was designed to do?”

Chapter 2 85

5. Debug and Test Program.The first few drafts of a C program nearly always contain errors (or
bugs). You will need to correct (or debug) your program if there are syntax, executional, or
logic errors, as determined in the performance analysis or compilation. Syntax errors are those
encountered when the program is compiled into machine code; if you have typing errors, then
the compiler will not be able to understand what you are doing. Execution errors are found
when the program is run, for example, if the bounds of an array are exceeded or, perhaps, if
division by zero occurs. Logic errors are usually discovered after the program has finished
executing or during execution. If execution does not proceed as expected, then perhaps there
is a flaw in the logic of the program. In each case, symbolic debuggers such asdbx [8] may
be used to interactively run the program and detect errors (see following comment). It may be
faster and easier to go back and reconsider the design of the program. Have you effectively
transferred the design to C, or is there a flaw in the design? Answering these questions first
may lead to a solution faster than learning a whole new bag of tricks with a debugger.

6. Document Code.You should document your source code so that other programmers know what
the source code does and how it may be used. The process of documenting your program
should be integrated into the program development cycle. Some (experienced) programmers
will tell you that they first develop the code and then document it. It is our experience,
however, that with the pressures of life being what they are (everyone is pressed for time),
this strategy of development results in code that works but is poorly or never documented.

In this solution of practical engineering problems, several iterations of Steps 1 through 6 may be
required before a fully developed, correct, working program is obtained. Indeed, the purpose of
the looping constructs in Figure 2.3 is to show that when an error occurs in the language syntax,
program design, and/or program performance, the programmer must return to Steps 1 and 2, make
the necessary adjustments to the program design/source code, and recompile and test the program.

M-File Preparation

UNIX Platforms

In a UNIX environment, a standard text editor can be used to prepare the contents of an M-
file. The M-file should be located in the same directory as the MATLAB program. After the M-file
has been created and saved, the list of commands inside the M-file can be executed by moving to
the MATLAB window and typing the M-file name without the.m extension. To be more precise,
suppose that we create a program file

myfile.m

86 Engineering Programming in Matlab

in the MATLAB language. The commands in this file can be executed by simply typing the com-
mandmyfile at the MATLAB prompt. The MATLAB statements will run like any other MAT-
LAB function. You do not need to compile the program since MATLAB is an interpretative (not
compiled) language.

UNIX commands can be invoked from inside the MATLAB environment by preceding the
command by a! (e.g.,!ls will list the files located in the current working directory).

Macintosh and PC Environments

An M-file can be prepared in a Mac/PC environment by clicking onnew in the file menu.
A new window will appear. After the list of commands has been typed into the file, it can be saved
by clicking onsave as in the edit menu. The file can be executed from the command window by
typing the M-file name without the.M extension. A second pathway in the Macintosh environment
is to click onsave and go in the file menu.

Script M-Files

Suppose that we use our favorite text editor to create a file calledsketch.m , containing

[x y] = meshgrid(-3:.5:3, -3:.5:3);
z = x.ˆ3 + y.ˆ3 + x.ˆ2 - y.ˆ2
surf(x,y,z);

Without getting into too many details on MATLAB graphics at this point, the first two lines generate
a rectangular grid ofx,y,z points in a format suitable for a three-dimensional MATLAB plot. The
function callsurf(x,y,z) asks MATLAB to generate a surface plot. The simple command

>> sketch

will force MATLAB to open the filesketch.m and systematically execute the sequence of com-
mands within. The result, shown at the top of Section 13.6, has been captured from MATLAB
graphics on a UNIX workstation, and will be the same as if you had entered the three lines of the
file at the prompt.

Function M-Files

Function files provide extensibility to MATLAB by allowing you to create new problem-
specific functions having the same status as other built-in MATLAB functions. Unlike some other
traditional programming languages, each function file contains one function. Functions are like

Chapter 2 87

scripts, but for the purposes of enhancing computational speed, are compiled into a low-level byte-
code when called for the first time.

Square Root Calculation

In this section we develop a MATLAB function file calledsqroot.m to compute the
square root of a positive numberNvia the recursive relationship

xn+1 =
1

2
·
[
xn +

N

xn

]
. (2.13)

A good initial estimate of the square root isxo =N/2. The program uses the criterion

|xn+1 − xn
xn

| ≤ ε (2.14)

for a test on convergence, whereε is a very small number. In our implementation,ε is taken aseps ,
the floating point precision for the computer being used (see Table 2.1).

Computer Program 2.1 : Square Root Calculation

function sqroot(x)
% SQROOT Compute square root by Newton’s method

% Check that value of function argument is positive.

if x <= 0,
error(’In sqroot() : argument x must be positive’);

end;

% Initial guess.

xstart = x/2;

% Iteration loop to compute square root.

for i = 1:100
xnew = (xstart + x/xstart)/2; % new estimate of square root.
disp(xnew); % print xnew.
if abs(xnew - xstart)/xnew < eps, % check convergence of iterations.

break, % iterations.

88 Engineering Programming in Matlab

end;
xstart = xnew; % update estimate of square root.

end

When MATLAB executes a function M-file for the first time, it will open the appropriate text M-file
and compile the function into a low-level representation that will be stored within MATLAB. For
those cases where an M-file function references other M-file functions, they will also be compiled
and placed in MATLAB’s memory.

The command sequence:

>> format long
>> format compact
>> sqroot(20)

loads the contents ofsqroot.m into MATLAB memory and then computes the square root of 20
by iteration

>> sqroot(20)
6

4.66666666666667
4.47619047619048
4.47213779128673
4.47213595499996
4.47213595499958
4.47213595499958

>>

A function M-file will terminate its execution when either areturn statement is encountered or,
as is the case in this example, an end-of-file (EOF) is reached.

The first line of Program 2.1 contains declarations for the function name,sqroot , and its
input argument(s). Without this line the file would simply be a script file. MATLAB requires that
M-file functions be stored in files having the same name (i.e., the functionsqroot must be stored
in an M-file calledsqroot.m).

Your MATLAB programs should contain lots of comments telling the reader in plain En-
glish what is occurring. Some day that reader will be you, and you will wonder what you did.
Comment lines up to the first noncomment line in a function M-file are the help text returned when
you request online help. For Program 2.1, this means

>> help sqroot

Chapter 2 89

SQROOT Compute square root by Newton’s method
>>

We also urge you to use the indented style that you have seen in the previous programs. It makes
the programs easier to read, the program syntax easier to check, and forces you to think in terms of
building your programs in blocks.

Matrices and variables in a function file have scope that is local by default. Thesqroot
function is simple enough that all the relevant details can be handled withx , xstart , andxnew.
The statementdisp(xnew) displays the matrixxnew as text, without printing the matrix
name.

Error messages play an important role in nearly all computer programs since they help you
debug future programs. Because the algorithm in Program 2.1 can only compute the square root of
positive floating point numbers, we need to check thatsqroot() is called with positive argument.
The block of MATLAB code

if x <= 0,
error(’In sqroot() : argument x must be positive’);

end;

prints an error message when argumentx is negative. For example, the script of code

>> sqroot(-4)
Error using ==> sqroot
In sqroot() : argument x must be positive
>>

tries to computer the square root of -4. The functionerror() displays the message enclosed
within single quotes and causes an exit from the M-file to the keyboard.

Variations on Standard Use.It is important to bear in mind that our implementation ofsqroot()
is very minimal. As already demonstrated, function calls of the typesqroot(20) are possible.
However, we want the ability to integrate function calls into expressions involving matrices. This
can be done by changing the function declaration to

function [y] = sqroot(x)

Now expressions of the type

90 Engineering Programming in Matlab

>> x = 3.5 * sqroot (10000)
x =

350
>>

are possible.

Statistics of Experimental Data

In this example, we show how the mean and standard deviation of an array of experimental
data can be computed inside a single MATLAB function. Suppose that

x = [x1, x2, x3, · · · , xN]T (2.15)

is a column vector of data points collected in an experiment. The mean value of the data points is
given by

µx =
1

N

[
N∑
i=1

xi

]
(2.16)

and the standard deviation by

σx =

[
N∑
i=1

[xi − µx]2

N

]1/2

=

[
1

N

N∑
i=1

[
x2
i

]
− µx2

]1/2

. (2.17)

For the case where an experiment generates a two-dimensional array of experimental data, Equa-
tions (2.16) and (2.17) can be applied to each column in the two-dimensional matrix.

Computer Program 2.2 : Statistics of Experimental Data

function [mean, stdev] = stat(x)

% STAT Mean and standard deviation
% For a vector x, stat(x) returns the
% mean and standard deviation of x.
% For a matrix x, stat(x) returns two row vectors containing,

Chapter 2 91

% respectively, the mean and standard deviation of each column.

[m n] = size(x);

if m == 1
m = n; % handle case of a row vector

end

mean = sum(x)/m;
stdev = sqrt(sum(x.ˆ 2)/m - mean.ˆ2);

The first line of Program 2.2 tells MATLAB that functionstat will accept an array argument, and
return a one-by-two matrix containing the mean and standard deviation of the experimental data
points. Notice thatmeanandstdev are both computed inside the function body.

As indicated in the documentation for Program 2.2, whenx is a row or column vector,stat(x)
returns the mean and standard deviation ofx . For a general matrixx , stat(x) returns two row
vectors containing, respectively, the mean and standard deviation of each column. With Program
2.2 placed in the M-filestat.m , the MATLAB commands

>> y = [1:10];
>> [ym, yd] = stat(y)

ym =
5.5000

yd =
2.8723

>>

compute the mean and standard deviation of the integers 1 through 10. The mean and standard
deviation of the entries in the vectory are assigned toymandyd , respectively.

Variations on Standard Use. Two variations on the standard use ofstat.m are possible. First,
single assignments can also be made with a function having multiple output arguments. For exam-
ple,

>> xm = stat(x)

(no brackets needed aroundxm) will assign the mean ofx to xm. In this case, standard deviation
of x will be lost. Second, whenx is a two-dimensional matrix,stat(x) will return the matrices
containing mean and standard deviation of each column inx . For example, when

92 Engineering Programming in Matlab

>> x = [1 2; 3 4; 5 6];

stat(x) gives

>> [xm, xstd] = stat(x);
>> xm
xm =

3 4
>> xstd
xstd =

1.6330 1.6330
>>

Programming Tip. Generally speaking, function M-files are more difficult to debug than script
M-files because you cannot use MATLAB to print the value of variables inside the function. We
therefore suggest that you develop function files first as script files and then once the script file
works properly, encapsulate the script inside a function declaration with appropriate arguments and
comment statements.

Handling Name Conflicts

Suppose that we do not knowsum is a built-in function and type the MATLAB statement

>> x = 1;
>> y = 2;
>> z = 3;
>> sum = x + y + z;

with the intent of usingsum to represent the sum of values stored by the variablesx , y , andz .
The namesum now represents a variable and MATLAB’s built-insum function is hidden (you can
check this with the commandwho).

When a name is typed at the prompt or used in an arithmetic expression, the MATLAB
interpreter evaluates the name by systematically walking through four steps

1. It looks to see if the name is a variable.

2. It looks to see if the name is a built-in function.

3. It looks in the current directory to see if the name matches a script file (e.g.,sum.m).

4. It looks in the MATLAB search path for a script file matching the name (e.g.,sum.m).

Clearing the variablesum (i.e., by typingclear sum) reactivates the built-in functionsum.

Chapter 2 93

2.8 Engineering Applications

Now that we are familiar with MATLAB’s matrix and M-file capabilities, we work step by
step through the design and implementation of four programs. They are

1. A MATLAB program that computes and plots the relationship between Fahrenheit and Celsius
temperature.

2. A MATLAB program that computes and plots the time-history response (i.e., “displacement
versus time” and “velocity versus time”) of an undamped single degree of freedom (SDOF)
oscillator.

3. A MATLAB program that will prompt a user for the coefficients in a quadratic equation, and
then compute and print the roots.

4. A MATLAB program that reads experimental data from a data file, and then computes and
plots a histogram of the data. The mean and standard deviation of the experimental data are
computed withstat.m (see Section 2.7).

A key issue in the design of almost every MATLAB program is the problem of finding a good bal-
ance among the use of user-defined code and built-in MATLAB library functions. The advantages
of user-defined functions are that they enable the development of customized problem-solving pro-
cedures. However, writing and testing user-defined code can be a very time-consuming process.
Library functions have the benefit of enabling reuse of code that has already been written and thor-
oughly tested. A judicious use of library functions can result in significant reductions in the time
and effort needed to write and test MATLAB programs.

Obtaining a good balance in the use of user-defined code and library functions requires
experience and, to some extent, is an art. This means that novice MATLAB programmers must
place a priority on becoming familiar with the availability and purposes of library functions.

Temperature Conversion Program

Problem Statement.The relationship between temperature measured in Fahrenheit (Tf) and tem-
perature Celsius (Tc) is given by the equation

Tf =
9

5
Tc + 32 (2.18)

Write an M-file that computes and plots the temperature conversion relationship for the range -50
through 100 degrees Celsius.

94 Engineering Programming in Matlab

−50 0 50 100
−100

−50

0

50

100

150

200

250

Temperature (Celsius)

T
em

pe
ra

tu
re

 (
F

ah
re

nh
ei

t)

Fahrenheit versus Celsius Temperature Conversion

Figure 2.4. Fahrenheit Versus Celsius

In addition to having a suitable title, the vertical and horizontal axes of your graph should be prop-
erly labeled. See, for example, Figure 2.4.

Pseudocode.We begin our implementation with the observation that Equation (2.18) is linear. It
follows that the temperature conversion relationship can be plotted by simply drawing a straight
line between the (Tc, Tf) coordinates evaluated atTc = -50 andTc = 100. The pseudocode for this
problem is

allocate two-by-one arrays to hold the Celsius and
Fahrenheit temperatures.

set the Celsius array values to -50 and 100 degrees.
compute the Fahrenheit temperatures.

plot the array values.
label the horizontal/vertical axes.

Chapter 2 95

add a plot title.

Program Source Code.Here is the program source code.

Computer Program 2.3 : Temperature Conversion Program

% ==
% temperature.m -- Compute and plot a graph of Celsius versus Fahrenheit
% for the range -50 through 100 degrees Celsius.
%
% Written By : Mark Austin March 1997
% ==

% Allocate arrays for Celsius and Fahrenheit temperatures.

tempC = zeros(2,1);
tempF = zeros(2,1);

% Compute temperatures at graph end-points.

tempC(1) = -50; tempF(1) = 9*tempC(1)/5 + 32;
tempC(2) = 100; tempF(2) = 9*tempC(2)/5 + 32;

% Plot and label the graph

plot(tempC, tempF);
grid;
xlabel(’Temperature (Celsius)’);
ylabel(’Temperature (Fahrenheit)’);
title(’Fahrenheit versus Celsius Temperature Conversion’);

Running the Program. As indicated in the block of comment statements at the top of the source
code, Program 2.3 is stored in the M-filetemperature.m . The command

>> temperature

executes the script file and generates Figure 2.4.

Program Architecture. Table 2.8 shows how key tasks in the problem statement have been mapped
to user-defined MATLAB code and function calls in MATLAB.

96 Engineering Programming in Matlab

===
Tasks * User-defined code MATLAB library
===
Define arrays tempC and tempF. * In temperature.m zeros()

*
Initialize tempC. * In temperature.m
Compute tempF. * In temperature.m

*
Plot tempF versus tempC. * In temperature.m plot()
Add a grid to the plot. * grid
Label the horizontal axis. * xlabel()
Label the vertical axis. * ylabel()
Add a plot title. * title()
===

Table 2.8.Mapping of Tasks to MATLAB Code

As already mentioned, all the user-defined MATLAB code is located in the script M-file
temperature.m . A variety of built-in MATLAB functions are employed for the matrix allocation
and to generate the graph.

Analysis of the MATLAB Code. The Celsius and Fahrenheit temperature values are stored in the
arraystempC and tempF , respectively. Once arraytempC has been initialized, the contents of
tempF are evaluated via Equation (2.18). The command

plot(tempC, tempF);

creates a linear plot of arraytempF versustempC. The contents oftempC are the data points along
the horizontal axis. The data points along the vertical axis are stored intempF . The commandgrid
adds a grid to the plot. Labels along the horizontal and vertical axes, and a plot title, are added to
the figure with the three commands

xlabel(’Temperature (Celsius)’);
ylabel(’Temperature (Fahrenheit)’);
title(’Fahrenheit versus Celsius Temperature Conversion’);

Free Vibration Response of Undamped Single Degree of Freedom (SDOF) System

Problem Statement.The free vibration response of an undamped single degree of freedom (SDOF)
oscillator is given by

y(t) = y(0) cos(wt) +
v(0)

w
sin(wt) (2.19)

Chapter 2 97

wheret is time (seconds), andm andk and the mass and stiffness of the system, respectively.y(t)
andv(t) are the displacement and velocity of the system at timet. By definition,w =

√
(k/m) is

the circular natural frequency of the system.

Write an M-file that will compute and plot the “displacement versus time” (i.e., y(t) versus t) and
“velocity versus time” (i.e., v(t) versus t) for the time interval 0 through 10 seconds when mass,m =
1 and stiffness,k = 10. The initial displacement and velocity are y(0) = 1 and v(0) = 10, respectively.
To ensure that your plot will be reasonably smooth, choose an increment in your displacement and
velocity calculations that is no larger than 1/20th of the system periodT = 2π

√
(m/k).

Pseudocode.We begin our analysis by noting thatv(t) is simply the derivative of the displacement
with respect to time. Hence, in mathematical terms

v(t) =
dy(t)

dt
= −y(0)w sin(wt) + v(0) cos(wt) (2.20)

Since neithery(t) nor v(t) are linear functions, we implement our solution in three stages. First, a
two-dimensional array will be allocated for the system response storage. Components of the system
response (i.e.,y(t) andv(t)) will then be computed and stored in the array columns. Finally, the
array contents will be plotted. The pseudocode for this problem is

define number of points, "npoints", for plotting.
setup array response (npoints,3) for storing t, y(t), and v(t).

column 1 will store the time values
column 2 will store the system displacement
column 3 will store the system velocity

define problem parameters;
sdof mass "m"
sdof stiffness "stiff"
time increment ’dt’ for plotting purposes.
initial displacement "x0"
initial velocity "v0"

for i = 1 to npoints
column 1 of array = time t = (i-1)*dt;
column 2 of array = y(t)
column 3 of array = v(t)

end loop

plot y(t) versus t for t = 0 to 10 seconds.
hold the plot.
plot v(t) versus t for t = 0 to 10 seconds.

98 Engineering Programming in Matlab

add a grid to the plot.
label the horizontal/vertical axes.
add a plot title.

Notice how certain statements have been indented to show the structure of the eventual program.
Once preliminary ideas are written this way the steps can be refined until the pseudocode is very
close to the target language.

The fidelity of the system response evaluation is controlled by the variablenpoints . In ad-
dition to using several arrays for storage and plotting purposes, the pseudocode employs a looping
construct for the systematic evaluation of the system response at regular intervals betweent = 0 and
t = 10 seconds.

Program Source Code.Here is the program source code.

Computer Program 2.4 : Free Vibration Response of Undamped SDOF System

% ===
% sdof.m -- Compute dynamic response of sdof system.
%
% Written By : Mark Austin March 1997
% ===

% Setup array for storing and plotting system response

nopoints = 501;
response = zeros(nopoints,3);

% Problem parameters and initial conditions

mass = 1;
stiff = 10;
w = sqrt(stiff/mass);
dt = 0.02;

displ0 = 1;
velocity0 = 10;

% Compute displacement and velocity time history response

for i = 1 : nopoints
time = (i-1)*dt;
response(i,1) = time;

Chapter 2 99

response(i,2) = displ0*cos(w*time) + velocity0/w*sin(w*time);
response(i,3) = -displ0*w*sin(w*time) + velocity0*cos(w*time);

end

% Plot displacement versus time

plot(response(:,1), response(:,2));
hold;

% Plot velocity versus time

plot(response(:,1), response(:,3));

grid;
xlabel(’Time (seconds)’);
ylabel(’Displacement (m) and Velocity (m/sec)’);
title(’Time-History Response for SDOF Oscillator’);

Running the Program. Assume Program 2.4 is stored in the script M-filesdof.m . The command

>> sdof

generates the curves shown in Figure 2.5.

How do we know that these graphs are correct? From a mathematical viewpoint, we expect that
the natural period of this system will be

T = 2*pi*sqrt(m/k) = 6.282/sqrt(10) = 2.0 seconds,

A quick visual inspection of Figure 2.5 reveals that bothy(t) andv(t) oscillate with a natural period
of 2 seconds (the time-step increment, dt = 0.02 sec easily satisfies the stated criteria for a smooth
graph). The second point to notice is that at t = 0 seconds, the displacement and velocity graphs both
match the stated initial conditions. Moreover, you should observe that because the initial velocity is
greater than zero, we expect they(t) curve to initially increase. It does. A final point to note is the
relationship between the displacement and velocity. When the oscillator displacement is at either its
maximum or minimum value, the mass will be at rest for a short time. In mathematical terms, peak
values in the displacement curve correspond to zero values in the velocity curve.

Program Architecture. The left- and right-hand sides of Table 2.9 show how key tasks in the
SDOF problem statement have been mapped to user-defined MATLAB code and calls to MATLAB
functions. Once again, because this problem is relatively straightforward, all the user-defined source
code is located within one M-file,sdof.m .

100 Engineering Programming in Matlab

0 1 2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

Time (seconds)

D
is

pl
ac

em
en

t (
m

)
an

d
V

el
oc

ity
 (

m
/s

ec
)

Time−History Response for SDOF Oscillator

Figure 2.5. Time-history response of SDOF oscillator

Built-in MATLAB functions are used for the response array allocation, thesin() andcos()
trigonometric calculations, and the square root calculation. Of course, we could have substituted
sqrt() in the MATLAB library with the sqroot() function from Program 2.1. Both imple-
mentations give the same numerical result. However, use of thesqroot() function requires that
MATLAB automatically locate and compilesqroot.m after it has been referenced fromsdof.m .

Analysis of the MATLAB Code. The variablesdispl0 andvelocity0 store the SDOF dis-
placement and velocity at time, t = 0. The looping construct

for i = 1 : nopoints
time = (i-1)*dt;
response(i,1) = time;
response(i,2) = displ0*cos(w*time) + velocity0/w*sin(w*time);
response(i,3) = -displ0*w*sin(w*time) + velocity0*cos(w*time);

end

Chapter 2 101

==
Tasks * User-defined code MATLAB library
==
Setup array response (npoints,3). * In sdof.m zeros()
Compute circular natural freq w. * sqrt()

*
Compute y(t) and v(t). * In sdof.m sin()

* cos()
*

Plot y(t) and v(t) versus t. * In sdof.m plot()
Hold the graphics. * hold
Label the horizontal axis. * xlabel()
Label the vertical axis. * ylabel()
Add a grid to the plot. * grid
Add a plot title. * title()
==

Table 2.9.Mapping of Tasks to MATLAB Code

systematically walks along the rows of theresponse array and evaluates the timet, displacement
y(t), and velocityv(t) for columns one through three ofresponse . The execution speed will be
rather slow because the looping construct is interpreted. The command

plot(response(:,1), response(:,2));

draws the contents of column two in arrayresponse versus column one. In other words, a plot of
y(t) versust is drawn. The graph ofv(t) versust is generated with

plot(response(:,1), response(:,3));

A far more efficient way of computing and storing the system response is with the commands

time = 0.0:0.02:10;
displ = displ0*cos(w*time) + velocity0/w*sin(w*time);
velocity = -displ0*w*sin(w*time) + velocity0*cos(w*time);

The first statement generates a (1x501) matrix calledtime having the element values 0, 0.02, 0.04
.... 10.0. The dimensions of matricesdispl andvelocity are inferred from the dimensions of
time with the values of the matrix elements given by the evaluation of formulae on the right-hand
side of the assignment statements. The required plots can be generated with

plot(time, displ);
hold;
plot(time, velocity);

102 Engineering Programming in Matlab

The first statement creates a plot of vectordispl versus vectortime . Thehold command places
a hold on the current plot and all axis properties so that subsequent graphing commands may be
added to the existing graph. The third statement creates the plot ofv(t) versust.

Of course, the benefits of “fast evaluation of the SDOF formulae” and “convenient storage of
the results in array response” can be combined. The block of code

time = [0:0.02:10]’;
response(:,[1]) = time;
response(:,[2]) = displ0*cos(w*time) + velocity0/w*sin(w*time);
response(:,[3]) = -displ0*w*sin(w*time) + velocity0*cos(w*time);

defines a (501x1) matrix calledtime , and then uses the second technique to compute (501x1)
matrices ofx(t) andv(t). The results of these calculations are assigned to the columns of response
with submatrix notation

response(:,[k])

for the kth column of response.

Quadratic Equation Solver

Problem Statement.It is well known that the roots of a quadratic equation are given by solutions
to

p(x) = ax2 + bx + c = 0 (2.21)

A number of solution cases exist. For example, when botha = 0 andb = 0, we consider the equation
to beextremely degenerate and leave it at that. Whena = 0 andb 6= 0, we consider the case
degenerate ; in this situation, the equations reduce top(x) = bx + c = 0, which has one root.
Otherwise, we have

Roots =

[
−b±

√
b2 − 4ac

2a

]
(2.22)

The termb2 − 4ac is known as the discriminant of the quadratic equation.

Write a program that will interactively prompt a user for the equation coefficientsa, b, andc at
the keyboard, and then compute and print its roots along with an appropriate message for the type

Chapter 2 103

of solution. Appropriate messages areextremely degenerate , degenerate , two real
roots , andtwo complex roots . For example, ifa = 1,b = 2, andc = 3, the computer program
should print

Two complex roots : Root 1 = −1.0000 + 1.414214 i (2.23)

Root 2 = −1.0000 − 1.414214 i (2.24)

Pseudocode.Because this problem contains numerous details and types of solutions, we refine our
pseudocode over several iterations of development.

Iteration 1. A first draft pseudocode version for this task might look similar to the following:

announce the quadratic equation solving program.
request a, b, and c from the user.

calculate the discriminant.
if the discriminant is >= 0 then the roots are real:

compute and print real roots x1 and x2
else the roots are complex

the real part is -b/2a
the imaginary part is the square root of (the
negative of the discriminant) / 2a

print the results.

Iteration 2. Using successive refinement we can develop this pseudocode further into

print ’quadratic equation solving program’
print ’Enter the coefficients a, b, and c’
read the coefficients

discriminant = bˆ2 - 4ac
if the discriminant is >= 0 then equation has real roots x1, x2.

x1 = -b/2a - sqrt(discriminant) / 2a
x2 = -b/2a + sqrt(discriminant) / 2a

else, the discriminant is < 0, and roots are complex numbers
(re, im) with
re = -b/2a
im = sqrt(- discriminant) / 2a
print ’Complex roots’

Iteration 3. Iteration 2 still does not look like MATLAB code so at least one more stage of devel-
opment is desirable

104 Engineering Programming in Matlab

print ’quadratic equation solving program’
print ’Enter the coefficients a, b, and c’

input coefficients a, b, c
if(a is equal to zero)

compute roots to determinate equations
exit

discriminant = bˆ2 - 4ac
if (discriminant >= 0.0) % The roots are real

root1 = -b/2a - sqrt(discriminant)/2a
root2 = -b/2a + sqrt(discriminant)/2a
print ’The first root is ’ root1
print ’The second root is ’ root2

else % The roots are complex
re = -b/2a
im = sqrt(-discriminant)/2a
print ’The first complex root is’, re, im
print ’The second complex root is’, re, -im

This version of pseudocode is very close to MATLAB, and we are ready to begin writing the MAT-
LAB code for our quadratic equation solver.

Program Source Code.The source code for Program 2.5 is contained in two files, a script M-file
calledquadratic.m and a function M-file calleddiscriminant.m . Here are the details.

Computer Program 2.5 : Compute Roots of Quadratic Equation

% ==
% quadratic.m -- Coefficients are read in from keyboard
% Roots of Quadratic are printed to screen.
%
% Note : Naive implementation of quadratic equation solver. This algorithm
% does not take into account possible loss of accuracy when two
% floating point numbers of almost equal size are subtracted.
%
% Written By : Mark Austin July 1997
% ==

% Print Welcome Message

disp(’Welcome to the Quadratic Equation Solver (Version 1)’);
disp(’==’);

Chapter 2 105

% Prompt User for Coefficients of Quadratic Equation

disp(’Please enter coefficients for equation a.xˆ2 + b.x + c’);
A = input (’Enter coefficient a : ’);
B = input (’Enter coefficient b : ’);
C = input (’Enter coefficient c : ’);

% Print Quadratic Equation to Screen

fprintf(’Equation you have entered is : %g.xˆ2 + %g.x + %g\n’, ...
A, B, C);

% Compute Roots of simplified equations : A equals zero

RootsFound = 0;
if A == 0 & B == 0,

fprintf(’Cannot solve extremely degenerate equation’);
fprintf(’%14.8g = 0.0\n’, C);
RootsFound = 1;

end;

if A == 0 & B ˜= 0 & RootsFound == 0,
Root1 = - C/B;
fprintf(’Degenerate root : Root = %14.8g\n’, Root1);
RootsFound = 1;

end;

% Compute Roots of Quadratic Equation : A not equal to zero

if RootsFound == 0,
Discriminant = discriminant(A,B,C); % Compute discriminant of

% quadratic equation.
if Discriminant >= 0, % Case for two real roots

Root1 = -B/2.0/A - sqrt(Discriminant)/2.0/A;
Root2 = -B/2.0/A + sqrt(Discriminant)/2.0/A;

fprintf(’Two real roots : Root1 = %14.8g\n’, Root1);
fprintf(’ : Root2 = %14.8g\n’, Root2);

else % Case for complex roots

fprintf(’Two complex roots : Root1 = %14.8g + %14.8g i\n’, ...
-B/2.0/A, sqrt(-Discriminant)/2.0/A);

fprintf(’ : Root2 = %14.8g + %14.8g i\n’,
-B/2.0/A, -sqrt(-Discriminant)/2.0/A);

end;
end;

106 Engineering Programming in Matlab

function [discrim] = discriminant(A, B, C)

% DISCRIMINANT : Compute discriminant in quadratic equation.
%

discrim = B*B - 4*A*C;

Running the Program. The following script of code

>> quadratic
Welcome to the Quadratic Equation Solver (Version 1)
==
Please enter coefficients for equation a.xˆ2 + b.x + c

Enter coefficient a : 1.2

Enter coefficient b : 3.4

Enter coefficient c : 5.6
Equation you have entered is : 1.2.xˆ2 + 3.4.x + 5.6
Two complex roots : Root1 = -1.4166667 + 1.6308655 i

: Root2 = -1.4166667 + -1.6308655 i
>>

shows a typical session of I/O for Program 2.5. You should verify that this solution is correct by
substitutinga = 1.2,b = 3.4, andc = 5.6 into Equation (2.22).

Although this example does not demonstrate it, a key limitation of this program is the absence
of checking for loss of numerical accuracy that occurs when two floating point numbers of almost
equal size are subtracted. Situations of this type arise, for example, whena = 1.0,b = 1000000.0,
andc = 1.0. An algorithm for overcoming this problem is explained in Problem??of the C tutorial.

Program Architecture. Table 2.10 shows how key tasks in the quadratic equation solution proce-
dure have been mapped to user-defined MATLAB code and MATLAB function calls.

Other than than the discriminant computation indiscriminant.m , the heart of our quadratic
equation solver is contained inquadratic.m . When MATLAB executesquadratic.m for
the first time and encounters the reference to a functiondiscriminant , the function M-file
discriminant.m will be located and compiled into MATLAB’s memory.

Chapter 2 107

==
Tasks * User-defined Code MATLAB Library
==
Announce quadratic program. * In quadratic.m disp()
Read equation coefficients. * In quadratic.m input()

*
Compute discriminant. * In discriminant.m
Square root computation. * In quadratic.m sqrt()
Solve quadratic equation. * In quadratic.m
Print roots of quadratic equation. * fprintf()

*
==

Table 2.10.Mapping of Tasks to MATLAB Code

The MATLAB functiondisp() displays messages enclosed within single quotes.fprintf()
displays messages containing formatted output. The functioninput() prompts a user for key-
board input (there is no point in reinventing the wheel). Finally, we employ the MATLAB function
sqrt() for the square root calculation in Equation (2.22).

Analysis of the MATLAB Code. The script M-file,quadratic.m , contains the commands
needed to compute and print the roots of the quadratic equation. The function M-file,discriminant.m ,
contains the function

function [discrim] = discriminant(A, B, C)

accepting three matrix arguments, and returning a matrix

discrim = B*B - 4*A*C;

containing the equation discriminant. We implicitly assume in this function declaration thatA, B,
andCwill be one-by-one matrices. The execution ofdiscriminant is terminated by an EOF.

Statistical Analysis of Experimental Data

Problem Statement.Suppose that the concentration of spores of pollen per square centimeter are
measured over a 15-day period and stored in a data fileexpt.dat .

1 12
2 35
3 80
4 120

108 Engineering Programming in Matlab

5 280
6 290
7 360
8 290
9 315

10 280
11 270
12 190
13 90
14 85
15 66

The first and second columns ofexpt.dat store the “day of the experiment” and the “measured
pollen count,” respectively.

Write a MATLAB program that will read the contents of the data file into an array and create
and label a two-dimensional bar plot showing the “pollen count” versus “day.” The program should
then compute the mean and standard deviation of the pollen count, and plot and label dashed lines
for the mean pollen count and the mean pollen count± one standard deviation.

Pseudocode.We begin our analysis by noting that the mean and standard deviation of the experi-
mental data can be computed by the functionstat() in Program 2.2. Hence, the pseudocode for
this problem is

read the contents of file expt.dat into the array expt.

draw and label the bar chart.

call the function stat() to compute the mean and standard
deviation of the experimental data.

construct a working array of coordinate points for plotting the
dashed lines -- horizontal lines are required for:

mean value - 1 standard deviation.
mean value alone.
mean value + 1 standard deviation.

Program Source Code.Here is the program source code.

Computer Program 2.6 : Statistical Analysis of Experimental Data

Chapter 2 109

% ==
% expt.m -- Statistical analysis of experimental data.
%
% Written By : Mark Austin July 1997
% ==

% Store experimental results in array

load expt.dat

% Generate bar plot of experimental results

bar(expt(:,1), expt(:,2),’b’)
xlabel(’Day of Expt’);
ylabel(’Pollen Count’);

% Compute terms from experimental results.

[xm, xd] = stat(expt(:,2))

% Create and display mean value of pollen count

mean_minus = xm(1,1) - xd(1,1);
mean_plus = xm(1,1) + xd(1,1);

data = [1, xm(1,1), mean_minus, mean_plus;
15, xm(1,1), mean_minus, mean_plus];

hold;
plot (data(:,1), data(:,2), ’b’);
plot (data(:,1), data(:,3), ’b:’);
plot (data(:,1), data(:,4), ’b:’);

text(1, xm(1,1) + 10,’Mean Pollen Count’);
text(1,mean_minus + 10,’Mean - Std’);
text(1, mean_plus + 10,’Mean + Std’);

Running the Program. The script of code

>> format compact
>> expt

xm =
184.2000

xd =
114.2309

>>

110 Engineering Programming in Matlab

shows the command needed to run Program 2.6 and the textual output that is generated.

Figure 2.6. Pollen count versus day of experiment.

Figure 2.6 shows the bar chart of pollen count measurements and mean/standard deviation statis-
tics. Solid- and dashed-line summaries of the mean data value and the mean value± one standard
deviation are then superimposed on the bar chart.

Chapter 2 111

Program Architecture. Table 2.11 shows how tasks in the problem statement have been mapped
to user-defined MATLAB code and calls to built-in MATLAB functions.

==
Tasks * User-defined code MATLAB library
==

*
File holding the experimental data. * expt.dat

*
==

*
Read the file expt.dat into an * In expt.m load
array "expt". *

*
Draw the bar chart. * In expt.m bar()
Label the horizontal axis. * xlabel()
Label the vertical axis. * ylabel()

*
Compute the mean and std of * In stat.m
the experimental data. *

*
Hold the graphics. * In expt.m hold
Draw the dashed horizontal lines. * plot()
Label the dashed lines. * text()
==

Table 2.11.Mapping of Tasks to MATLAB Code

After the script M-fileexpt.m has loaded the contents ofexpt.dat into an arrayexpt con-
taining two columns and created a bar chart of the data, the function M-filestat.m is called to
compute the mean and standard deviation of the experimental data.

Analysis of the MATLAB Code. The command

load expt.dat;

loads the content of data fileexpt.dat into the arrayexpt . Then the command

[xm, xd] = stat(expt(:,2))

calls the user-defined functionstat defined instat.m to compute the mean and standard de-
viation of data values stored in the second column ofexpt . The mean and standard deviation

112 Engineering Programming in Matlab

are represented byxm andxd , both one-by-one matrices. A two-by-four array,data , holds the
coordinate values of the solid- and dashed-line segments for plotting purposes.

Otherwise, Program 2.6 relies on a variety of function calls to the MATLAB graphics
library to draw and label the bar chart. A detail description of these functions and their capabilities
are found in Chapter 14.

Further Information

1. The MATLAB program comes with a lot of M-file examples. To find their location on your
computer, type the MATLAB commandpath . This will lead you to some really nifty demos.

2.9 Review Questions

1. What does thehelpdesk command do?

2. What is the maximum array size supported by the student edition of MATLAB Version 5.

3. MATLAB output can be rather lengthy. What is an easy way of shortening the length of the
output?

4. What is the purpose of theeps constant?

5. What does theinput function do?

6. Briefly explain how “precedence of arithmetic operators” works in MATLAB.

7. Explain step by step how the arithmetic expression

>> 1/2*(2 + 3*4ˆ2)

is evaluated in MATLAB.

8. Consider the script of code

>> ix = 1;
>> ij = 2*ix;
>> ik = 2*(ix==1) + (3*ij ˜= 6);

What is the value ofik ?

9. By default, MATLAB prints floating point numbers to four decimal places of accuracy. How
would you adjust this option?

10. What are the three ways of defining a matrix in MATLAB?

Chapter 2 113

11. What is the output generated by the MATLAB commands?

>> A = [1 2; 3 4];
>> B = [A 2*A]

12. What is the output generated by the sequence of commands?

>> x = [1, 2, 3; 4, 5, 6];
>> sin(2*x);

13. What does the command

>> x = -10.0: 0.2: 10.0

do?

14. What is the output generated by the sequence of commands?

>> x = [-pi : pi/2 : pi];
>> sin(x).ˆ2 + cos(x).ˆ2

15. If A is a(m× n) matrix andB is a(r× p) matrix, what restrictions must exist onm, r, n, and
p for the matrix sumC= A + B to be defined?

16. If A is a(m× n) matrix andB is a(r× p) matrix, what restrictions must exist onm, r, n, and
p for the matrix productC= A · B to be defined?

17. Suppose that

>> y = [1 2 3 ; 4 5 6; 7 8 9];

How would you use thefor looping construct to compute the sum of the elements in matrix
y?

How would you use thesum() function to sum the matrix elements iny (a one line answer
will suffice)?

18. Why does the fragment of code

114 Engineering Programming in Matlab

>> y = zeros(1:1000);
>> for i = 1:1000

y(i) = 2*sin(i);
end

execute slower than

>> y = 2*sin([1:1000]);

19. Suppose that a matrixdata contains

data = [1.5 1.0 3.0;
6.5 -1.2 12.4;
2.5 -1.0 3.8;
2.4 8.1 5.8];

How would you use MATLAB to compute the maximum matrix element value in each row
and column of matrixdata ?

Chapter 2 115

2.10 Programming Exercises

2.1 Beginner. Figure 2.10 shows a massm resting on a frictionless surface. The mass is con-
nected to two walls by springs having stiffnessesk1 andk2.

k_1 k_2

m

Figure 2.7. Mass-spring system

The natural period of the mass-spring system is:

T = 2π

√
m

k1 + k2
(2.25)

Write a MATLAB program that will prompt a user form, k1, andk2, check that the supplied
values are all greater than zero, and then compute and print the natural period of the mass-
spring system.

2.2 Beginner. Suppose that during squally conditions, regular one second wind gusts produce a
forward thrust on a yacht sail corresponding to

F (t) =

{
4 + 15 · t− 135 · t3 0.0 ≤ t ≤ 0.3,

(731 − 171t) /140 0.3 < t ≤ 1.0.
(2.26)

F(t) has units kN. Write a MATLAB program that computes and printsF (t) for 0 ≤ t ≤ 3
seconds. The program output should look something like the following:

Time Thrust
(seconds) (kN)
=========================

116 Engineering Programming in Matlab

0.00 4.00
0.25 5.64
0.50 4.61
0.75 4.31
1.00 4.00
1.25 5.64
1.50 4.61
1.75 4.31
2.00 4.00
2.25 5.64
2.50 4.61
2.75 4.31
3.00 4.00

2.3 Beginner. The adjacent figure shows a triangle defined by the vertex coordinates(x1, y1),
(x2, y2), and(x3, y3).

x

y

(x_1 , y_1)

(x_3 , y_3)

(x_2 , y_2)

Write a MATLAB program that will

1. Interactively prompt a user for thex andy coordinates at each of the triangle vertices.

2. Print the triangle vertices in a tidy table.

3. Compute and print the area of the triangle (make sure that it is positive) and its perimeter.

2.4 Beginner. Figure 2.8 is a schematic of an irregular polygon having seven sides. Suppose
that thex and y vertex coordinates are stored as two columns of information in the file
polygon.dat .

1.0 1.0
1.0 5.0

Chapter 2 117

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���
���
���

���
���
���
���
���
��� ���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

x

y

42 6

2

4

1 3 5 7

1

3

5

Figure 2.8. Seven-sided irregular polygon

6.0 5.0
7.0 3.0
4.0 3.0
3.0 2.0
3.0 1.0

Write a MATLAB script file that will read the contents ofpolygon.dat into an array
polygon , and then compute and print

1. The minimum and maximum polygon coordinates in both thex andy directions

2. The minimum and maximum distance of the polygon vertices from the coordinate system
origin

3. The perimeter and area of the polygon

Note. You should use themax() andmin() functions provided by MATLAB for Part 2. In
Part 3, you should use the fact that the vertices have been specified in a clockwise manner.

2.5 Beginner. The single-payment compound-interest factor,

118 Engineering Programming in Matlab

F = P · [1 + i]n (2.27)

defines the future value of a present day investmentP that earns an interest ratei for n years.
During the first yearP dollars grows toP.(1+i) dollars. In the second year,P.(1+i)
dollars grows toP.(1+i).(1+i) dollars, and so forth. The term(1 + i)n is called the
compound-interest factor.

Write a MATLAB program that will prompt a user forP, i andn. Use your program
to demonstrate that when $1,000 is invested at 12% for 4 years, the future sum is $1,573.50.

2.6 Beginner. Suppose that a savings bank offers a tiered rate of interest that increases with the
account balance as follows:

Interest Rate(balance)=


5% $0.0 ≤ balance ≤ $5, 000,

8% $5, 000 < balance ≤ $10, 000,

10% $10, 000 < balance,

(2.28)

Write a MATLAB program to:

1. Draw a plot of “rate of interest” versus “balance” for account balances up to $25,000.

2. Suppose that a customer deposits $6,000 for 20 years. Compute and print the compound
balance for years 1 through 20.

Note. When the interest rate is not constant overn years, the term(1 + i)n in Equation 2.27
is replaced by(1 + i1) · (1 + i2) · · · (1 + in).

2.7 Beginner. Leibnez’s series is given by:

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
+ · · · (2.29)

Write a MATLAB script file to compute Leibniz’s series summation for 1000 terms. First,
use a for-loop construct to compute the series summation. Repeat the experiment using an

Chapter 2 119

array for the series coefficients, appropriate matrix element-level operations for the alternating
signs. andsum() for the summation of series terms.

Use the MATLAB facilitiestic and toc to monitor the time needed to compute
each implementation. How does the relative speed of the two methods vary as a function of
the number of terms in the series?

2.8 Intermediate. Using no more than three lines of MATLAB code, and no looping constructs,
demonstrate that the series summation:

S =
1

1 · 2 +
1

2 · 3 +
1

3 · 4 +
1

4 · 5 + · · · (2.30)

approaches 1.

2.9 Beginner. An efficient way of computing the cube root of a numberN is to compute the root
of

f(x) = x3 −N = 0 (2.31)

with the method of Newton Raphson, namely:

xn+1 = xn −
[
f(xn)

f
′(xn)

]
(2.32)

Substituting Equation (2.31) into Equation (2.32) and rearranging terms gives the recursive
relationship

xn+1 =
1

3
·
[

2x3
n +N

x2
n

]
(2.33)

Write a MATLAB program that will

1. Prompt the user for a numberN, and compute the cube root ofNvia Equation (2.33). The
details of the cube root calculation should be contained within a function M-file called
cuberoot.m . A suitable function declaration is

120 Engineering Programming in Matlab

[answer] = cuberoot (N)

Your M-file function should use Equation (2.14) for a test on convergence.

2. Print the numberN, its cube root, and the number of iterations needed to compute the
result.

Hint: Your solution to this problem should be similar to Program 2.1.

2.10 Intermediate. Write and test a function M-filematadd.m for the element-by-element addi-
tion of matricesA andB using Equation (2.6). An appropriate function declaration is

[matrixsum] = matadd (A, B)

After your M-file function has checked that matricesA andB have compatible sizes, Equation
(2.6) should be evaluated inside a set of 2 nested for loops.

Write a test program to allocate and initialize matricesA andB, and compute their
sum using thematadd function and MATLAB’s built-in library for matrix addition. What is
the relative speed of these two approaches?

2.11 Intermediate. Repeat the experiment described in Problem?? but for the multiplication of
two matricesA andB. An appropriate function declaration is

[matrixproduct] = matmult (A, B)

Again, the matrix multiplication should be computed with a set of 2 nested for loops.

2.12 Intermediate. Monte Carlo methods solve problems by experiments with random numbers
on a computer. They have been around since about the mid-1940s. A relatively straightfor-
ward way of estimatingπ is to conduct an experiment where darts are randomly thrown at a
square board of side lengthD, as shown in Figure 2.10.

Given that the area of the circleAcircle =
[
πD2/4

]
, and the area of the squareAsquare = D2,

then

π = 4 ·
[
Acircle
Asquare

]
(2.34)

In the Monte Carlo experiment, N darts are thrown at the board. LetPi = (xi, yi) be the
coordinate point of theith dart (i = 1,2,3 ... N). PointPi is inside the circle if

Chapter 2 121

Length = D.

Length = D.

Figure 2.9. Estimatingπ via integration

x2
i + y2

i ≤
[
D2

4

]
(2.35)

If at the conclusion of the experiment X darts have landed inside the circle (X≤ N), then a
Monte Carlo estimate ofπ is

π ∼ 4 ·
[
X

N

]
(2.36)

Write a MATLAB program that will

1. Simulate this experiment by generating pairs of uniformly distributed random numbers,
one for the x-coordinate and a second for the y-coordinate. The random numbers should

122 Engineering Programming in Matlab

be scaled so that they cover the interval[-D/2, D/2] . Calculate whether each data
pointPi lies inside the circle. At the conclusion of the experiment, sum the number of
darts that lie inside the circle and evaluate Equation (2.36).

2. Print the total number of trials in the experiment (N), the total number of trial points
inside the circle (X), and the Monte Carlo estimate ofπ.

3. Draw Figure 2.10 together with the (x, y) coordinates of the dart throwing experiment.

2.13 Intermediate. Extend the functionality of Program 2.1 so that it will compute the square root
of matrix elements in matrices containing only positive matrix elements. For example, the
function call

>> sqroot([1 2 3; 4 5 6; 7 8 9])

should generate the output:

ans =

1.0000 1.4142 1.7321
2.0000 2.2361 2.4495
2.6458 2.8284 3.0000

When one or more of the matrix elements is not positive,sqroot.m should print an appro-
priate error message and terminate its execution.

2.14 Intermediate. A key limitation of the quadratic equation solver in Program 2.5 is the absence
of checking for loss of numerical accuracy due to subtraction cancelation. We note from
Equation (2.22) that this will occur whenever the quadratic equation has two real roots, and
either coefficienta or coefficientc (or both) is very small compared to coefficientb.

Rather than naively applying Equation (2.22) directly, numerical accuracy can be
improved by computing the quantity

Q = −0.5 ·
[
b+ sign(b)·

√
b2 − 4ac

]
(2.37)

wheresign(b) is a function that gives1 for positiveb and-1 for negativeb. Equation
(2.37) follows from multiplying Equation (2.22) by the unity fraction

[
−b∓

√
b2 − 4ac

−b∓
√
b2 − 4ac

]
(2.38)

Chapter 2 123

The roots of the quadratic arec/Q and Q/a , respectively. Extend Program 2.5 so that it
avoids numerical errors due to subtractive cancellation. Develop some testcase problems to
show that your improved implementation works even when Program 2.5 provides inferior
solutions.

Chapter 3

MATLAB Graphics

Graphics are an indispensable part of engineering education and professional practice be-
cause they provide insight into the complicated relationships that exist between multi-dimensional
scientific and engineering phenomena. One of the neat features of MATLAB is its graphics capabil-
ities. Using only a few simple MATLAB commands, two- and three-dimensional plots and subplots
can be created, with labels and titles, axes, and grids.

3.1 Simple Two-Dimensional Plotting

MATLAB has an ensemble of functions for the simple two-dimensional plotting of func-
tions and data that take the form(xi, yi), i = 1, 2, 3, · · · , n. They are

• plot(x,y) Draws a linear plot of vectory versus vectorx .

• semilogx(x,y)Draws a plot of vectory versus vectorx , using a logarithmic scale forx and a
linear scale fory .

• semilogy(x,y)Draws a plot of vectory versus vectorx , using a logarithmic scale fory and a
linear scale forx .

• loglog(x,y) Draws a plot of vectory versus vectorx , using logarithmic scales for bothx andy
axes.

In each of these function calls, the contents ofx are the data points along the horizontal axis of
the plot. The data along the vertical axis of the plot is stored in a second vectory . Vectorsx and
y should have the same length. Ifx or y is a matrix, then the vector is plotted versus the rows or
columns of the matrix, whichever line up.

By default, MATLAB will plot each data point pair on a set of axes scaled to cover the
range of values inx andy , and connect the marked data points with straight line segments. The
latter helps to highlight trends implied by the sequence of data point pairs.

124

Chapter 3 125

For function calls that involve logarithmic transformations, it is important to remember that
the logarithm ofx is undefined for negativex . MATLAB will handle these accidental oversights by
printing an error message indicating that data points have been omitted from a plot.

Coordinate labels, plot titles, grid, and textual messages can be added to simple two-
dimensional plots with

• grid on Add grid lines to a plot. The commandgrid off takes them off. The commandgrid
by itself toggles the grid state.

• xlabel(’x axis label’) Add text beside the x axis on the current axis.

• ylabel(’y axis label’) Add text beside the y axis on the current axis.

• title(’title of plot’) Add text at the top of the current axis.

• text(x, y, ’text’) Add ’text’ string to a plot where(x, y) is the coordinate of the center leftedge
of the character string taken from the plot axes.

• gtext(’text’) Activate the use of the mouse to position a cross-hair on the graph at which point
the ’text’ will be placed when any key is pressed.

Example. Draw the graph of

y(x) =

[
sin(2x)

2x

]
for − 10 ≤ x ≤ 10 (3.1)

The sequence of MATLAB commands

>> x = -10 : 0.2 : 10;
>> y = 1/2*sin(2.*x)./x;
Warning: Divide by zero
>> plot(x,y)
>> grid
>> xlabel(’x’)
>> ylabel(’sin(2x)/2x’)

generates Figure 3.1.

Vectorx is a(1 × 101) matrix holding the coordinates of domain[-10,10] partitioned
into intervals of 0.2, andy is a vector of the same length giving the values ofy = sin(2x)/2x within

126 Engineering Programming in Matlab

the partition. Equation (3.1) is evaluated successfully for each of the elements in matrixx except
x(51) = 0, where a “divide by zero” occurs. Does this make sense? By writing a Taylor series
expansion forsin(2x) and dividing through by2x, it is relatively easy to show that y(0) = sin(0)/0
= 1. MATLAB does not pick up on this point. Instead, the element of vectory corresponding to x
= 0 is assignedNaN, and theplot() function treats the array elementy(51) as missing data (see
the upper sections of Figure 3.1).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

si
n(

2x
)/

2x

Figure 3.1. y = sin(2x)/2x for -10≤ x ≤ 10

Note. One way of “mitigating” this problem is to replace the zero element(s) in matrixx with eps ,
that is

>> x = -10 : 0.2 : 10;
>> x = x + (x==0)*eps

In the second MATLAB command, a component of matrixx will be incremented byeps when the
logical expression(x==0) evaluates to true. Otherwise, the components ofx remain unchanged.

Chapter 3 127

Now they matrix is generated without error, andsin(0)/0 evaluates to1.

Axes of Plots.In Figure 3.1, MATLAB has automatically fixed the range ofx andy values so that
the plotted function fills the space that is available (i.e., xmin = min(x), xmax = max(x)). In doing
so, the “missing data item” at y(0) has been unintentionally hidden by the border of Figure 3.1.
Perhaps it would be more evident if the range ofy values in Figure 3.1 were rescaled to cover the
interval [-0.4 , 1.2] ?

MATLAB provides the functionaxis to control the scaling and appearance of axes in a
plot. In this tutorial, we make frequent use of the function call

• axis([xmin, xmax, ymin, ymax]) Set the range ofx andy values in the current plot to[
xmin, xmax] and[ymin, ymax] , respectively.

In addition, the commandaxis(’equal’) changes the current axis box size so that equal tick
mark increments on the x- and y-axis are equal in size. Similarly, the commandaxis(’off’)
turns off all axis labeling and tick marks. Axis labeling and tick marks is turned back on again with
axis(’on’) .

Thus, the sequence of MATLAB commands

>> x = -10 : 0.2 : 10;
>> x = x + (x==0)*eps;
>> y = 1/2*sin(2.*x)./x;
>> plot(x,y)
>> axis([-10 10 -0.4 1.2])
>> grid;
>> xlabel(’x’)
>> ylabel(’sin(2x)/2x’)

generates a graph nearly identical to Figure 3.1, in this case with the range ofx andy values covering
[-10,10] and[-0.4,1.2] , respectively, and with the correct evaluation ofsin(2x)/2x atx =
0.

Parametrically Defined Curves. Plots of parametrically defined curves can also be made. For
example, a plot of the parametric curve

[x(t), y(t)] = [cos(3t), sin(2t)] for 0 ≤ t ≤ 2π (3.2)

can be created with the MATLAB commands

128 Engineering Programming in Matlab

==
Line type solid (-), dashed (-), dotted (:), dashdot (-.)

Mark type point (.), plus (+), star (*), circle (o),
x-mark (x).

Color yellow (y), magenta (m), cyan (c), red (r),
green (g), blue (b), white (w), black (k).

==

Table 3.1.Summary of Line Types and Line Colors

>> t = 0: 0.02: 2*pi;
>> plot(cos(3*t), sin(2*t))
>> grid
>> axis(’equal’)

The result is shown in Figure 3.2. Notice how we have used theaxis(’equal’) command to
equalize the scales in the x- and y-axis directions. This makes the parametric plot take its true shape
instead of an oval.

Setting Line and Mark Types, and Colors. As already demonstrated in Figures 3.1 and 3.2,
MATLAB will automatically connect the data points in a plot by solid lines. When the data points
are closely spaced, this gives the appearance of a smoothly drawn curve.

Table 3.1 contains the line and mark types, and color options, that can be used in MATLAB plots.
For example, the script

>> t = 0: 0.04: 2*pi;
>> plot(t.*cos(3*t), 2.*t.*sin(2*t), ’o’)
>> grid

generates the pathway of’o’ points shown in Figure 3.3. In this case, we have deliberately omitted
the axis(’equal’) command so that the horizontal and vertical axes can be independently
scaled to fill the rectangular space available on a page.

Combinations of line and mark types, and color settings, can be specified by simply
bundling the combined settings into a text string enclosed by single quotes. For example, the com-
mand

>> plot(t.*cos(3*t), 2.*t.*sin(2*t), ’og’)

tells MATLAB to plot Figure 3.3 with green circles.

Chapter 3 129

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.2. Parametric contour (x,y) = [cos(3t), sin(2t)]

−6 −4 −2 0 2 4 6 8
−12

−10

−8

−6

−4

−2

0

2

4

6

8

Figure 3.3. Parametric contour (x,y) = [t*cos(3t), 2t*sin(2t)]

130 Engineering Programming in Matlab

Clearing Plots. The commandclf deletes all objects from the current figure. The commandcla
deletes all objects (e.g., lines, text) from the current axes.

Histograms, Bar Charts, and Stem Diagrams

The function specifications that follow are a subset of MATLAB functions available for
plotting histograms, bar charts, stair-step plots, and stem diagrams:

• bar(x,y) Draws a bar graph of the elements of vectory at locations specified in vectorx . The x
values must be ascending order.

• hist(x,y) Plot a histogram of the values in vectory using the bins specified in vectorx .

• stairs(x,y) A stair-step graph is a bar graph without internal lines. This function call draws a
stair-step graph of the elements of vectory at locations specified in vectorx .

• stem(x,y)Plots the data sequencey as stems from locations specified inx . Each stem is termi-
nated by a circle positioned at the data value.

For a complete list of options for each function, type

>> help function_name

(e.g., help bar) within MATLAB.

Example. The block of MATLAB code

>> x = 1:6;
>> y = zeros(1,6);
>> for i = 1:600

ii = ceil(6*rand(1));
y(1,ii) = y(1,ii) + 1;

end,
>> bar(x,y)
>> axis([0, 8, 0, 125]);
>> grid
>> xlabel(’Number on Dice (1 through 6)’);
>> ylabel(’Number of scores in Experiment’);

simulates an experiment where a regular die is thrown 600 times and the total number of scores,1
through6, is counted and plotted as a bar chart (see Figure 3.4). You should observe that the sum
of column heights 1 through 6 is 600 and that the average column height is 100.

Figure 3.5 is a graphical representation of the same die-throwing experiment, but in this
case, the grid has been removed and the frequency of die scores is displayed as a stem chart.

Chapter 3 131

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Number on Dice (1 through 6)

N
um

be
r

of
 s

co
re

s
in

 E
xp

er
im

en
t

Figure 3.4. Bar chart of scores in die-throwing experiment

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Number on Dice (1 through 6)

N
um

be
r

of
 s

co
re

s
in

 E
xp

er
im

en
t

Figure 3.5. Stem chart of scores in die-throwing experiment.

132 Engineering Programming in Matlab

Multiple Plots

A straightforward way of plotting multiple curves on the same graph is with the command

• plot(x,y,w,z, ...) Opens a graphics window and draws a linear plot of vectory versus vectorx ,
and vectorw versus vectorz on the same graph. Again, ifx , y , w or z is a matrix, then the
vectors are plotted versus the rows or columns of the matrix, whichever line up.

MATLAB will plot the data sety versusx first, thenw versusz and so forth. This strategy of
implementation means that the length of vectorsx andy need not be the same aswandz .

The following examples illustrate three ways of making multiple plots on a single graph,
as shown in Figure 3.6.

Example. Consider the script of code

>> x = 0 : .01 : 2*pi;
>> y1 = sin(x);
>> y2 = sin(2*x);
>> y3 = sin(4*x);
>> plot(x, y1 ,’--’, x, y2, ’:’, x, y3,’+’)
>> grid
>> title (’Dashed, line, and dotted line graph’)

Three plots are drawn with one call toplot() . Here we use a dashed line and dotted line for the
first two graphs, while a+ symbol is placed at each node for the third.

Example. When one of the arguments toplot is a vector and the other is a matrix,plot will
graph each column of the matrix versus the vector. For example

>> x = 0 : .01 : 2*pi;
>> y = [sin(x)’, sin(2*x)’, sin(4*x)’];
>> plot(x,y)

x is an array having one row and 629 columns.y is a matrix having 629 rows and 3 columns.

Holding Figures

So far in this tutorial we have generated all our figures, including those with multiple plots,
with one call toplot . Another way of generating figures with multiple plots is with the command
hold , which freezes the current graphics screen so that subsequent plots can be superimposed on
it.

Example. Figure 3.6 can also be generated with the sequence of commands

Chapter 3 133

Figure 3.6. Overriding default line- and point- types

>> x = 0 : .01 : 2*pi;
>> plot(x, sin(x), ’--’)
>> hold
>> plot(x, sin(2*x), ’:’)
>> plot(x, sin(4*x), ’+’)
>> grid
>> title (’Dashed, line, and dotted line graph’)

The “hold” can be released by enteringhold again. The commandhold on holds the current plot
and all axis properties so that subsequent graphing commands add to the existing graph. Conversely,
the commandhold off returns to the default mode wherebyplot commands erase the previous
plots and reset all axis properties before drawing new plots.

134 Engineering Programming in Matlab

3.2 Three-Dimensional Plots

MATLAB uses the functionplot3 , the three-dimensional counterpart ofplot , to display
arrays of data points(xi, yi, zi), i = 1, 2, 3, · · · , n in three-dimensional space. The syntax is

• plot3(x,y,z) Whenx , y , andz are vectors of the same length, this function plots a line in three-
dimensional space through the points whose coordinates are the elements ofx , y , andz .

There are many variations on this function’s use, and we simply recommend you typehelp plot3
for a list of options.

Example. Suppose that 8 experimental measurements (x,y,z) are stored in the rows of a matrix
calleddata :

>> data = [2.5 1.3 0.0;
0.0 2.0 0.0;
1.0 3.0 0.0;
2.5 3.5 4.0;
3.0 1.0 -2.0;
2.0 -1.0 -2.0;
3.5 4.0 -2.5;
0.0 1.0 0.0];

>>

The block of MATLAB commands

>> plot3 (data(:,1), data(:,2), data(:,3), ’o’)
>> axis([-1 4 0 5 -5 5])
>> grid
>> xlabel(’x’), ylabel(’y’), zlabel(’z’)

generates the data points, grid, and axes in Figure 3.7. The first thing that you should notice about
this script is how we have used colon notation (e.g.,data(:,1)) to extract the vectorsx , y , and
z from data . This script also demonstrates that many of the optional features we have used with
plot , such as line and mark types, grid, and axis settings, can also be used withplot3 .

Now we add the labelsStart andEnd to the first and last points in arraydata . The
block of MATLAB code

>> a = size (data)
>> text(data(1,1) + 0.2 , data(1, 2), ’Start’);
>> text(data(a(1,1),1) + 0.2 , data(a(1,1), 2), ’End’);

Chapter 3 135

−1
0

1
2

3
4

0

1

2

3

4

5
−5

0

5

xy

z

Start

End

Figure 3.7. Three-dimensional plot of experimental data points.

uses the functionsize to obtain the number of rows and columns in array data –a(1,1) contains
the number of rows indata , anda(1,2) the number of columns. Thetext function then adds
the desired labels at the coordinates of the first and last data points.

3.3 Mesh and Surface Plotting

MATLAB provides a suite of functions for creating three-dimensional mesh and surface
plots of functional relationships

z = f(x, y) (3.3)

above a rectangular region defined in the x-y plane. MATLAB representsz = f(x, y) as an array of
data points above a regular grid of points lying in the (x-y) plane (see Figure 3.8). The surface shape

136 Engineering Programming in Matlab

(or mesh shape) is highlighted by connecting the neighboring data points by straight-line segments,
with the result in many cases looking like a fishing net.

Three steps are needed to create a mesh or surface plot:

Y

Z

X

Matrix "yy" defines coordinates

in y - direction.

Matrix "xx" defines coordinates in x - direction.

Data Point (x_i, y_i, z_i)

Figure 3.8. Three-dimensional mesh above regular grid of points in (x-y) plane

1. Generate Two-Dimensional Grid in (x-y) Plane. A rectangular grid of points in the (x-y)
plane is generated by defining vectorsxx andyy for the coordinate positions of the nodes
along the x- and y-axes. Then, the function call

[x, y] = meshgrid (xx, yy)

transforms the domain into rectangular arraysx and y for the efficient evaluation ofz =
f(x, y). The rows of the output arrayx are copies of the vectorxx , and the columns of the
output arrayy are copies of the vectoryy .

2. Compute z Values at (x,y) Coordinates of Grid. Now that matricesx andy of coordinates
in the (x-y) domain are place, we can systematically evaluate Equation (3.3) for each (x,y)
coordinate pair. The results are stored in a rectangular arrayz.

We soon see that by writingf(x, y) in terms of matrix element-level operations, in many
cases, the entire evaluation of(x, y) coordinate pairs can be achieved with only one MATLAB
statement.

3. Draw Mesh and Surface Plots.Three-dimensional mesh and surface plots may be produced
with the functions:

Chapter 3 137

• mesh(z)Creates a three-dimensional mesh plot of the elements of matrixz . If z is an
m-by-n matrix, then the x- and y-axes will cover the ranges 1 through m and 1 through
n, respectively.

• surf(z) Draws a three-dimensional surface plot of the elements of matrixz . Otherwise, it
is the same asmesh(z) .

•mesh(x,y,z)Creates a three-dimensional mesh plot of the elements of matrixz , the x- and
y-axes labeled to cover the range of values in matricesxx andyy .

• surf(x,y,z) Creates a three-dimensional surface plot of the elements of matrixz , the the x-
and y-axes labeled to cover the range of values in matricesxx andyy .

Themesh andsurf functions can also be used with various color options, and we refer you
to the online MATLAB documentation for the relevant details.

Example. Suppose that we want to create a three-dimensional plot of the function

z = f(x, y) =
[
x2 + y2

]
· sin(y)

y
(3.4)

over the domain−10 ≤ x ≤ 10 and−10 ≤ y ≤ 10.

The block of MATLAB code

>> xx = -10: 0.4: 10;
>> yy = xx;
>> yy = yy + (yy==0)*eps
>> [x,y] = meshgrid(xx,yy);

generates matricesxx and yy containing coordinates of−10 ≤ x ≤ 10 and−10 ≤ y ≤ 10
divided into intervals of 0.4. The third statement moves points along the line y = 0 to y = eps so
that MATLAB will not generate a “divide by zero” in its evaluation of Equation (3.4). Finally, the
meshgrid function returns(51× 51) matricesx andy containing the x- and y-coordinates in the
rectangular domain. The command

>> z = (x.ˆ2 + y.ˆ2).*sin(y)./y

systematically evaluatesz, a (51 × 51) matrix, for each of the (x-y) coordinate pairs in the rectan-
gular domain. Finally, the commands

138 Engineering Programming in Matlab

−10
−5

0
5

10

−10

−5

0

5

10
−40

−20

0

20

40

60

80

100

xy

z

Figure 3.9. Three-dimensional mesh.

>> mesh(xx,yy,z)
>> xlabel(’x’), ylabel(’y’), zlabel(’z’)

generate a three-dimensional mesh plot, with the x- and y-axes scaled to cover the range of points
contained in matricesxx andyy . The result is shown in Figure 3.3.

3.4 Contour Plots

A contour plot is an elevation map containing families of lines connecting regions of equal
elevation. Sometimes it is convenient to think of a contour as a slice of a region at a particular
elevation.

In MATLAB, contour plots are generated from three-dimensional elevation data:

• contour(z) Generates a contour plot of matrixz where the matrix elements are treated as heights
above the (x-y) plane.

Chapter 3 139

• contour(x,y,z)Generates a contour plot wherex andy are vectors specifying coordinates on the
x- and y- axes. Again,z is a matrix whose elements are treated as heights above the (x-y)
plane.

• contour(x,y,z,v) Matricesx , y andz are as previously defined. Vectorv tells contour to draw
length (v) contour lines at the elevations specified in the elements ofv .

Three-dimensional mesh and surface plots may be drawn with a contour diagram lying in the x-y
plane. The relevant function specifications are

•meshc(x,y,z)This function is the same asmesh, except that a contour plot is drawn beneath the
mesh.

• surfc(x,y,z) This function is the same assurf , except that a contour plot is drawn beneath the
surface.

Example. With matricesxx , yy , x , y , andz in place for Figure 3.3, a two-dimensional contour
map can be drawn and labeled with

>> contour(xx,yy,z)
>> xlabel(’x’), ylabel(’x’)

Similarly, a three-dimensional surface plot with a contour map drawn beneath can be generated with
the command

>> surfc(xx,yy,z)

The results are shown in Figures 3.10 and 3.11.

3.5 Subplots

MATLAB graphics windows will contain one plot by default. Thesubplot command can
be used to partition the graphics screen so that either two or four plots are displayed simultaneously.
Two subwindows can be displayed either “side by side” or “top and bottom.” When the graphics
window is partitioned into four subwindows, two are on the top and two are on the bottom.

The syntax for setting up asubplot is

140 Engineering Programming in Matlab

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

Figure 3.10.Contour plot.

−10
−5

0
5

10

−10

−5

0

5

10
−50

0

50

100

Figure 3.11.Combined surface and contour plot.

Chapter 3 141

• subplot(i,j,k) The subplot function takes three integer argumentsi , j , andk . Integersi andj
specify that the graphics window should be partitioned into an i-by-j grid of smaller windows.
The subwindows are numbered from left to right, top to bottom. Integerk specifies the kth
subplot for the current graphics window.

Example. The sequence of commands that follow generates the array of subplots shown in Figure
3.12.

% Define array of temperatures in chimney cross section

temp = [NaN NaN NaN NaN 200.0 147.3 96.5 47.7 0.0 ;
NaN NaN NaN NaN 200.0 146.9 96.0 47.4 0.0 ;
NaN NaN NaN NaN 200.0 145.2 93.9 46.1 0.0 ;
NaN NaN NaN NaN 200.0 140.4 88.9 43.2 0.0 ;

200.0 200.0 200.0 200.0 200.0 128.2 78.8 37.8 0.0 ;
147.3 146.9 145.2 140.4 128.2 94.3 60.6 29.6 0.0 ;

96.5 96.0 93.9 88.9 78.8 60.6 40.2 19.9 0.0 ;
47.7 47.4 46.1 43.2 37.8 29.6 19.9 10.0 0.0 ;

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0];

% Generate contour and surface subplots.

subplot(2,2,1);
contour(temp)
title(’Contour Plot’);
subplot(2,2,2);
mesh(temp)
title(’Mesh Plot’);
subplot(2,2,3);
surf(temp)
title(’Surface Plot’);
subplot(2,2,4);
surfc(temp)
title(’Surface Plot with Contours’);

% ==
% The End !

In the function callscontour(temp) , mesh(temp) , surf(temp) , and surfc(
temp) , the elements of matrixtemp are treated as elevations above the (x-y) plane.

You may recognize arraytemp from the C tutorial, where we computed the distribution
of temperatures in one fourth of a chimney cross-section. The chimney interior is represented by
the block ofNaNs. The zero elements along the right-hand side and bottom oftemp represent the

142 Engineering Programming in Matlab

2 4 6 8

2

4

6

8

Contour Plot

0
5

10

0

5

10
0

100

200

Mesh Plot

0
5

10

0

5

10
0

100

200

Surface Plot

0
5

10

0

5

10
0

100

200

Surface Plot with Contours

Figure 3.12.Temperature profiles in chimney cross-section

outside temperature. The row and column of 200 elements are the temperature along the inside wall
of the chimney.

3.6 Hard Copies of MATLAB Graphics

To create a black-and-white postscript file of a MATLAB figure, just type

>> print name-of-figure.ps

Color postscript files can be generated with

>> print -dpsc name-of-figure.ps

Similarly, to create a colorjpg file (i.e., Joint Photographic Experts Group file), try the following
command

Chapter 3 143

>> print -djpeg name-of-figure.jpg

Online information can be obtained by typinghelp print .

3.7 Preparing MATLAB Graphics for the World Wide Web

The UNIX tool xv can then be used to convert the postscript file into agif file format,
suitable for reading by WWW browsers.

3.8 Review Questions

1. How can the axes in a two-dimensional plot be constrained to retain the true shape of a figure?

2. How does MATLAB handle the plotting of

f(x) =
(x− 2)

(x− 2)
(3.5)

at x = 2? What is a good way of avoiding the “divide-by-zero” scenario?

3. What does thehold command do?

4. How would you draw a three-dimensional surface together with a contour plot of elevation
levels?

144 Engineering Programming in Matlab

3.9 Programming Exercises

3.1 (Beginner). Suppose that column one in the following file,RAIN.TXT , contains the daily
rainfall for one week, and the second column contains the average rainfall for the week.

0.100000 0.694286
1.000000 0.694286
0.000000 0.694286
0.200000 0.694286
3.560000 0.694286
0.000000 0.694286
0.000000 0.694286

Write a MATLAB prorgram that will

1. Read the contents ofRAIN.TXT into MATLAB

2. Plot a histogram of the daily rainfall measurements and a horizontal line for the average
weekly rainfall.

3.2 Beginner. The fragment of MATLAB code

>> t = 0:0.01:2*pi;
>> plot(sin(t), cos(t))

plots a circle of radius 1 centered at the origin.

1. Write a function file,circle.m , that will plot a circle of radiusr centered at coordinate
(x.y). A suitable function declaration is

function circle (x, y, r)

2. With yourcircle function in hand, write a short M-file that will generate the rectangular
layout of circles shown in Figure 3.13. The circles are positioned along the x coordinates
x = 5 and x = 50 and the y coordinates y = 5 and y = 50. Each circle should have a radius
2.5.

3.3 Beginner. Write a MATLAB script file that will plot and label the function

z = f(x, y) =
[
e−x

2−y2 · sin(y) · sin(y)
]

(3.6)

over the domain−2 ≤ x ≤ 2 and−2 ≤ y ≤ 2.

Chapter 3 145

Figure 3.13.Rectangular layout of circles

3.4 Beginner. Write a MATLAB script file that will plot and label the function

z = f(x, y) = int
[
4.0 · sin3(x) · sin3(y) + 0.5

]
(3.7)

for the domain−10 ≤ x ≤ 10 and−10 ≤ y ≤ 10. In Equation (3.7),int is a function that
truncates the fractional part of a floating point number.

3.5 Intermediate. Figure 3.14 shows a sphere of radiusr and densityρ floating in water.

The weight of the sphere will be4/3ρπr3. The volume of the spherical segment displacing
water is1/3π(3rd2 − d3).

1. Show that the depth of the sphere floating in water is given by solutions to

146 Engineering Programming in Matlab

r

d

Figure 3.14.Sphere floating in water.

f(x, ρ) = x3 − 3.x2 + 4.ρ = 0 (3.8)

where x = d/r is a dimensionless quantity.

2. Write a MATLAB program that will compute the depth to which a sphere will sink as a
function of its radius forρ = 0 to ρ = 1 in increments of 0.1.

3. Use MATLAB to plot and label the results.

Note. Perhaps the most straightforward way of solving this problem is to write a numerical
procedure that computes the root of the cubic equation. This is not as hard as it might seem
sincef(0, ρ) is always greater than zero andf(2, ρ) is always less than zero. Only one
solution to Equation (3.8) lies within the intervalf([0, 2], ρ) and so standard root finding
techniques such as bisection and Newton Raphson will work. A more elegant way of solving
this problem is with thecontour function.

3.6 Intermediate. Write a block of MATLAB code that will evaluate and plot Equation (3.1)
without error and without moving thex = 0 coordinate tox = eps .

3.7 Intermediate. Write a MATLAB script file that will plot and label the family of ellipses
defined by

[x(t), y(t)] = [A sin(t), B cos(t)] (3.9)

for 0 ≤ t ≤ 2π, A = 1, and B = 1, 2,· · · 5.

3.8 Intermediate. Write a MATLAB program that will draw a circle, and partition and label
its perimeter inton equal segments. Line segments should then be drawn to connect all the

Chapter 3 147

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

������������������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

1 1

23

653

2

4

PERIMETER DIVIDED INTO 6 SEGMENTSPERIMETER DIVIDED INTO 3 SEGMENTS

Figure 3.15.Partitioned circles.

points lying on the circle perimeter. The left- and right-hand sides of Figure 3.15 demonstrate
the required partitioning and labeling forn = 3 andn = 6, respectively.

Devise an algorithm that requires no more thann(n− 1)/2 function calls to draw all
the line segments. This is not as hard as it seems – simply observe, for example, that once a
line segment has connected points 1 and 6, there is no need to draw a second line connecting
points 6 and 1.

3.9 Moderate. An experiment is conducted on 36 specimens to determine the tensile yield
strength ofA36 steel. The experimental results are as follows:

42.3 42.1 41.8 42.4 47.7 41.4
40.5 38.7 40.8 39.6 42.4 37.5
39.9 45.3 41.6 36.8 45.4 44.8
39.2 40.7 38.5 40.1 42.8 42.5
43.1 36.2 46.2 41.5 38.3 40.2
41.9 40.4 39.1 38.6 46.3 39.5

Write a MATLAB program and appropriate M-files that will:

1. Read the experimental test results from a fileexperimental.data .

2. Compute and print the maximum, minimum, average, and median tensile strengths.

3. Generate a histogram of “observations” versus “yield stress”

4. Construct a bar graph or stair-step graph of “cumulative frequency” versus “yield stress.”

148 Engineering Programming in Matlab

Note. The average value of the experimental results can be computed using formulae pre-
sented in Section 8.5. After the experimental results have been numerically sorted, the me-
dian value is the midvalue (if the number of data points is odd) or the average of the two
middle values (if the number of data points is even). The “cumulative frequency” versus
“yield stress” is given by

Cumulative frequency(y)=
∫ y

0
p(x)dx (3.10)

wherep(x) is the probability distribution of tensile yield strengths.

Chapter 4

Solution of Linear Matrix Equations

In this chapter, we learn how MATLAB can be used to solve engineering problems in-
volving linear systems of matrix equations. Linear systems of equations arise in many areas of
engineering including structural mechanics, circuit simulation, control of electrical and mechanical
devices, and finite element analysis. Moderate to large families of equations commonly represent
the state of a system (e.g., equations of equilibrium, energy and momentum conservation).

4.1 Definition of Linear Matrix Equations

We begin with the basics. In expanded form, a system ofm linear equations withn un-
knowns may be written

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1
a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2
a31x1 + a32x2 + a33x3 + · · · + a3nxn = b3

...
...

... · · ·
...

am1x1 + am2x2 + am3x3 + · · · + amnxn = bm

(4.1)

The constantsa11, a21, a31, · · · amn andb1, b2, · · · bm are called the equation coefficients. Most
often the coefficients will be real numbers, but they could also be complex numbers. The variables
x1, x2 · · · xn are the unknowns in the system of equations. The matrix equivalent of Equation 4.1
is [A] · {X} = {B}, where

[A] =


a11 a12 · · · a1n

a21 a22
...

...
...

am1 · · · · · · amn

 , {X} =



x1

x2

...
xn


, and {B} =



b1
b2

...
bm

 (4.2)

149

150 Engineering Programming in Matlab

Equations 4.2 are said to be homogeneous when the right-hand side vector{B} = 0. A system of
equations is said to beunder-determinedwhen there are more unknowns than equations (i.e.,m <

n). Conversely, a system of equations is termedover-determined when there are more equations
than unknowns (i.e.,m > n). Over-determined systems of equations arise in linear optimization
methods, and in the problem of finding the best fit of a low-order equation to experimental data. A
well-known name for the latter application is least squares analysis.

Geometry of Two- and Three-dimensional Systems

Linear algebra plays a central role in the development of numerical equation solvers be-
cause it allows for the classification solutions to Equation 4.2. Indeed, before the development of
numerical equation solvers can proceed, we need to understand under what circumstances a system
of equations will have a unique solution. For those cases where a system of equations has more
than one solution, we also need to know how many solutions there will be and how they can be
characterized.

A good way of gaining insight into these issues is to study systems of equations whose
solutions are simple enough to be graphically displayed. This will occur for two- and three- dimen-
sional problems (i.e., whenm = n = 2 andm = n = 3).

Two-Dimensional Example.Whenm = n = 2, the matrix equations[A] · {X} = {B} can be
interpreted as a pair of straight lines in the(x1, x2) plane. That is,

a11 x1 + a12 x2 = b1 (4.3)

a21 x1 + a22 x2 = b2 (4.4)

The pair of Equations 4.3 and 4.4 may be interpreted as a linear transformation from two-dimensional
coordinate space(x1, x2) into a two-dimensional right-hand side vector space(b1, b2) (see Figure
4.1).

The problem of finding solutions to Equations 4.3 and 4.4 is equivalent to finding points
X = (x1, x2) in the (X1,X2) plane that will be mapped via the transformationA · X into the
(B1, B2) plane.

As we soon see, this problem is complicated by three types of solutions, namely, (1) no
solutions toA.X = B , (2) a unique solution toA.X = B , or (3) an infinite number of solutions to
A.X = B .

Chapter 4 151

Inverse (A).

A

[x1 , x2]
[b1 , b2]

X_1 B_1

X_2 B_2

COORDINATE SPACE RIGHT - HAND SIDE SPACE

Figure 4.1. Matrix transformations.

4.2 Hand Calculation Procedures

There are two hand calculation procedures for computing a solution(s) to the system of
equations. In thegraphical method, plots of lines in two dimensions are constructed. Solutions
to the system of equations correspond to points where the lines intersect. An example of such a
solution is shown in the left-hand schematic of Figure 4.2, labeled “Unique Solution.”

In the second method, the equations are premultiplied by constants in such a way that when
they are combined variables will be eliminated. For example, if Equation 4.3 is multiplied bya21

and Equation 4.4 is multiplied bya11, then we have the system of equations

a21 · a11 · x1 + a21 · a12 · x2 = a21 · b1 (4.5)

a11 · a21 · x1 + a11 · a22 · x2 = a11 · b2 (4.6)

Subtracting Equation 4.5 from Equation 4.6 gives

x2 =

[
a11 · b2 − a21 · b1
a11 · a22 − a12 · a21

]
. (4.7)

Nowx2 can be back-substituted into either Equation 4.3 or Equation 4.4 for the corresponding value
of x1. You may may have noticed that this procedure is not unique. If Equation 4.3 is multiplied by
a22 and Equation 4.4 is multiplied bya12, subtraction of equations gives

152 Engineering Programming in Matlab

Multiple SolutionsInconsistentUnique Solution

yyy

x xx

Figure 4.2. Types of solutions to matrix equations.

x1 =

[
a22 · b1 − a12 · b2
a11 · a22 − a12 · a21

]
(4.8)

Now x2 can be back-substituted into either Equation 4.3 or andx1 can be back-substituted into
either Equation 4.3 or 4.4 for the corresponding value ofx2.

4.3 Types of Solutions for Systems of Linear Matrix Equations

We observe that the denominators of Equations 4.7 and 4.8 are the same, and correspond
to thedeterminant of a (2× 2) matrix, namely:

det(A) = det

[
a11 a12

a21 a22

]
= a11 · a22 − a12 · a21. (4.9)

The same principles apply to families of equations containing three unknowns (i.e.,m = n = 3).
When the equations are written in the form[A]·{X} = {B}, A is a(3×3) matrix. From a geometric
point of view, each equation describes a plane in three-dimensional space, as shown in Figure 4.3.
The solution to the system of equations corresponds to those points in three-dimensional space that
lie in all three planes. There will only be one such point whendet(A) 6= 0. The mathematical
conditiondet(A) = 0 occurs when two or more planes are parallel. As with the two-dimensional
case, there will be either an infinite number of solutions or no solutions. An infinite number of

Chapter 4 153

PLANE 1 PLANE 2PLANE 3

UNIQUE SOLUTION

Figure 4.3. Intersection of planes in three-dimensional space.

solutions occurs when all three planes have the same equation (or a nonzero constant multiplied by
the same equations). No solutions occur when at least two of the planes are parallel but do not have
the same equation.

When problem sizes increase above three unknowns, we can no longer rely on graphi-
cal methods to find a solution(s). The nature of solutions to linear equations is given instead by
theoretical results from linear algebra. The results are

1. A unique solution{X} =
[
A−1

]
· {B} exists when

[
A−1

]
exists (i.e., det[A] 6= 0).

2. The equations are inconsistent when[A] is singular and rank[A|B] 6= rank[A].

3. If rank[A|B] equals rank[A], then there are an infinite number of solutions.

For the case of a unique solution,
[
A−1

]
is the inverse of matrix A, and such a matrix will exist

when the determinant ofA is nonzero. An equivalent way of detecting a unique solution is with
the rank of matrixA, that is, the number of linearly independent rows in matrixA. In a nutshell, a
unique solution to the matrix equations will exist when therank (A) equals the number of rows

154 Engineering Programming in Matlab

or columns inA. In cases 2 and 3 above, the notation[A|B] stands for the matrixA juxtaposed with
matrix B.

The MATLAB function inv (A) will return the inverse
[
A−1

]
of matrixA when it exists.

The MATLAB function det (A) will return the determinant of a square matrixA. The MATLAB
function rank (A) will return the rank ofA, otherwise known as the number of linearly indepen-
dent rows (or columns) inA.

4.4 Case Study Problem : Three Linear Matrix Equations

Suppose that the following three equations describe the equilibrium of a simple structural
system as a function of external loads and computed displacements.

3x1 − 1x2 + 0x3 = 1
−1x1 + 6x2 − 2x3 = 5

0x1 − 2x2 + 10x3 = 26
(4.10)

This family of equations can be written in the formA.X = B where

[A] =

 3 −1 0
−1 6 −2

0 −2 10

 , {X} =


x1

x2

x3

 , and {B} =


1
5

26

 (4.11)

In a typical application, matricesA and B will be defined by the parameters of the engineering
problem, and the solution matrixX will need to be computed. In this particular case, the solution
matrix

{X} =


1
2
3

 , (4.12)

makes the left- and right-hand sides of matrix Equation 4.11 equal. The following script of MAT-
LAB code

>> A = [3 -1 0; -1 6 -2; 0 -2 10];
>> B = [1; 5; 26];
>> X = A\B

Chapter 4 155

defines matricesA andB, and computes and prints the solution toA.X = B, namely,

>> X = A\B
X =

1.0000
2.0000
3.0000

>>

Of course, this solution can be verified by first computing the inverse ofA, and then postmultiplying
it by matrix B. The relevant details of MATLAB code are

>> Ainv = inv(A)
Ainv =

0.3544 0.0633 0.0127
0.0633 0.1899 0.0380
0.0127 0.0380 0.1076

>> X = Ainv*B
X =

1.0000
2.0000
3.0000

>>

We can use MATLAB to check that this result is consistent with the rank and determinant of matrix
A. First, the script of code

>> rank (A)
ans =

3
>>

shows that the matrix rank is equal to 3, the number of rows and columns in matrixA. We therefore
expect that the matrix equations will have a unique solution. A second indicator of the solution type
is the matrix determinant. The script of code

>> det (A)
ans =

158
>>

shows that the matrix determinant is nonzero, again indicating the presence of a unique solution to
the matrix equations.

156 Engineering Programming in Matlab

4.5 Singular Systems of Matrix Equations

A family of matrix equationsA is said to besingular when the individual equations are
dependent. That is, one or more of the matrix equations can be written as a linear combination of
the remaining equations. For example, matrix

>> A = [1 2 3;
2 4 6;
4 5 6];

is singular because the elements of the second row are simply two times those in the first row. For a
general matrixA, such a relationship may be far from evident, and so we must rely on the rank and
determinant functions to identify singular systems. In this case, the function call

>> rank (A)
ans =

2
>>

highlights the presence of a singular system because therank(A) = 2 is less than 3, the number
of rows and columns inA. Consequently, the inverse ofA will not exist. Should a situation of this
type be accidentally overlooked in an engineering computation, MATLAB will display an error
message and return a solution vector containingNaNs or±∞, depending on the values elements in
matrix A. Consider, for example

>> Ainv = inv(A)
Warning: Matrix is singular to working precision.

Ainv =
Inf Inf Inf
Inf Inf Inf
Inf Inf Inf

>>

The error conditionInf will be propagated to all subsequent arithmetic computations involving
Ainv .

Generally speaking, if a matrix determinant is computed to be exactly zero, then there is no
difficulty in identifying the three types of matrix solutions mentioned in the previous section. But
what about matrices that are nearly singular? Many practical implementations are complicated by
factors such as round-off error, finite precision, and limited ranges of numbers that may be stored in

Chapter 4 157

a computer (i.e., underflow and overflow of numbers). Perhaps matrix A is singular and a nonzero
calculation is due to numerical problems, or perhaps it is not singular. Resolving these issues is far
from a trivial matter.

4.6 Engineering Applications

Now that we are familiar with MATLAB’s matrix and graphics capabilities, this section
works step by step through the design and implementation of four engineering applications that
require the solution of linear matrix equations. They are:

1. A MATLAB program for the structural analysis of a cantilever truss.

2. A MATLAB program for the electrical analysis of a circuit containing resistors and batteries.

3. A MATLAB program that computes a least squares analysis of experimental data.

4. A MATLAB program that computes and plots the distribution of temperature in a chimney
cross-section.

Each problem description is accompanied by a brief discussion of the theory needed to set up the
relevant matrix equations.

Structural Analysis of a Cantilever Truss

Problem Statement.In the design of highway bridge structures and crane structures, engineers are
often required to compute the member forces and support reactions in planar truss structures. The
analysis of cantilever truss structures is governed by the following principles

1. At each joint, the sum of internal and external forces in the horizontal and vertical directions
must equal zero.

2. The sum of external forces and support reactions in the horizontal and vertical directions must
equal zero.

3. For the entire structure and all possible substructures, the sum of moments must equal zero.

Figure 4.4 shows a six-bar cantilever truss carrying10 kN loads at jointsB andC. The analysis
begins with the arbitrary assignment of element numbers in the truss, numbers for the joints, and
reaction components. We assume that

158 Engineering Programming in Matlab

DE

A B C

10 kN 10 kN

5 m 5 m

5
m

F1 F2

F3F4F5

F6

x

y

Figure 4.4. Six-bar cantilever truss.

1. The truss elements can only carry axial forces, with tensile axial forces being positive and
compressive axial forces being negative.

2. All the joints are pinned (in other words, the joints cannot transfer moments; only axial forces
from the truss elements).

The forcesF1, F2, · · · F6 represent the axial forces in truss members1 through6, andRax, Ray,
Rex, andRey the support reactions at jointsA andE.

The cantilever truss is “statically determinate” in the sense that axial forces in the elements
and the support reactions can be computed without a knowledge of material properties. Equations
of equilibrium in the horizontal and vertical directions are written for each of the five joints. The
equations are then expressed in matrix form, and solved for the member axial forces and horizontal
and vertical reaction components. For example, the forces acting on jointA are

R_ax

R_ay

F1

F5

Chapter 4 159

The equations of equilibrium in the horizontal and vertical directions are

∑
Fx = F1 +

F5√
2

+Rax = 0
∑

Fy =
F5√

2
+Ray = 0 (4.13)

The equations of equilibrium for jointB are

∑
Fx = F1 − F2 = 0

∑
Fy = F4 − 10 = 0 (4.14)

The equations of equilibrium for jointCare

∑
Fx = F2 +

F3√
2

= 0
∑

Fy =
F3√

2
− 10 = 0 (4.15)

The equations of equilibrium for jointDare

∑
Fx =

F3√
2
− F5√

2
− F6 = 0

∑
Fy = F4 +

F3√
2

+
F5√

2
= 0 (4.16)

and for jointE, the equations of equilibrium are

∑
Fx = F6 +Rex = 0

∑
Fy = Rey = 0 (4.17)

Equations 4.13 to 4.17 are solved in two steps. First, we put Equations 4.14 to 4.16 in matrix form
and solve for the member forcesF1 , F2 · · · F6. Then we back-substitute the member forces into
equations 4.13 and 4.17 to get the support reactions. In matrix form, Equations 4.14 to 4.16 are



1 −1 0 0 0 0
0 0 0 1 0 0

0 1 1/
√

2 0 0 0

0 0 1/
√

2 0 0 0

0 0 1/
√

2 0 −1/
√

2 −1

0 0 1/
√

2 1 1/
√

2 0


·



F1

F2

F3

F4

F5

F6


=



0
10
0

10
0
0


(4.18)

In step two, the support reactions are given by

160 Engineering Programming in Matlab


Rax
Ray
Rex
Rey

 =


−1 0 0 0 −1/

√
2 0

0 0 0 0 −1/
√

2 0
0 0 0 0 0 −1
0 0 0 0 0 0

 ·


F1

F2

F3

F4

F5

F6


(4.19)

Program Source Code.Program 4.1 allocates memory for matrix Equations 4.18 and 4.19, ini-
tializes the nonzero matrix element values, and computes a solution to Equations 4.18 and 4.19. It
prints matrices of axial forces in the truss members and components of reaction at jointsA andE.

Computer Program 4.1 : Structural Analysis of Cantilever Truss

% ==
% truss.m : Compute internal forces and reactions in cantilever truss structure.
%
% Matrices : Truss = Represents truss geometry and element connectivity.
% : Load = External forces acting on the truss nodes.
% : Force = Internal member forces acting in truss elements.
% : Support = Relationship between truss and support reactions
% : Reactions = Matrix of support reaction forces.
% ==

% Define problem parameters

NoElmts = 6;
NoReactions = 4;

% Setup matrix for "truss connectivity"

Truss = zeros(NoElmts, NoElmts);
Truss(1 , 1) = 1;
Truss(1 , 2) = -1;

Truss(2 , 4) = 1;

Truss(3 , 2) = 1;
Truss(3 , 3) = 1/sqrt(2);

Truss(4 , 3) = 1/sqrt(2);

Chapter 4 161

Truss(5 , 3) = 1/sqrt(2);
Truss(5 , 5) = -1/sqrt(2);
Truss(5 , 6) = -1;

Truss(6 , 3) = 1/sqrt(2);
Truss(6 , 4) = 1;
Truss(6 , 5) = 1/sqrt(2);

% Setup matrix for "external loads" on truss nodes

Load = zeros(NoElmts, 1);
Load(2 , 1) = 10;
Load(4 , 1) = 10;

% Print matrices for "truss connectivity" and "external loads"

Truss
Load

% Solve equations and print "internal member" forces

Force = Truss\Load

% Setup matrix for "support reactions"

Support = zeros(NoReactions, NoElmts);

Support(1 , 1) = -1;
Support(1 , 5) = -1/sqrt(2);
Support(2 , 5) = -1/sqrt(2);
Support(3 , 6) = -1;

% Compute and print "support reactions"

Reactions = Support*Force

% ==
% the end!

Running the Program. Assume that Program 4.1 is contained the M-filetruss.m . The script of
input/output (I/O):

>> format compact
>> truss
Truss =

1.0000 -1.0000 0 0 0 0

162 Engineering Programming in Matlab

0 0 0 1.0000 0 0
0 1.0000 0.707 1 0 0 0
0 0 0.707 1 0 0 0
0 0 0.7071 0 -0.7071 -1.0000
0 0 0.7071 1.0000 0.7071 0

Load =
0

10
0

10
0
0

Force =
-10.0000
-10.0000

14.1421
10.0000

-28.2843
30.0000

Reactions =
30
20

-30
0

>>

shows the command needed to run the program (i.e.,truss) and the output that is generated by
the analysis.

For programming convenience, we define the variablesNoElmts andNoReactions for
the number of frame elements and reactions, respectively. The matrices in Equations 4.18 and 4.19
are defined by first allocating memory for zero matrices of the appropriate size and then filling in
the nonzero matrix elements.

Validating the Results. The member"Forces" matrix contains the axial forces in elements1
through6. A quick examination of the matrix reveals thatF1 = F6 = −10 kN (i.e., compression)
and thatF4 = 10 kN (i.e., tension). Element6 carries a tensile force of 30 kN. If you take moments
about jointA, then you will see that the axial force in element 6 times a lever arm of5 mis balanced
by the 10 kN loads at lever arms5 mand10 m.

The"Support" reactions matrix contains the horizontal and vertical support reactions at
joints A andE. Two points should be noted. First, because the horizontal component of externally
applied loads is zero, we expect that the sum of the horizontal reactions at jointsA andE will be
zero. They are. Second, you should also note that truss element 2 transfers all the externally applied
vertical loads to supportA. The vertical reaction at supportA is 20 kN, which is the sum of the two

Chapter 4 163

externally applied loads.

Analysis of an Electrical Circuit

Problem Statement.The analysis of electrical networks composed of resistance and voltage sup-
plies is governed by three basic principles:

1. Ohm’s Law. The drop in voltage across a resistorR in the direction of an assumed current is
proportional to the current. In other words,V = I ·R.

2. Kirchoff’s Law. The sum of all currents entering and exiting a node must equal zero.

3. Kirchoff’s Voltage Law. The sum of voltage drops around any closed loop must sum to zero.

Consider the circuit shown in Figure 4.5, consisting of three loops, nine resistors, and one battery.

10 V
-

+

I_1I_2I_3

6 Ohms5 Ohms

2 Ohms1 Ohm1 Ohm

5 Ohms

3
 O

hm
s

4
 O

hm
s

4
 O

hm
s

Figure 4.5. Three-loop voltage-resistance circuit.

The analysis begins with the arbitrary assignment of current directions in each of the three loops.
The current in each loop will be deemed to be positive when it flows in the direction shown. For
loop 1, a positive voltage change occurs between the negative and positive battery terminals. The
voltage drops across the upper and lower resistors in loop one are2I1 and6I1, and3 · (I1 − I2) in
the left-most resistor. Applying Kirchoff’s Voltage law to loop 1 gives

6 · I1 + 2 · I1 + 3 · (I1 − I2) = 10 V.

(4.20)

For loop 2, Kirchoff’s voltage law gives

164 Engineering Programming in Matlab

I2 + 5 · I2 + 3 · (I2 − I1) + 4 · (I2 − I3) = 0 V. (4.21)

and for loop 3, Kirchoff’s voltage law gives

I3 + 4 · I3 + 5 · I3 + 4 · (I3 − I2) = 0 V. (4.22)

Putting Equations 4.20 to 4.22 in matrix form gives

 11 −3 0
−3 13 −4

0 −4 14

 ·

I1

I2

I3

 =


10
0
0

 (4.23)

Program Source Code.Program 4.2 defines and initializes matrix Equation 4.23, and solves and
prints the solution to the currents in each of the three loops.

Computer Program 4.2 : Analysis of an Electrical Circuit

% ==
% electrical.m -- Compute currents in an electrical circuit
%
% Matrices : Resist = Rows represents resistors in each loop.
% : Voltage = Voltage gain in each loop provided by battery.
% : Current = Current in each loop.
%
% ==

% Setup matrix for "resistances in circuit loops"

Resist = [11 -3 0;
-3 13 -4;

0 -4 14]

% Setup matrix for "voltage gains" in circuit loops

Voltage = [10; 0; 0]

% Solve equations and print currents

Chapter 4 165

Current = Resist\Voltage

% ==
% the end!

Running the Program. Assume that Program 4.2 is stored inelectrical.m . The MATLAB
script

>> format compact
>> electrical
Resist =

11 -3 0
-3 13 -4

0 -4 14
Voltage =

10
0
0

Current =
0.9765
0.2471
0.0706

>>

shows the command needed to execute the program and the output that is generated. A(3 × 3)
matrix of system resistances is explicitly defined and initialized in one MATLAB statement. A
(3 × 1) matrix of system voltages is defined in second statement. With these matrices in place,
solutions to Equation 4.23 are computed and printed by simply writing:

>> Current = Resist\Voltage

Of course, we could have computed the currents in each loop of the circuit by writinginv(Resist)*Voltag e

Validating the Results.You should verify that the solution is correct by multiplying

>> Resist*Current

and checking that the result is equal toVoltage .

166 Engineering Programming in Matlab

Least Squares Analysis of Experimental Data

Problem Statement. Engineers are often faced with the practical problem of having to model
complex physical processes and phenomena that are not fully understood. The lack of understanding
may be due to the overwhelming size of the system, or perhaps, because information about the
system is missing. In an effort to better understand system behavior, many engineers design and
conduct laboratory experiments, and use the experimental data in the construction of simplified
empirical models. The simplified models will be based on numerous assumptions in behavior and
may contain parameters that can be adjusted or modified to provide a “best fit” to the experimental
data.

x

y

e2

e1

[x1 , y1]

[x2 , y2]

[x3 , y3]

e3

eN

[xN, yN]

y = p (x)

Figure 4.6. Experimental data points and line of best fit.

Figure 4.6 is a plot of experimental data points(x1, y1), (x2, y2), · · · (xN , yN), and a dashed-line
polynomialy = p(x) of best fit that has been drawn by hand. The polynomial might predict, for
example, the relationship between an input signal,x, and an output signal,y = p(x). Notice that
approximately half of the data points deviate from the line in a positive direction (i.e., are above the
line) and approximately half the data points are below the line (i.e., negative deviation).

Although it is certainly possible to find a high-order polynomial that will interpolate the
data points exactly, in many engineering applications, theoretical considerations and good engineer-
ing judgment indicate that a low-order polynomial (or simpler curve) will provide a good approx-
imation to the data. Unfortunately, there are no hard-and-fast rules for selecting a best functional
form. An engineer should look for obvious trends, such as a linear, quadratic, cubic polynomial, for
symmetries and antisymmetries in the data, and for periodic behavior, suggesting functional forms

Chapter 4 167

containingsin() andcos() terms.

Derivation of Discrete Least Squares Equations.In this section, we formulate a mathematical
procedure for fitting a polynomial curve

p(x) = ao + a1 · x + a2 · x2 + · · · + an · xn (4.24)

of degreen throughN data points(x1, y1), (x2, y2), · · · (xN , yN), where (N > n + 1). To
avoid mathematical difficulties with positive/negative distances in error deviations, the objective of
discrete least squares is to minimize the sum of the squares of the distance between they values of
the data, andy = p(x). In mathematical terms, we want to minimize

N∑
i=1

e2
i =

N∑
i=1

(yi − p(x))2 (4.25)

or

S(ao, a1, · · · , an) =
N∑
i=1

[yi − ao − a1 · xi · · · anxni]2 (4.26)

The optimal parameter settings are given by the solution to the linear equations

∂S

∂a0
= 0,

∂S

∂a1
= 0, · · · ∂S

∂an
= 0 (4.27)

The partial derivatives of Equations 4.27 are:

[
N∑
i=1

]
· ao +

[
N∑
i=1

xi

]
· a1 + · · · +

[
N∑
i=1

xni

]
· an =

∑N
i=1 yi (4.28)

[
N∑
i=1

xi

]
ao +

[
N∑
i=1

x2
i

]
a1 + · · · +

[
N∑
xn+1
i

]
an =

∑N
i=1 yi · xi (4.29)

[
N∑
i=1

xni

]
ao +

[
N∑
i=1

xn+1
i

]
a1 + · · · +

[
N∑
xn+m
i

]
an =

∑N
i=1 x

n
i · yi (4.30)

The family ofn+1 Equations 4.28 through 4.30 is linear in the parametersao, a1, · · · an. In matrix
form, the equations may be written

168 Engineering Programming in Matlab


N

∑N
i=1 xi · · ·

∑N
i=1 x

n
i∑N

i=1 xi
∑N
i=1 x

2
i · · ·

∑N
i=1 x

n+1
i

...
...

.. .
...∑N

i=1 x
n
i

∑N
i=1 x

n+1
i · · · ∑N

i=1 x
2n
i

 ·

a0

a1
...

an

 =



∑N
i=1 yi∑N

i=1 xi · yi
...∑N

i=1 x
n
i · yi

 (4.31)

Analysis of Experimental Data. Suppose that you have been asked to formulate an engineering
model to describe the force-displacement relationship for the simple spring shown on the left-hand
side of Figure 4.7. The purpose of the model is to describe the functional relationship between an
applied forceF and a measured displacementx .

Force FMass M

F
or

ce
 F

Displacement x

k (x)

Displacement x

[x_1 , F_1]

[x_4 , F_4]

[x_3 , F_3]

[x_2 , F_2]

EXPERIMENTAL DATAMASS - SPRING EXPERIMENTAL SETUP

Figure 4.7. Force-displacement experiment for mass-spring system

The force-displacement model is calibrated by conducting a displacement-controlled experiment,
where displacement of the mass is increased to a prescribed level and the force is measured. The
experimental results are

Data Displacement Force
Point (cm) (N)

===
1 5.0 0.0
2 5.5 47.5
3 6.0 90.0
4 6.5 127.5
5 7.0 160.0

Chapter 4 169

6 7.5 187.5
7 8.0 210.0

A schematic of coordinate pairs (measured displacement, applied force) is plotted on the right-hand
side of Figure 4.7. Theoretical considerations indicate that the force-displacement relationship is
mildly nonlinear and is closely approximated by the quadratic:

Force(x) = ao + a1 · x + a2 · x2 (4.32)

whereao, a1 anda2 are coefficients to be determined via experiment and least squares analysis.
Whenn = 2, Equation 4.31 takes the form:


N

∑N
i=1 xi

∑N
i=1 x

2
i∑N

i=1 ·xi
∑N x2

i

∑N
i=1 x

3
i∑N

i=1 ·x2
i

∑N x3
i

∑N
i=1 x

4
i

 ·


a0

a1

a2

 =



∑N
i=1 yi∑N

i=1 xi · yi∑N
i=1 x

2
i · yi


(4.33)

Program Source Code. Program 4.3 stores the experimental data in a matrixdata and then
assembles and solves the matrix Equation 4.33.

Computer Program 4.3 : Least Squares Analysis of Experimental Data

% ==
% leastsq.m -- Compute least squares polynomial fit on experimental data
%
% Experiment : x = displacement of spring (cm).
% f = force in spring (N).
%
% Least squares fit : p(x) = a + b.x + c.xˆ2
% ==

% Store force-displacement relationship in matrix "data"

data = [5.0 0.0;
5.5 47.5;
6.0 90.0;

170 Engineering Programming in Matlab

6.5 127.5;
7.0 160.0;
7.5 187.5;
8.0 210.0];

% Compute terms in least squares matrix and right-hand vector

N = 7;
sumx = sum(data(:,1));
sumy = sum(data(:,2));
sumxy = sum(data(:,1).*data(:,2));

sumx2 = sum(data(:,1).*data(:,1));
sumx2y = sum(data(:,1).*data(:,1).*data(:,2));
sumx3 = sum(data(:,1).*data(:,1).*data(:,1));
sumx4 = sum(data(:,1).*data(:,1).*data(:,1).*data(:,1));

A = [N sumx sumx2
sumx sumx2 sumx3

sumx2 sumx3 sumx4]

B = [sumy; sumxy; sumx2y]

% Compute and print constants a,b,c

Coefficients = A\B

% ==
% the end!

Running the Program. Assume that Program 4.3 is contained the M-fileleastsq.m . The script
of MATLAB I/O

>> format compact
>> leastsq
A =

1.0e+04 *
0.0007 0.0046 0.0303
0.0046 0.0303 0.2059
0.0303 0.2059 1.4282

B =
1.0e+04 *

0.0823
0.5836
4.1891

Coefficients =

Chapter 4 171

-750.0000
200.0000
-10.0000

>>

shows the commands used to run the program and the output that is generated. MatricesA and
B represent Equation 4.33. The matrixCoefficients contains the results of the least squares
analysis. That is, the values forao, a1, anda2 that provide the best fit of Equation 4.32 to the
experimental data.

Assembling the Least Squares Matrix Equations.Program 4.3 stores the system displacements
and applied forces in columns 1 and 2 of matrixdata . The most straightforward and, admittedly,
inefficient way of computing the matrix element terms in Equation 4.33 is with blocks of MATLAB
code that look similar to the following:

sumx2 = 0.0;
for i = 1:N

sumx2 = sumx2 + data(i,1)*data(i,1);
end,

Heresumx2 holds the sum ofx2
i terms needed for matrix elements A(1,3), A(2,2), and A(3,1).

Evaluation of this looping structure in MATLAB will be slow because it is interpreted. The same
numerical result can be obtained in much less time with the single statement

sumx2 = sum(data(:,1).*data(:,1));

Now the MATLAB functionsum is applied to matrix element-level multiply operations on all the
items in column one of matrix data. The.* syntax signifies matrix element-level multiply opera-
tions, and the colon (:) operation implies all of the items within a column of matrixdata .

It is possible, in fact, to completely eliminate thesumx2-type terms from the calculation
and to form the (3x3) least squares matrix in one statement block involving matrix element-level
multiplies ondata . Similar expressions can be written for matrixB.

Validating the Results. The polynomial coefficientsao = −750, a1 = 200, anda2 = −10 define
the force-displacement relationship

Force(x) = −750 + 200 · x − 10 · x2 (4.34)

= −10 · (x− 5) · (x− 15) (4.35)

The sum of deviations

172 Engineering Programming in Matlab

N∑
i=1

e2
i =

N∑
i=1

(yi − p(x))2 = 0.0 (4.36)

indicating that our second-order polynomial passes through the seven data points exactly (okay, we
confess, we set it up that way).

Distribution of Temperature in Chimney Cross-Section

Problem Statement. In this example, we use a finite difference approximation of Laplace’s equa-
tion to compute the distribution of temperature in a chimney cross-section. We select this problem
because it is typical of many that naturally occur in the analysis of equilibrium states of physical sys-
tems. For example, with suitable simplifying assumptions, Laplace’s equation can also describe (1)
the irrotational flow of an incompressible fluid, (2) electrostatic and magnetostatic potentials, and
(3) the hydraulic head associated with the steady-state flow of ground water in a uniform porous
medium.

Figure 4.8 shows the front elevation and square-shaped cross-section A-A for the tall chim-
ney. The chimney is constructed from a material that is homogeneous and isotropic (i.e., the material
has the same material properties in all directions). At the cross-section, the inside and outside tem-
peratures are200o C and0o C, respectively, and there is neither a net flow of heat to or from the
chimney (i.e., it is in thermal equilibrium). Finally, we assume that at the chimney cross-section,
the distribution of temperature is constant along thez axis.

Because the chimney is constructed from a material that is homogeneous, thermal conduc-
tivity will not vary with position, and because the material is isotropic, thermal conductivity will
not vary with direction. The steady-state distribution of temperatureT = T (x, y) throughout the
chimney cross-section is given by solutions to Laplace’s equation

∂2T (x, y)

∂x2
+
∂2T (x, y)

∂y2
= 0. (4.37)

with boundary conditions T =0o C along the exterior of the chimney, and T =200oC along the
chimney interior.

Finite Difference Mesh for Chimney Cross-Section

The chimney cross-section is symmetric about the x- and y-axes, and the two diagonal axes.
Our computational model takes advantage of symmetries about the x- and y-axes by modeling only

Chapter 4 173

AA

x

y

T = 0 C.

T = 200 C.

SECTION A - A

FRONT ELEVATION OF CHIMNEY

x

z

Figure 4.8. Front elevation and cross-section of tall chimney.

one quarter of the chimney cross section, as shown in Figure 4.9a. Two new boundary conditions
are needed for this model; along the y-axis the temperature gradientdT/dx = 0, and along x-axis
dT/dy = 0.

If dx anddy are the mesh distance in the x-axis and y-axis directions, then a suitable finite
difference approximation to Equation 4.37 is

[
T (x+ dx, y)− 2T (x, y) + T (x− dx, y)

dx2

]
+

[
T (x, y + dy)− 2T (x, y) + T (x, y − dy)

dy2

]
= 0.

(4.38)

Equation 4.38 is simply the two-dimensional counterpart of the finite difference approximation
derived for the cable profile problem. Ifdx = dy, then Equation 4.38 can be rearranged to give

4T (x, y)− T (x− dx, y)− T (x+ dx, y)− T (x, y + dy)− T (x, y − dy) = 0.
(4.39)

174 Engineering Programming in Matlab

AXIS OF SYMMETRY

T
 =

 2
00

 C

T = 200 C

T
 =

 0
 C

[dT / dy] = 0.

[
dT

 /
dx

]
 =

 0
.

x

y
T = 0 C

11

13

16 17 18

20

21

14 15

10 12

7 8 9

4 5 6

1 2 3

19

(a). Finite difference mesh

-1

-1

-1

-1

4

-1 -14

X - AXIS OF SYMMETRY [NODES 1 - 3].

-2

INTERIOR STENCIL [NODES 4 - 21].

(b). Finite difference stencils

Figure 4.9. Finite difference mesh and stencils for Equation 4.37

Chapter 4 175

The leftmost schematic of Figure 4.9b shows the weighting of discrete temperatures in the finite dif-
ference approximation. The nodes along the x-axis (i.e., y = 0) satisfy the finite difference equation

4 · T (x, 0) − T (x− dx, 0)− T (x+ dx, 0) − 2T (x, dy) = 0 (4.40)

The leftmost schematic of Figure 4.9b shows the and along the y-axis (i.e., x = 0)

4 · T (0, y)− 2T (dx, y) − T (0, y + dy)− T (x, y − dy) = 0 (4.41)

The finite difference mesh has 65 nodes, 26 of them being on the interior (i.e., T =Oo C) and
exterior (i.e., T =200o C) boundaries. This leaves 39 nodes on the chimney interior for evaluation.
Instead of evaluating the temperature stencils at all 39 interior nodes, we compute temperature only
at the 21 nodes labeled with small filled black boxes and fill in the remaining unknowns by noting
the symmetry in temperature along the linex = y. The four-node stencil is used at nodes 1 to 3,
and the five-node stencil is used at nodes 4 to 21.

Program Source Code.Our solution to this problem uses the “method of iteration” to compute
the steady-state temperature profile at the internal nodes. Once the temperature profile is known we
create a two-dimensional color contour plot of the temperature distribution inside the chimney wall.

Computer Program 4.4 : Distribution of Temperature in Chimney Cross-Section

% ==
% chimney.m -- Compute and displace profiles of temperature in
% chimney cross section.
% ==

% Setup working array and boundary conditions along
% internal/external walls.

T = zeros(9,9);

for i = 5:9;
T(i,5) = 200;

end;
for i = 1:5;

T(5,i) = 200;
end;
for i = 6:9;

176 Engineering Programming in Matlab

for j = 1:4;
T(i,j) = NaN;

end;
end;

% Loop over internal nodes and compute new temperatures

counter = 0;
maxchange = 200;

while (maxchange > 1)
counter = counter+1;
maxchange = 0;
k=5;
l=4;
for c = 6:8;

newtemp = 0.25*(2*T(l+1,c)+2*T(l,c+1));
tempchange = newtemp - T(l,c);
maxchange = max(maxchange,abs(tempchange));
T(l,c)=newtemp;

for r=k:8
newtemp = 0.25*(T(r,c-1)+T(r,c+1)+T(r-1,c)+T(r+1,c));
tempchange = newtemp - T(r,c);
maxchange = max(maxchange,abs(tempchange));
T(r,c)= newtemp;

end
newtemp = 0.25*(T(9,c-1)+T(9,c+1)+2*T(8,c));
tempchange = newtemp - T(9,c);
maxchange = max(maxchange,abs(tempchange));
T(9,c)=newtemp;
l=l-1;
k=k-1;

end
counter;
maxchange; % to view counter or maxchange remove

end

% Compute reflected temperature

for i = 2:4
for j = 1: 11-i

T(i,j) = T(10-j,10-i);
end

end

% Print temperature array.

T

Chapter 4 177

% Plot temperature contours.

contour(T)
hold;

% Now overlay perimeter of chimney section on contours.

perim = [1 , 1;
9 , 1;
9 , 9;
5 , 9;
5 , 5;
1 , 5;
1 , 1];

plot(perim(:,1),perim(:,2),’w’);
text(1.1,5.3,’Temp = 200.0’);
text(7.0,1.3,’Temp = 0.0’);

% ==
% The End!

Running the Program. Assume that Program 4.4 is contained in the M-filechimney.m . The
abbreviated script of MATLAB I/O:

>> format compact
>> chimney

.... lots of program output removed

T =

Columns 1 through 7

0 0 0 0 0 0 0
47.9527 47.4495 45.9241 42.8111 37.2518 28.7560 19.0375
96.9120 96.1208 93.6699 88.3435 77.7632 59.1105 38.4899

147.6536 147.0166 144.9543 139.9098 127.2653 92.5014 59.1105
200.0000 200.0000 200.0000 200.0000 200.0000 127.2653 77.7632

NaN NaN NaN NaN 200.0000 139.9098 88.3435
NaN NaN NaN NaN 200.0000 144.9543 93.6699
NaN NaN NaN NaN 200.0000 147.0166 96.1208
NaN NaN NaN NaN 200.0000 147.6536 96.9120

Columns 8 through 9

178 Engineering Programming in Matlab

Figure 4.10.Temperature profile in chimney.

0 0
9.3215 0

19.0375 0
28.7560 0
37.2518 0
42.8111 0
45.9241 0
47.4495 0
47.9527 0

>>

shows the commands needed to run the chimney analysis and compute the distribution of tempera-
ture throughout the chimney cross-section. Figure 4.10 is two-dimensional contour plot of chimney
temperature.

Chapter 4 179

Computational Procedure. The first block of code sets up a (9x9) matrix for modeling one fourth
of the chimney cross-section. The temperature along the interior and exterior walls is set to 200
and 0 degrees, respectively. In MATLAB the interior region of the chimney can be represented with
NaNs. That is, a missing data item. At this point in the program execution, the contents of matrix T
are

T =

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

200 200 200 200 200 0 0 0 0
NaN NaN NaN NaN 200 0 0 0 0
NaN NaN NaN NaN 200 0 0 0 0
NaN NaN NaN NaN 200 0 0 0 0
NaN NaN NaN NaN 200 0 0 0 0

The main block of code walks along columns 6 through 8 and evaluates the finite difference stencils
for

Column No Row Nos
============================

6 4 through 9
7 3 through 9
8 2 through 9

============================

For example, after the algorithm has walked along column 6 for the first time, the contents of T are

T =

Columns 1 through 7

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

200.0000 200.0000 200.0000 200.0000 200.0000 50.0000 0
NaN NaN NaN NaN 200.0000 62.5000 0
NaN NaN NaN NaN 200.0000 65.6250 0
NaN NaN NaN NaN 200.0000 66.4062 0
NaN NaN NaN NaN 200.0000 83.2031 0

Columns 8 through 9

180 Engineering Programming in Matlab

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Bear in mind that the temperature at stencil T(4,6) is still zero because all the neighboring stencils
are initially zero. The three-line block of code

newtemp = 0.25*(T(9,c-1)+T(9,c+1)+2*T(8,c));
tempchange = newtemp - T(9,c);
maxchange = max(maxchange,abs(tempchange));

computes the new temperature estimate at the node, the change in node temperature from the pre-
vious iteration, and the maximum change in temperature occurring over rows 6 through 8 for the
current iteration.

The outermost loop of the algorithm will iteratively refine the temperature profile until
satisfactory convergence occurs. For this example, we stop refining the temperature profile when
the maximum change in temperature over rows 6 through 8 is less than 1 degree. At the conclusion
of the main block of code, the temperature profile is

T =

Columns 1 through 7

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 38.4899
0 0 0 0 0 92.5014 59.1105

200.0000 200.0000 200.0000 200.0000 200.0000 127.2653 77.7632
NaN NaN NaN NaN 200.0000 139.9098 88.3435
NaN NaN NaN NaN 200.0000 144.9543 93.6699
NaN NaN NaN NaN 200.0000 147.0166 96.1208
NaN NaN NaN NaN 200.0000 147.6536 96.9120

Columns 8 through 9

0 0
9.3215 0

Chapter 4 181

19.0375 0
28.7560 0
37.2518 0
42.8111 0
45.9241 0
47.4495 0
47.9527 0

The final temperature profile is obtained by reflecting the temperatures along the line y = x.

Of course, the temperature profile may also be computed by writing and solving the finite
difference equations in matrix form (see Problem 4.8).

4.7 Review Questions

1. Explain how a system ofm linear equations containingn unknowns can be represented in
matrix form.

2. What are the three types of solutions matrix equations can have?

3. What role does the matrix determinant play in determining whether a family of matrix equations
will have a unique solution.

4. LetA be a(n×n) matrix andB be a(n× 1) matrix. Under what conditions will the solution to
A.X = B have an infinite number of solutions? How would you use MATLAB to detect this
situation?

5. Suppose that a family of three equations, each having three unknowns, is graphed in three-
dimensional space and that it is immediately apparent that one of the equations is a linear
combination of the remaining two. If the equations are written in matrix form, what can you
say about (1) the matrix rank, (2) the matrix determinant, and (3) the matrix inverse?

182 Engineering Programming in Matlab

4.8 Programming Exercises

4.1 Beginner. Suppose that the cable profile of a small suspension bridge carrying a uniformly
distributed load

w

x

Cable Profile

Deck of Bridge

Deck of Suspension Bridge

Uniform Load along

20

10

Cable Hangers

DIAGRAM NOT TO SCALE

10

corresponds to the solution of the differential equation

d2w

dx2
= 1.0 (4.42)

with the boundary conditionsw(0) = 10 andw(10) = 20. It is easy to show that the analytic
solution to the cable profile is

w(x) =
1

2
x2 − 4x+ 10 (4.43)

Now solve Equation 4.42 via the method of finite differences.

1. What is a suitable finite difference approximation to Equation 4.42?.

2. If the cable profile is divided into five regions along the x-axis, with four internal nodes,
write down the family of finite difference equations that you would solve for the cable
profile (do not try to find a solution to these equations).

Chapter 4 183

3. Write a MATLAB program to solve the family of equations by the “method of iteration.”

4. Write down the family of linear matrix equations corresponding to this finite difference
problem. Write a MATLAB program that computes the solution to these equations, and
then displays the numerical solution and Equation 4.43 on the same graph.

4.2 Beginner. Figure 4.8 shows a three-loop voltage-resistance circuit, containing one battery
and seven resistors.

10 V
-

+

I_1I_24
 O

hm
s

3
 O

hm
s

2 Ohms 1 Ohm

6 Ohms 6 Ohms

5 Ohms

I_3

Figure 4.11.Three-loop voltage-resistance circuit.

Write a MATLAB program to compute and print the magnitude of current flows in each of
the three loops. For each loop, assume that anticlockwise current flow is positive.

4.3 Intermediate. In the solution of many fluid mechanics and chemical engineering problems,
conservation of mass is a central principle. Briefly stated, conservation of mass accounts for
all sources and sinks of a material that pass in and out of a control volume (see the left-hand
side of Figure 4.12).

For a specified interval of time, the accumulation of substance is simply the sum of the inputs
minus the sum of the outputs. When the sum of the inputs equals the sum of the outputs,
accumulations are zero, and the mass within the volume will be constant. Since the mass
within the volume does not change with time, we say that such a system is in steady state.

184 Engineering Programming in Matlab

Accumulation of Mass

Input Output Q1, C1

Q2, C2

Q1 = 2 m^3 / sec

C1 = 0.02 kg / m^3

STEADY - STATE COMPLETELY MIXED

REACTOR

C2 = 0.015 kg / m^3

Q2 = 1 m^3 / sec

C3 = ?????

Q3 = 3 m^3 / sec

Q3, C3

MASS MALANCE IN CONTROL

VOLUME

Mixer

Control Volume

Figure 4.12.Conservation of mass in fully mixed reactor.

The principle of conservation of mass can be used to determine the concentrations of
substances in system of coupled fully mixed reactors. To see how the analysis proceeds, let’s
first look at the single fully mixed reactor shown on the right-hand side of Figure 4.12. The
reactor has one input pipe and two output pipes. You should observe that the concentration at
the output pipe is not shown because it can be computed via the principle of conservation of
mass.

The mass of substance passing through each pipe is simply the flow rate, Q (m3/sec),
multiplied by the concentration of substance C(kg/m3). For a system in steady state (where
the mass does not increase or decrease due to chemical reactions), conservation of mass re-
quires

C1 ·Q1 +Q2 · C2 = Q3 · C3. (4.44)

Hence, the concentration of mass in the output pipe is

C3 =

[
(Q1 · C1 +Q2 · C2)

Q3

]
=

[
0.055

3

]
kg/m3. (4.45)

Exactly the same principles can be used to compute the concentration of substances in the
network of fully mixed reactors shown in Figure 4.13. The concentrations of mass in reactors

Chapter 4 185

C_2 C_3

Q_p1 = 2 m^3 / sec;

C_p1 = 0.02 kg/m^3;

C_4

C_1

Q_p2 = 1 m^3 / sec;

C_p2 = C_2

Q_12 = 3 m^3/sec

Q
_2

4
 =

 1
 m

^3
/s

ec
;

Q_p3 = 0.5 m^3/sec;

C_p3 = 0.10 kg/m^3;

Q_34 = 1.5 m^3/sec;

Q_p4 = 1.5 m^3/sec;

C_p4 = C_4;

Q_41 = 1 m^3/sec;

Q_23 = 1 m^3/sec;

Figure 4.13.Network of four fully mixed reactors.

1 through 4 are denoted by the symbolsC1, C2, C3 andC4. Because there are four reactors,
four simultaneous mass-balance equations are needed to describe the distribution of substance
concentrations.

1. Show that the mass-balance equations may be written


Q12 0 0 −Q41

Q12 −Q12 0 0
0 −Q23 Q34 0
0 Q24 Q34 −(Qp4 +Q41)

 ·

C1

C2

C3

C4

 =


Q12 · Cp1

0
Qp3 · Cp3

0

 (4.46)

2. Develop a MATLAB program to solve Equations 4.46 for the concentrations in each
reactor.

4.4 Intermediate. In the design of highway bridge structures and crane structures, engineers are
often required to compute the maximum and minimum member forces and support reactions
due to a variety of loading conditions.

186 Engineering Programming in Matlab

B C

F1 F2

x

y

A

P1 kN P2 kN
R_ay

R_dy

5
m

5 m5 m 5 m

F3

F4 F5 F6 F7 F8

F9

D

E F

Figure 4.14.Front elevation of pin-jointed bridge truss.

Figure 4.14 shows a nine bar pin-jointed bridge truss carrying vertical loadsP1 kN andP2 kN
at jointsB andC. The symbolsF1, F2, · · · F9 represent the axial forces in truss members 1
through 9, andRay andRdy are the support reactions at jointsA andD. (Notice that because
support D is on a roller and there are no horizontal components of external loads, horizontal
reactions will be zero.)

Write down the equations of equilibrium for jointsB throughF and put the equa-
tions in matrix form. Now suppose that a heavy load moves across the bridge and that, for
engineering purposes, it can be represented by the sequence of external load vectors

[
P1

P2

]
=

[
10
0

]
,

[
P1

P2

]
=

[
5
5

]
,

[
P1

P2

]
=

[
0

10

]
(4.47)

Develop a MATLAB program that will solve the matrix equations for each of the external
load conditions, and compute and print the minimum and maximum axial forces in each of
the truss members.

4.5 Intermediate-Advanced. In the detailed stages of a petroleum refinery design, an experi-
ment is conducted to determine the empirical relationship between solubility weight (%) of
n-butane in anhydrous hydrofluoric acid at high pressures and temperature. A plot of the
experimental data

Chapter 4 187

Data Point Temperature (C) Solubility (%)
==

1 25 2.5
2 38 3.3
3 85 7.1
4 115 11.0
5 140 19.7

on semilog graph paper indicates that solubility and temperature follow the nonlinear rela-
tionship

Solubility s(t) = aoe
a1·t. (4.48)

whereao anda1 are parameters to be determined. A linear least squares problem can be
obtained by applying the transformation loge(s(t)) = loge(ao) + a1 · t.

1. Show that the least squares estimate of parametersao anda1 is given by solutions to the
matrix equations

 N
∑N
i=1 ti∑N

i=1 ti
∑N
i=1 t

2
i

 ·
 loge(ao)

a1

 =


∑N
i=1 loge(si)∑N

i=1 ti · loge(si)


(4.49)

2. Write a MATLAB program to compute parametersao anda1 by solving matrix Equation
4.49.

4.6 Intermediate. Figure 4.15 is a three-dimensional view of a 2 by 2 km site that is believed to
overlay a thick layer of mineral deposits.

To create a model of the mineral deposit profile and establish the economic viability of mining
the site, a preliminary subsurface exploration consisting of 16 bore holes is conducted. Each
bore hole is drilled to approximately 45 m, with the upper and lower boundaries of mineral
deposits being recorded. The bore hole data is as follows:

Borehole [x, y] coordinate [upper, lower] mineral surfaces
==

1 [10.0 m, 10.0 m] [-30.5 m, -40.5 m]
2 [750.0 m, 10.0 m] [-29.0 m, -39.8 m]
3 [1250.0 m, 10.0 m] [-28.0 m, -39.3 m]
4 [1990.0 m, 10.0 m] [-26.6 m, -38.5 m]
5 [10.0 m, 750.0 m] [-34.2 m, -41.4 m]

188 Engineering Programming in Matlab

x

y

z

20
00

 m

2000 m

Data Point [x, y, z] Upper Surface of

mineral deposits

Lower Surface of

mineral deposits

Figure 4.15.Three-dimensional view of mineral deposits.

6 [750.0 m, 750.0 m] [-32.8 m, -40.6 m]
7 [1250.0 m, 750.0 m] [-31.8 m, -40.1 m]
8 [1990.0 m, 750.0 m] [-30.3 m, -39.4 m]
9 [10.0 m, 1250.0 m] [-36.7 m , -42.0 m]

10 [750.0 m, 1250.0 m] [-35.2 m, -41.2 m]
11 [1250.0 m, 1250.0 m] [-34.2 m, -40.7 m]
12 [1990.0 m, 1250.0 m] [-32.8 m, -40.0 m]
13 [10.0 m, 1990.0 m] [-40.4 m, -42.8 m]
14 [750.0 m, 1990.0 m] [-39.0 m, -42.1 m]
15 [1250.0 m, 1990.0 m] [-38.0 m, -41.6 m]
16 [1990.0 m, 1990.0 m] [-36.5 m, -40.9 m]

With the bore hole data collected, the next step is to create a simplified three-dimensional
computer model of the site and subsurface mineral deposits. The mineral deposits will be
modeled as a single six-sided object. The four vertical sides are simply defined by the bound-
aries of the site. The upper and lower sides are to be defined by a three-dimensional plane

z(x, y) = ao + a1 · x+ a2 · y (4.50)

Chapter 4 189

where coefficientsao, a1, anda2 correspond to minimum values of

S (ao, a1, a2) =
N∑
i=1

[zi − z(xi, yi)]2 (4.51)

Things to do:

1. Show that minimum value ofS(ao, a1, a2) corresponds to the solution of the matrix
equations


N

∑N
i=1 xi

∑N
i=1 yi∑N

i=1 xi
∑N x2

i

∑N
i=1 xi · yi∑N

i=1 yi
∑N xi · yi

∑N
i=1 y

2
i

 ·

ao

a1

a2

 =



∑N
i=1 zi∑N

i=1 xi · zi∑N
i=1 yi · zi

 (4.52)

2. Write an M-file that will create three-dimensional plots of the borehole data at the lower
and upper surfaces.

3. Write an M-file that will set up and solve the matrix equations derived in part 1 for the
upper and lower mineral planes.

4. Compute and print the average depth and volume of mineral deposits enclosed within the
site.

Note. The least squares solution corresponds to the minimum value of functionS(ao, a1, a2).
At the minimum function value, we will have

dS

dao
=

dS

da1
=

dS

da2
= 0 (4.53)

Matrix Equation 4.52 is simply the three equations 4.53 written in matrix form. You should
find that the equation of the upper surface is close toz(x,y) = -30.5 + x/500 -
y/200 and the lower surface close is toz(x,y) = -40.5 + x/1000 - y/850 .

4.7 Intermediate. Repeat the “chimney temperature” problem using the following problem-
solving procedure:

190 Engineering Programming in Matlab

1. Write an M-file that sets up the finite difference equations in matrix form and then com-
putes a solution by solving A.T = B, where T is the temperature at the internal nodes of
the chimney.

2. Create a three-dimensional mesh (or surface) plot of the temperature distribution in one
fourth of the chimney cross section.

4.8 Intermediate. Figure 4.16 shows the cross-section of a long conducting metal box with a
detached lid.

0 Volts

100 Volts

Axis of Symmetry

CROSS SECTION OF METAL BOX FINITE DIFFERENCE GRID

Figure 4.16.Cross-section of tall (infinite) metal box.

The sides and bottom of the box are at100 Volts potential, and the lid is at ground (0 V)
potential. Laplace’s equation and the method of finite differences can be used to compute
the distribution of potential inside the box. The solution procedure is almost identical to the
chimney problem described in the chapter, but with temperature changed to voltage.

The box is assumed to extend to infinity in thez direction (so that there are no “edge
effects” to consider). This simplifies the problem to two dimensions (x andy). The static
distribution of voltage,V = V (x, y), inside the metal box is given by solutions to Laplace’s
equation

∂2V (x, y)

∂x2
+
∂2V (x, y)

∂y2
= 0 (4.54)

Chapter 4 191

with boundary conditions V =0 V on the top or lid of the box and V =100 V along both sides
and the bottom of the box. Write a MATLAB program that will

1. Compute the voltage distribution inside the box via the method of finite differences de-
scribed in Chapter 8 of the C tutorial.

2. Plot a contour map of the voltage potential.

3. Optional. Change the potential on the walls and lid of the box relative to each other and
show how the voltage distribution changes.

Bibliography

[1] Arnold, K., Gosling, J. The Java Programming Language. Addison-Wesley, Reading, MA
01867, 1996.

[2] Boehm, B.W. A spiral model of software development and enhancement.IEEE Computer,
21(5):61–72, 1988.

[3] Booch, G. Object-Oriented Analysis and Design with Applications. Benjamin Cummings,
Redwood City, CA 94065, 2nd edition, 1994.

[4] Brooks, F.The Mythical Man-Month. Addison-Wesley, 1975.

[5] Clements, P. C., Parnas, P. L., Weiss, D. M. The modular structure of complex systems.Proc
7th International Conf. on Software Engineering, pages 408–417, March 1984.

[6] Dongarra, J.J., Bunch, J.J., Moler, C.B., Stewart, G.W. LINPACK User’s Guide.SIAM, 1979.

[7] East, S.Systems Integration – A Management Guide for Manufacturing Engineers. McGraw-
Hill, 1994.

[8] Linton M. dbx. Technical report, Berkeley, CA 94720, 1982.

[9] Meyer, B. Object-oriented Software Construction. Prentice-Hall International Series in Com-
puter Science, Hertfordshire, UK, 1988.

[10] Nievergelt, J., Hinrichs, K.H.Algorithms and Data Structures : With Applications to Graphics
and Geometry. Prentice-Hall, Englewood Cliffs, NJ 07632, 1993.

[11] Osterhout, J.K. Tcl and the Tk Toolkit. Addison-Wesley Professional Computing Series,
Reading, MA 01867, 1994.

[12] Parnas, D. L. On the criteria to be used in decomposing systems into modules.Communica-
tions of the ACM, 15:330–336, December 1972.

192

Chapter 4 193

[13] Press, L. Personal computing : Technetronic education : Answers on the cultural horizon.
Communications of the ACM, 36(5):17–22, May 1993.

[14] Royce, W.W. Managing the development of large software systems. InProceedings of the
IEEE WESCON, August 1970.

[15] Smith, B.T., Boyle, J.M., Ikebe, Y., Klema, V.C., Moler, C.Matrix Eigensystem Routines :
EISPACK Guide. Springer-Verlag, 2nd edition, 1970.

[16] Tesler, L.G. Networked computing in the 1990’s.Scientific American, 265(3):86–93, Septem-
ber 1991.

[17] Wall, L., Christiansen, T., Schwartz, R.Programming Perl. O’Reilly and Associates, Se-
bastopol, CA 95472, 2nd edition, 1993.

