

JUCAV Deck Handling
System

Ryan Foley

Tuesday, December 12, 2006

ENPM 643

JUCAV Deck Handling System

 2

Table of Contents

Table of Contents... 2

Project Overview ... 3

Background Information.. 4

JUCAV ...4

OmniBird..5

SOS Processor...6

Controller..6

High Level System Layout .. 7

Goals and Scenarios... 7

Goals and Scenarios... 8

UML.. 9

Use Case Diagram...9

Activity Diagrams... 10

Use Case #1: Collect Data .. 10

Use Case #2: Process Image .. 11

Use Case #3: Generate Control Commands... 12

Use Case #4: Control Omnibird.. 14

Use Case #5: Control JUCAV ... 16

Class Diagram... 17

Requirements ... 18

Traceability Matrix.. 19

LTSA... 20

Verification Plan ... 21

LTSA: MSC High Level ... 22

LTSA: LTS Diagrams ... 23

LTSA: MSC Traces... 24

LTSA: MSC Traces... 25

LTSA: Validation and Verification.. 26

LTSA: Validation and Verification.. 27

Conclusions ... 28

References ... 29

Appendix ... 30

Final LTSA... 30

XML Code .. 30

JUCAV Deck Handling System

 3

Project Overview
For the past decade the Defense Advanced Research Projects Agency has been

developing the first unmanned combat aerial vehicle. The program is co-sponsored by

the US Navy and US Air force and has been called the Joint Unmanned Combat Air

System of J-UCAS. In order for the Navy to maintain some control over this program the

Joint Unmanned Combat Aerial Vehicle (JUCAV) must be able to land and function on

an aircraft carrier. My current employer, Genex Technologies, has been functioning as a

subcontractor in charge of developing a novel deck taxiing system. Genex has been

developing an optical sensor called the Omnibird that will serve as the eyes of the

JUCAV on the flight deck.

The deck taxiing system has the ultimate goal of allowing the JUCAV to function

exactly as a manned fighter would function. The Navy wants to keep the same flight

deck crew and personnel in place for years to come. This means that the Omnibird

system must find the flight deck personnel in charge of the JUCAV; capture his image,

distinguish the commands he is giving the vehicle, and relay them to the JUCAV.

The scope of this project is to design the deck taxiing system and verify that the

JUCAV can be under the deck controllers command at all times. This project also serves

as an add-on to the work done at Genex Technologies regarding their Omnibird system.

JUCAV Deck Handling System

 4

Background Information
The JUCAS is an extremely complex system and therefore large sub-systems will

not be touched in this project. Below is a description of the main sub-systems that are

included in this project.

JUCAV

The JUCAV is by far the most interesting and complex sub-system in this system.

The JUCAV is intended to enter military service in 2010 under the US Navy and US Air

Force. Currently there are two competing contractors working on different versions of

the same vehicle. Boeing is developing the X-45 and Northrop Grumman is developing

the X-47. Both prototypes are extremely similar and for the purposes of this project will

be identified simply as the JUCAV.

Both planes will share the exact same operating system under development by the

US Navy. The future goal of the JUCAS system is to provide an unmanned fighter that

can effectively do everything. The JUCAV can be used for surveillance, reconnaissance,

strategic bombings, air to air refueling, and anything else the Navy and Air Force can

dream up. One of the main goals of the system is to allow the JUCAV to deploy

munitions deep over hostile territories as a first strike. This way there is no threat to US

Figure 1: Northrop X-47 Prototype Artist Rendition

Figure 2: Boeing X-45 (left) and Northrop X-47 (right)

JUCAV Deck Handling System

 5

personnel.

Figure 2 below shows a comparison of the current iteration X-45 and X-47

JUCAV’s in development. Both JUCAV’s maintain similar performance specifications

as you can see from Figure 2. Both have an altitude of roughly 40,000 ft, a payload of

4,000 lbs, and fly at speeds just below the speed of sound. They both maintain similar

profiles and resemble B-2 Stealth Bombers in their appearance. The flying wing design

is used to reduce the JUCAV’s radar signature. This feature coupled with the use of

radar absorbing materials in the fuselage design will make the JUCAV the most advanced

stealth aircraft in the world.

OmniBird

 Genex Technologies Omnibird is quite a

remarkable design. The biggest

accomplishment is its size. It is all fits into a

two inch cube! The Omnibird system makes

use of a miniature sensor with a 1.3 megapixel

resolution. This sensor is mounted to

specialized optics that allows the Omnibird to

see from ranges of 10 feet to 250 feet, which

coincidentally is the distance a controller must

maintain to an aircraft, according to Navy

standards. The specialized optics allows for a

zoom of about 5.2X magnification. This is

about one and a half times the standard optical

zoom on most recreational hand held cameras.

The sensor and optics are also mounted to a

miniature stepping motor that allows the

Omnibird to see 270 degrees.

 Unlike typical zoom

optics where a lens is moved

closer and farther to the

viewing plane to achieve

zooming capabilities the

Omnibird uses a switching

mirror and stationary optics.

This allows the system to

achieve a large zoom in a

very small area. Figure 4, to

the left, shows a preliminary

Omnibird design a

description of how the FOV

switch works. As you can

Figure 4: Mirror out of plane, Narrow FOV (left), and Mirror in

plane, Wide FOV (right)

Special Optical
& Mechanical

Structure

Shock
Resistance
Structure

Panning
Motor

Camera
Sensor

Special Optical
& Mechanical

Structure

Shock
Resistance
Structure

Panning
Motor

Special Optical
& Mechanical

Structure

Shock
Resistance
Structure

Panning
Motor

Camera
Sensor

Figure 3: Omnibird

JUCAV Deck Handling System

 6

see from the image the FOV switch allows for two FOV’s using limited motion and

allows for the compact design of the entire system.

SOS Processor

Also included as part of the Omnibird but outside of its packaging is

another Genex product called the Smart Optical System (SOS). The SOS is an

image processing board that allows for real time video to be processed on board.

This will allow the images acquired from the Omnibird to be processed

immediately so that only the relevant data is transmitted to the JUCAV Control

System and the Omnibird.

Controller

The Navy personnel involved in deck taxiing are critical to the system. The

Navy’s Controllers are in charge of directing the JUCAV where to go on the flight deck.

From the time the JUCAV lands to the time it launches for a mission the Controller is

directly responsible for the vehicle.

 The Navy has submitted a requirement that no deck handling procedures will

change from the current procedures just because the plane has no pilot. This will allow

the tried and true practices to continue into the future, and also save the Navy a great deal

of time and money because they will not have to develop new procedures, retrain

personnel, or add new personnel.

In order for the system to function day or night the Controllers must use a special

marker system. The controller will have a marker on each hand, chest, and his head. The

hand markers will distinguish the command given to the JUCAV, and the roughly fixed

distance between the head and chest markers will allow the Omnibird to distinguish the

Controller from the JUCAV. These markers will work in conjunction with the Omnibird

by incorporating LEDs into their design that transmit light at roughly 940nm wavelength.

This will allow for maximum absorption by the Omnibird and minimum interference with

other naval equipment, namely night vision goggles which function at about 760nm.

Figure 5: Flight Deck Controller (left), and Filtered image of Markers (right)

JUCAV Deck Handling System

 7

High Level System Layout

An aircraft carrier flight deck is one of the most dangerous and exciting places on

earth. The Figure 6 shows that there are many persons and many planes and many

obstacles that interfere with a Controller directing a plane. This project focuses on a

simplified flight deck consisting of only one JUCAV, one controller, and no other

obstacles. In reality this is a much more complicated system to design and safely operate.

The overall system in this project consists of three main sub-systems; the

Controller, the Omnibird, and the JUCAV. Figure 6 shows a high level system layout.

The three main sub-systems have individual components that will be the basis of the

system designed in this project.

Panning

Motor

FOV Switching

Mechanism

Sensor
JUCAV Control

System

Director

SOS Processor

JUCAV

Navy

Command

Omnibird

Controller

JUCAV

Figure 6: High Level System Layout

Panning

Motor

FOV Switching

Mechanism

Sensor
JUCAV Control

System

Director

SOS Processor

JUCAV

Navy

Command

Omnibird

Controller

JUCAV

Figure 7: Artist rendition of deck conditions

JUCAV Deck Handling System

 8

Goals and Scenarios
The goals for the system were determined based upon the basic need of the system which

is to have one controller safely control the JUCAV. The scenarios are based on inherent

understanding of the system and the use cases below.

Goal #1: The Omnibird collects valid data.

Scenarios

1 Omnibird is fully functional

2 Omnibird is viewing the Controller for the entire time

3 Controller gives valid data

Goal #2: JUCAV only moves as intended

Scenarios

1 System processing data

2 Filtering algorithms eliminates invalid/unnecessary data

3 Filtering algorithms pass on valid commands

4 JUCAV alerts controller of malfunctions

Goal #3: Omnibird Functions at all locations on flight deck

Scenarios

1 Narrow FOV

2 Wide FOV

Goal #4: JUCAV only takes commands from one Controller

Scenarios

1 One controller on deck

2 Two controllers on deck

JUCAV Deck Handling System

 9

UML
 The role of UML diagrams in this project is to describe the system. I have

chosen to use ArgoUML as a modeling program. ArgoUML is an open source Java

program that allows for the creation of and cross referencing of all UML diagrams in

UML 2.0 format. This was especially useful in creating consistent UML diagrams. The

ArgoUML source is provided in the reference section below.

Use Case Diagram

The Use Case Diagram shows the basic functions or use cases of the system.

There are five main functions; Collect Data, Process Image, Generate Control

Commands, Control Omnibird, and Control JUCAV. The actors are shown so that you

can see that the “sub-actors” have a generalized relationship with the primary actors.

Figure 8: UML: Use Case Diagram

JUCAV Deck Handling System

 10

Activity Diagrams

Activity Diagrams are created by analyzing the flow of events that are encapsulated in

each of the Use Cases from the Use Case Diagram. The below descriptions of the

Activity Diagrams are generated directly from their specified Use Case.

Use Case #1: Collect Data

The Omnibird locates the Controller and captures

images of Controller that are sent to the processor.

Primary Actor: Omnibird and Controller

Preconditions: JUCAV has landed, Controller is

present, Omnibird is operational.

Post conditions: Data is sent to processor

Flow of Events:

1. Locate Controller

2. Capture Image

3. Send image to processor

Figure 9: UML Activity

Diagram #1: Collect Data (See

appendix for more detail)

JUCAV Deck Handling System

 11

Use Case #2: Process Image

SOS Processor receives the image

frames from the sensor and extracts

the XY coordinates for each of the

four markers on the controller.

Primary Actor: Omnibird

Preconditions: Omnibird has

transferred image frames from the

sensor to the SOS processor.

Post conditions: Data is collected.

Flow of Events:

1. Receive image (Usable

Image)

2. Generate XY coordinates for

each marker

3. Data is sent on

Figure 10: UML Activity Diagram #2: Process Image

(See appendix for more detail)

JUCAV Deck Handling System

 12

Use Case #3: Generate Control Commands

The processed image data is post processed and controls are generated for the FOV

switching mechanism, motor controller and JUCAV.

Figure 11: UML Activity Diagram #3: Generate Control Commands (See

appendix for more detail)

JUCAV Deck Handling System

 13

Primary Actor: Omnibird, JUCAV

Preconditions: XY coordinates have been processed from image and passed on.

Post conditions: Signal is passed on.

Flow of Events:

1. Receive XY Coordinates

2. Generate FOV control signal

3. Generate motor control signal

4. Pass signal on

Alternate Flow of Events #1:

1. Receive XY coordinates

2. Send XY Coordinates to JUCAV

3. Run tracking coordinates through command database

4. Generate plane control signal (Motion Identified)

5. Pass on signal

JUCAV Deck Handling System

 14

Use Case #4: Control Omnibird

The control commands generated by the SOS processor are sent to the FOV switching

mechanism and the motor controller. The FOV switch and motor are directed into proper

positions and the new positions are updated.

Figure 12: UML Activity Diagram #4: Control Omnibird (See appendix for more detail)

JUCAV Deck Handling System

 15

Primary Actor: Omnibird

Preconditions: Control signals are generated and passed on appropriately.

Post conditions: Updated conditions ore recorded

Flow of Events:

1. Receive Control Commands From SOS Processor

2. Direct Motor into Position (if new position)

3. Send new position data to SOS Processor

Alternative Flow of Events #1:

1. Receive Control Commands From SOS Processor

2. Select Appropriate FOV (if new position)

3. Send new position data to SOS Processor

JUCAV Deck Handling System

 16

Use Case #5: Control JUCAV

The control signal directs the engine/brakes to carry out the Controllers intended motion

Primary Actor: JUCAV

Preconditions: A motion is

identified and a control signal

is generated and passed onto

the JUCAV.

Post conditions: JUCAV is

awaiting next command from

Controller.

Flow of Events:

1. Receive plane control

signal

2. Move JUCAV

3. Wait for next command

Figure 13: UML Activity Diagram #5: Control JUCAV

(See appendix for more detail)

JUCAV Deck Handling System

 17

Class Diagram

The class diagram above shows the interdependent relationships between the

classes and sub classes of the system. As you can see from the diagram the Omnibird,

Controller, and JUCAV have their inner classes packaged in an outer envelope as shown.

This allows the system to be very organized but also allows you to see how the inner

classes interact amongst each other inside the package envelope, and out.

Figure 14: UML: Class Diagram (See appendix for more detail)

JUCAV Deck Handling System

 18

Requirements
1 User Requirements

1.1 Controller shall understand when he has control of JUCAV.

1.2 Controller must understand flight deck procedures.

1.3 Controller does not pass false instructions to JUCAV.

1.4 Controller must be able to direct JUCAV into position

1.5 Controller must quickly control JUCAV upon landing.

2 Performance Requirements

2.1 Sensor is calibrated appropriately.

2.2 Omnibird shall be connected to JUCAV.

2.3 Sensor shall be connected to SOS processor.

2.4 Image processing accurately determines XY coordinates of markers.

2.5 Data processed must be reliable.

2.6
Data must be able to be obtained when the Controller is at both ends of the flight
deck.

2.7 Data must be obtained while JUCAV is in motion.

2.8 Omnibird recognizes all instructions from Controller.

2.9 Omnibird must be able to keep Controller inside of its FOV.

3 Functional Requirements

3.1 Omnibird must meet requirements of the JUCAV.

3.2 Omnibird must not need regular maintenance.

3.3 Controller must meet requirements of the Flight Deck.

3.4 Omnibird must be able to function on the Flight Deck.

3.5 Omnibird must alert Controller of a malfunction.

3.6 Omnibird does not give false directions to JUCAV.

3.7 Omnibird must function 24/7.

4 Safety Requirements

4.1 JUCAV must remain on Flight Deck while being directed by controller.

4.2 Controller must remain on Flight Deck.

4.3 JUCAV must not move with out a Controller directing it.

4.4 Omnibird must be able to locate a Controller.

4.5 Omnibird must only take directions from one Controller.

4.6 JUCAV shall not be in motion if there is no data being collected.

4.7 JUCAV can alert Controller of Omnibird malfunction.

5 Test Requirements

5.1 Omnibird tested to meet conditions on Flight Deck.

5.2 Omnibird tested to meet user alert requirements.

5.3 Tested to determine what data is observed from Controller.

5.4 Tested to determine what data is passed to JUCAV.

5.5 Test to verify image processing algorithm.

5.6 Test to verify complete database of control commands.

JUCAV Deck Handling System

 19

Traceability Matrix

Figure #15:

1.1 1.2 1.3 2.1 2.2 2.3 2.4 3.1 3.2 4.1 4.2 Scenario

1

1.1 4.1,2.4

1.2 1.3

1.3 1.3

1.4 all

1.5 1.2

2

2.1 1.1

2.2 1.1,2.3

2.3 1.1

2.4 2.2,2.3

2.5 2.2,2.3,2.4

2.6 3.1,3.2

2.7 1.1

2.8 1.2,2.3

2.9 1.2

3

3.1 1.1

3.2 1.1

3.3 1.3

3.4 1.1

3.5 2.4

3.6 1.3

3.7 1.1

4

4.1 1.2

4.2 1.2

4.3 3.1

4.4 1.3

4.5 3.1

4.6 2.2

4.7 2.4

5

5.1 1.1

5.2 1.1,2.4

5.3 2.2,2.3

5.4 2.2,2.3

5.5 2.1

5.6 2.3

JUCAV Deck Handling System

 20

LTSA
According to the LTSA developer’s webpage:

“LTSA is a verification tool for concurrent systems. It mechanically checks that

the specification of a concurrent system satisfies the properties required of its behavior.

In addition, LTSA supports specification animation to facilitate interactive exploration of

system behavior.

A system in LTSA is modeled as a set of interacting finite state machines. The

properties required of the system are also modeled as state machines. LTSA performs

compositional reachability analysis to exhaustively search for violations of the desired

properties. More formally, each component of a specification is described as a Labeled

Transition System (LTS), which contains all the states a component may reach and all the

transitions it may perform. However, explicit description of an LTS in terms of its states,

set of action labels and transition relation is cumbersome for other than small systems

[3].”

This project uses an LTSA plug-in that enables the use of Message Sequence

Charts (MSC) to be used to graphically represent the JUCAV Deck Handling System as a

set of interlocking message sequence charts. A MSC is very similar to a sequence

diagram in UML. By using the interlocking MSCs we are able to describe the sequence

the system sends messages so that we are able to verify that the system functions as

intended.

JUCAV Deck Handling System

 21

Verification Plan

 Figure 15 shows the flow of events to verify that the established design is a valid

design. The basic sequence is to start by creating Use Cases, and then create Activity

Diagrams from these Use Cases. You can them model the Activity Diagrams into the

MSC plug-in. By using LTSA you can establish a trace of the messages being passed.

This trace should match exactly what was expected from your Activity Diagrams.

 The weak links in this process are the conversion from the Activity Diagrams to

the MSC, and the human verification of symmetry between the Traces and the Activity

Diagrams. A future project could be the development of a plug-in that automatically

verifies the Traces.

Create Use Case Diagrams

Create Activity Diagrams

From Use Cases

Model MSCs after

Activity Diagrams

Compile MSCs into

LTSA Diagrams

Run Animator Tool to

Generate Traces

Compare Results with Expected

Figure 16: UML: Class Diagram (See appendix for more detail)

JUCAV Deck Handling System

 22

LTSA: MSC High Level

 Figure 17 shows the High Level MSC. This is basically a flow chart for the entire

system. In fact it looks exactly like a basic high level flow chart. The arrows represent

the sequence of progression through the design. These boxes represent each of the Lower

Level MSC diagrams. The output of the Lower Level MSC must be the input of the next

Lower Level MSC based upon the arrows in the Higher Level MSC.

Figure 17: High Level Message Sequence Chart

JUCAV Deck Handling System

 23

LTSA: LTS Diagrams

The LTS diagrams below show the individual actor’s message passing options.

These diagrams will be better viewed in the LTSA program with the program attached to

the report.

Figure 18: LTS Trace: SOS Processor

Figure 20: LTS Trace: JUCAV

Figure 19: LTS Trace: Omnibird

JUCAV Deck Handling System

 24

Figure 21: LTS Trace: JUCAV Flight Control

Figure 22: LTS Trace: Controller

Figure 23: LTS Trace: System

JUCAV Deck Handling System

 25

LTSA: MSC Traces

The below traces show the possible ways that the messages can be passed. Figure

@@ shows the trace of a valid command. These traces allow us to follow the progress of

the system and verify that the messages can make it through to the end of the JUCAV

actions.

Figure @@, below, shows the message trace for an invalid command. As you

can see the JUCAV is automatically commanded to apply the brakes for an invalid

command.

Figure 24: Valid Command Trace

JUCAV Deck Handling System

 26

Figure 25: Invalid command Trace

JUCAV Deck Handling System

 27

LTSA: Validation and Verification

 LTSA also offers several things that allow us to verify the system. Two of these

features are the Progress Check and the Safety Check. The progress check maintains that

there are no deadlocks in the system. The LTSA print out of the Safety Check is shown

in Figure @@, below. It shows that there are no safety violations in the system.

 The Progress Check, on the other hand, reports several violations. However these

violations are what is expected because they occur at the end of the system trace. When

the JUCAV moves or brakes for an invalid command it is automatically given the next

signal from the controller. The process of generating new commands is a repetitive

process.

Figure 25: Safety Check

JUCAV Deck Handling System

 28

Conclusions
 Several conclusions can be drawn from this report. The first conclusion that is

not readily apparent from the report is the inherent limitations of LTSA. The MSC editor

plug-in does not allow many actors to be used. When experimenting with the program it

became quickly apparent that once more than five actors were included in the bMSC

diagrams the program would not compile the diagrams appropriately or at all.

 This limitation is a major cause of concern when modeling a system with many

actors and sub-actors. I was able to experiment with using limited actors and many

messages; the program functioned with little problem. This leads me to believe that the

best way to model these complex types of systems is to model sub systems and then treat

each sub system as its own bMSC when compiling a high level MSC for the overall

system. This will allow for better modeling of larger systems. This will be a problem if

the messages between the subsystems are dependant on the messages within the

subsystems themselves. One way around this problem is a better tool that allows for a

more robust analysis of finite state machines. A program that makes better use of

available memory will better suit this application.

 The trace diagrams for the MSC results do match the activity diagrams generated

for the specified segments of the system. These traces are a bit hard to distinguish

because the activity diagrams are basically these traces in piecemeal form. Also I find

that a tool is needed to automate the conversion between activity diagrams and the MSC

diagrams would be especially useful to verify that the MSC and activity diagrams are

exactly alike. Basically the user could easily manipulate the way the MSC diagrams are

compiled compared to the activity diagrams and achieve any result that they want. A

completely automated program would be much better at accomplishing this. Perhaps an

XML exporting of code from ArgoUML could be the input for the MSC plug in and thus

eliminating the chance of errors being inserted accidentally.

JUCAV Deck Handling System

 29

References
1. Class Notes 2006

2. http://argouml.tigris.org/

3. http://www.doc.ic.ac.uk/ltsa/

4. http://www.doc.ic.ac.uk/ltsa/msc/

5. http://www.doc.ic.ac.uk/ltsa/msc/tutorial/

6. Jeff Magee and Jeff Kramer, Concurrency: State Models and Java Programs (2nd

Edition), John Wiley and Sons, 2006.

7. Class Projects 2004, 2006

a. Validation, Verification, and Behavior Modeling of a Canal System by

Noosha Haghani and Nazanin Alborni

b. Validating Behavior of an Airport Control Tower with LTSA by Kerin

Thornton

c. Prognostics System on a Military Wheeled Vehicle by Craig Hershey

JUCAV Deck Handling System

 30

Appendix

Final LTSA

XML Code

 <?xml version="1.0" encoding="UTF-8" ?>

- <specification>

- <hmsc>

 <bmsc name="init" x="50" y="30" />

 <bmsc name="PositionOmnibird" x="170" y="130" />

 <bmsc name="ProcessImage" x="170" y="230" />

 <bmsc name="ValidCommand" x="290" y="230" />

 <bmsc name="InvalidCommand" x="170" y="330" />

- <transition>

 <from>init</from>

 <to>PositionOmnibird</to>

 </transition>

- <transition>

 <from>PositionOmnibird</from>

 <to>PositionOmnibird</to>

 </transition>

- <transition>

 <from>ProcessImage</from>

 <to>ValidCommand</to>

 </transition>

- <transition>

 <from>ProcessImage</from>

 <to>InvalidCommand</to>

 </transition>

- <transition>

 <from>PositionOmnibird</from>

 <to>ProcessImage</to>

 </transition>

 </hmsc>

 <bmsc name="init" />

- <bmsc name="PositionOmnibird">

- <instance name="Controller">

- <input timeindex="6">

 <name>omnibird,controller,lockController</name>

 <from>Omnibird</from>

 </input>

- <output timeindex="2">

 <name>controller,omnibird,giveCommand</name>

JUCAV Deck Handling System

 31

 <to>Omnibird</to>

 </output>

 </instance>

- <instance name="Omnibird">

- <input timeindex="5">

 <name>sosprocessor,omnibird,positionOmnibird</name>

 <from>SOSProcessor</from>

 </input>

- <output timeindex="6">

 <name>omnibird,controller,lockController</name>

 <to>Controller</to>

 </output>

- <output timeindex="3">

 <name>omnibird,sosprocessor,processImage</name>

 <to>SOSProcessor</to>

 </output>

- <input timeindex="2">

 <name>controller,omnibird,giveCommand</name>

 <from>Controller</from>

 </input>

 </instance>

 <instance name="JUCAV" />

- <instance name="SOSProcessor">

- <output timeindex="5">

 <name>sosprocessor,omnibird,positionOmnibird</name>

 <to>Omnibird</to>

 </output>

- <input timeindex="3">

 <name>omnibird,sosprocessor,processImage</name>

 <from>Omnibird</from>

 </input>

 </instance>

 <instance name="FlightControl" />

 </bmsc>

- <bmsc name="ProcessImage">

- <instance name="Controller">

- <output timeindex="1">

 <name>controller,omnibird,giveCommand</name>

 <to>Omnibird</to>

 </output>

 </instance>

- <instance name="Omnibird">

- <input timeindex="1">

 <name>controller,omnibird,giveCommand</name>

 <from>Controller</from>

JUCAV Deck Handling System

 32

 </input>

- <output timeindex="2">

 <name>omnibird,sosprocessor,processImage</name>

 <to>SOSProcessor</to>

 </output>

 </instance>

 <instance name="JUCAV" />

- <instance name="SOSProcessor">

- <input timeindex="2">

 <name>omnibird,sosprocessor,processImage</name>

 <from>Omnibird</from>

 </input>

 </instance>

 <instance name="FlightControl" />

 </bmsc>

- <bmsc name="ValidCommand">

 <instance name="Controller" />

 <instance name="Omnibird" />

- <instance name="JUCAV">

- <input timeindex="3">

 <name>flightcontrol,jucav,validMove</name>

 <from>FlightControl</from>

 </input>

 </instance>

- <instance name="SOSProcessor">

- <output timeindex="2">

 <name>sosprocessor,flightcontrol,runDatabase</name>

 <to>FlightControl</to>

 </output>

 </instance>

- <instance name="FlightControl">

- <input timeindex="2">

 <name>sosprocessor,flightcontrol,runDatabase</name>

 <from>SOSProcessor</from>

 </input>

- <output timeindex="3">

 <name>flightcontrol,jucav,validMove</name>

 <to>JUCAV</to>

 </output>

 </instance>

 </bmsc>

- <bmsc name="InvalidCommand">

- <instance name="Controller">

- <input timeindex="3">

 <name>jucav,controller,alertController</name>

JUCAV Deck Handling System

 33

 <from>JUCAV</from>

 </input>

 </instance>

 <instance name="Omnibird" />

- <instance name="JUCAV">

- <input timeindex="2">

 <name>flightcontrol,jucav,invalidBrake</name>

 <from>FlightControl</from>

 </input>

- <output timeindex="3">

 <name>jucav,controller,alertController</name>

 <to>Controller</to>

 </output>

 </instance>

- <instance name="SOSProcessor">

- <output timeindex="1">

 <name>sosprocessor,flightcontrol,runDatabase</name>

 <to>FlightControl</to>

 </output>

 </instance>

- <instance name="FlightControl">

- <input timeindex="1">

 <name>sosprocessor,flightcontrol,runDatabase</name>

 <from>SOSProcessor</from>

 </input>

- <output timeindex="2">

 <name>flightcontrol,jucav,invalidBrake</name>

 <to>JUCAV</to>

 </output>

 </instance>

 </bmsc>

- <bmsc name="Trace">

- <instance name="Controller">

- <output timeindex="1">

 <name>controller,omnibird,giveCommand</name>

 <to>Omnibird</to>

 </output>

- <input timeindex="4">

 <name>omnibird,controller,lockController</name>

 <from>Omnibird</from>

 </input>

- <output timeindex="5">

 <name>controller,omnibird,giveCommand</name>

 <to>Omnibird</to>

 </output>

JUCAV Deck Handling System

 34

- <input timeindex="9">

 <name>jucav,controller,alertController</name>

 <from>JUCAV</from>

 </input>

 </instance>

- <instance name="Omnibird">

- <input timeindex="1">

 <name>controller,omnibird,giveCommand</name>

 <from>Controller</from>

 </input>

- <output timeindex="2">

 <name>omnibird,sosprocessor,processImage</name>

 <to>SOSProcessor</to>

 </output>

- <input timeindex="3">

 <name>sosprocessor,omnibird,positionOmnibird</name>

 <from>SOSProcessor</from>

 </input>

- <output timeindex="4">

 <name>omnibird,controller,lockController</name>

 <to>Controller</to>

 </output>

- <input timeindex="5">

 <name>controller,omnibird,giveCommand</name>

 <from>Controller</from>

 </input>

- <output timeindex="6">

 <name>omnibird,sosprocessor,processImage</name>

 <to>SOSProcessor</to>

 </output>

 </instance>

- <instance name="JUCAV">

- <input timeindex="8">

 <name>flightcontrol,jucav,invalidBrake</name>

 <from>FlightControl</from>

 </input>

- <output timeindex="9">

 <name>jucav,controller,alertController</name>

 <to>Controller</to>

 </output>

 </instance>

- <instance name="SOSProcessor">

- <input timeindex="2">

 <name>omnibird,sosprocessor,processImage</name>

 <from>Omnibird</from>

JUCAV Deck Handling System

 35

 </input>

- <output timeindex="3">

 <name>sosprocessor,omnibird,positionOmnibird</name>

 <to>Omnibird</to>

 </output>

- <input timeindex="6">

 <name>omnibird,sosprocessor,processImage</name>

 <from>Omnibird</from>

 </input>

- <output timeindex="7">

 <name>sosprocessor,flightcontrol,runDatabase</name>

 <to>FlightControl</to>

 </output>

 </instance>

- <instance name="FlightControl">

- <input timeindex="7">

 <name>sosprocessor,flightcontrol,runDatabase</name>

 <from>SOSProcessor</from>

 </input>

- <output timeindex="8">

 <name>flightcontrol,jucav,invalidBrake</name>

 <to>JUCAV</to>

 </output>

 </instance>

 </bmsc>

 </specification>

