
 1

APPLICATIONS OF
SPECIFICATION-BASED TESTING

IN FLIGHT SOFTWARE DEVELOPMENT
FOR HUBBLE SPACE TELESCOPE

MISSION OPERATIONS

Nzinga Tull
December 13, 2005

ENSE 623: Systems Engineering Validations and Verification
Dr. Mark Austin, Professor

 2

OUTLINE

I. Introduction and Purpose ...3

II. Overview of HST Mission Operations ...…………………………….3

III. Why Do We Test? …………………………………………………...4

IV. What is Specification-based Testing?..6

V. Advantages and Disadvantages of Specification-Based Testing ……..6

VI. Summary of Techniques ……………………………………………..8

VII.Classification Tree Method ………………………………………....11

VIII. Case Study: CTM and HST…………………………………….….12

IX. Conclusion…………………………………………………………..18

References ……………………………………………………………….19

Acronym List…………………………………………………………….20

 3

I. Introduction and Purpose

Specification-based testing is performed on software and other types of systems to
improve the quality of the system by verifying the intended functionality of the system.
The goal of this paper was to explore the benefits and uses of specification-based testing,
particularly in application to software development for Hubble Space Telescope (HST)
Mission Operations. The advantages and limitations of different specification-based
testing techniques are discussed. A case study will be performed to illustrate use the most
applicable technique for HST Mission Operations.

II. Overview of HST Mission Operations

Since its April 1990 launch, the Hubble Space Telescope has been orbiting 600
kilometers above Earth every 96 minutes. The length of the primary structure of the
spacecraft is 13.2 meters (43.5 ft.) and the maximum diameter is 4.2 meters (14 ft.) It is
about the size of a large school bus and weighs over 10 tons. Since launch, engineers at
National Aeronautics and Space Administration’s (NASA’s) Goddard Space Flight
System (GSFC) have been responsible for the successful maintenance and operation of
NASA’s most prolific orbiting observatory. System engineers (SEs) are tasked with
monitoring and trending spacecraft data to characterize performance, address anomalies
as they occur, and design and implement configuration changes that would optimize
performance and extend mission life. Distinct groups of SEs are responsible for all of
the telescope’s primary subsystems:

• Data Management Subsystem (DMS): Includes the flight computer and
spacecraft health and safety data management and interface hardware).

• Electrical Power Subsystem (EPS): Include batteries, solar arrays, power
control unit, and other hardware required to generate and distribute power
for all operating spacecraft components.

• Instrumentation and Communication Subsystem (I&C): Includes antennae,
transmitters and other hardware used for data signal acquisition and
processing.

• Optical Telescope Assembly Subsystem (OTA): Includes the primary and
secondary mirrors, fine guidance sensors and other hardware associated
with the optics.

• Pointing and Control Subsystem (PCS): Includes gyroscopes, reaction
wheels, and other sensors and actuators used to control spacecraft attitude.

• Safing: Includes a series of computers and software that is used to monitor
mission-critical data and initiate autonomous actions to protect hardware
when health and safety thresholds are breached.

• Science Instruments (SIs): Includes hardware used to expedite science.
• Thermal Control Subsystem (TCS): Includes a series of heaters, insulators

and other elements designed to keep all instruments and equipment with a
safe operating temperature range.

 4

While some functions, like data dumps and vehicle configuration changes, require ground
commanding, there are millions of lines of code that have been developed for
autonomous monitoring and operations of all vehicle subsystems from HST’s flight
computer. The group of flight software (FSW) code designers and testers are a distinct
group for the SE shop. SEs identify autonomous operational scheme that either needs
fixing or enhancement based on some subsystem’s on-orbit performance data. The SEs
give a set of functional specifications to the FSW team, who then develops the code and
keeps track of all FSW changes that are made. The SEs and the FSW team execute
various levels of unit-, system- and acceptance-level testing prior to installing the new
code on-orbit.

III. Why Do We Test?

The primary reason we test flight software is to make sure that the software performs the
functions we want it to perform without any unexpected consequences due to “bugs.”
While the effects of a bug may appear to be innocuous at first, there is usually some
remote scenario where the bug can propagate and result in a nuisance situation at best or
a catastrophic failure at worst. While no testing suite can guarantee that a piece of
software written by a human is completely free of bugs, a sound testing program provides
engineers and decision-makers with sufficient information to make reasonably assess that
a piece of software will me technical objectives without harming existing hardware or
software subsystems or otherwise jeopardizing the mission.

A standard industry definition of a software “bug” (or “fault”) can be found in IEEE
Software Engineering Standards: “a design flaw that will result in symptoms exhibited by
some object (the object under test or some other object) when an object is subjected to an
appropriate test.”[3] Further, a “symptom” (or “failure”) is defined as “any observable
misbehavior of any object (not just the object under test), such as the falsification of a
requirement or an unexpected processing by-product.[3] These definitions address some
key concepts with regard to testing software for HST mission operations applications:

1. Software bugs should be addressed in code design in all possible cases. Many
modern systems are like HST in that they are operated by a combination of
autonomous processes and active management and intervention by human users
(system engineers, flight operations personnel). It would, of course, be
impossible to predict and design for every inadvertent human error. However,
the existence of operational policies and procedures illustrate that there are certain
anticipated scenarios and predictable human behaviors that can result in software
system failures. So, the best software designers will attempt to address those
human behaviors in addition to errors in actual code development during the
coding phase.

HST example: The Background Memory Integrity Check (BMIC) is a software
routine that continuously monitors critical memory locations and autonomously
shuts the flight computer off if commands are erroneously made to those areas. If
a software development or enhancement requires intentional adjustments to

 5

memory monitored by BMIC, then the BMIC must first be disabled. A flight
computer operations engineer issued a ground command to dump the contents of
an area of a critical area of memory. The engineer was unaware that the area was
being continuously monitored by the BMIC. Once the command was processed,
the flight computer recognized the command as an attempt at an illegal function
and triggered the powering of the flight computer as part of a hard-wired
autonomous safety mode. This caused an interruption of a scientific observation
that had to be rescheduled. Performing memory dumps are a routine part of
monitoring and trending the on-board data management subsystem. If software
designers had anticipated this activity, a software block of dump commands sent
to areas of memory being actively protected by the BMIC could have prevented
the untimely shut off of the flight computer and the interruption of the science
mission.

2. A system context must be applied to software testing to fully verify functionality.

While certain types of unit-level testing can verify that a section of code functions
as designed, it is insufficient to verify interfaces with existing code. While these
interfaces are checked out in full-up flight hardware and software system level
testing (Operations Acceptance Testing, or OAT), these larger tests are usually
performed just before planned on-orbit execution so the effects on schedules and
resources are significant. Applying a system-level context early in the code
development process provides a greater confidence in functionality of the code
and can prevent costly re-tests.

HST Example: EPS SEs wanted to enhance the software scheme used to control
how the flight batteries are charged during the sunlight portion of the vehicle orbit
(orbit day). The legacy scheme began opening charge-control relays to reduce
charge current on the batteries only after a certain number of batteries reached
their respective “charge-off” levels. The enhancement was designed to improve
the state-of-charge balance of the batteries by opening relays as each battery
reached its individual “charge-off” level. The flight software designers modified
the code and it passed unit-level functional testing. However, the enhancement
caused charge control relays to open 10-15 minutes earlier in orbit day. When the
code enhancement was subjected to system-level acceptance testing, a vehicle
“Cold Solar Array Protection” safing test failed. This safing test was designed to
prevent the flight computer from opening relays early in orbit day when the solar
array temperatures were low enough to cause relay damage due to electrical
arcing. Engineers and managers had to stand down and assess whether the safing
test needed to be adjusted or if the software charge-control enhancement had to be
modified to accommodate the safing test. While unit testing showed the charge-
control enhancement worked as planned, it could not illuminate the important
safing test interaction at the system level.

 6

IV. What is Specification-based Testing?

Specification-based testing, also known as “black-box” or “functional” testing, is a
classification of testing methods whereby the tester is only knowledgeable of the inputs
to the system, the system environment, and the anticipated system output. As the term
“black-box” implies, the tester can see or understand internal workings of the item being
tested. For example, a black-box tester of a hand-held video game would know how
objects of the game’s graphical user interface would respond and shift to different control
inputs from a gamer. But the tester wouldn’t know how the game was designed. For
specification-based testing of any software, this means that the tester selects of test data
and interprets test results based on the tester’s understanding of the functional properties
(or “specifications”) of the software as opposed to the tester’s understanding of the
software code.

Because black-box testing focuses on function, it is often considered a useful way of
verifying requirements and specifications. These specifications can either be formal
(using mathematical notation) or informal (using natural, descriptive language text to
describe functions). Some testers and developers argue that true black-box testing should
not be performed by the designer of the software because their intimate knowledge of the
program internals would prevent separation of what the program is required to do and
what it is designed to do. While it would be ideal for it system users to conduct black-
box testing, anyone thoroughly knowledgeable with system functionality can be a tester.
Users are usually involved in field and laboratory tests. But black-box tests like volume
tests, stress tests, and recovery tests often do not involve testers.

V. Advantages and Disadvantages of Specification-Based Testing

As previously discussed, HST SEs develop operational concepts for new or enhanced
spacecraft functions to improve the performance of the spacecraft and/or to extend
mission life. FSW engineers a primarily responsible for developing software
implementations for these functions. Specification-based testing is particularly useful for
the development of test cases and requirements for software applications in mission
operations for HST for several reasons:

1. The test is unbiased because the designer and the tester are independent of each
other. SEs and FSW personnel are distinct groups and both provide critical input
to code development. But since the groups are distinct, SEs can objectively
conduct black-box testing and verify functionality without bias of a programmer.
Black-box testing can also be done within the FSW team since code designers are
distinct from code testers. However, the FSE testers must be sufficiently
knowledgeable of subsystem functions.

2. The tester does not need knowledge of any specific programming languages. Most

HST SEs are not programmers. So specification-based testing techniques allow
them to use their subsystem-level technical expertise in hardware design and

 7

operation for software development without needing to learn programming
languages.

3. The test is done from the point of view of the user, not the designer. This keeps the

focus of testing on achieving the results the SEs desired within the greater context
of spacecraft operations. Black-box testing can also be done within the FSW team

4. Test cases can be designed at any point in the software development process. As

soon as SEs release the first draft of specifications, FSW testers and SEs can start
developing test cases to identify inconsistencies or omissions in functional
requirements and specifications. Once all iterations of requirement development
are complete, the SEs can also use test cases they generated from black box
testing to verify that the FSW test plan is adequate. This reduces the lag time
between development of requirements and code development and testing, reduces
the overall development time for code, and reduces the risk of finding costly
errors or omissions in the software late in the development cycle when changes
are very costly.

Despite its benefits, there are some limitations to a specification-based testing approach
[2]:

1. Testing techniques are limited in number, less systematic. There are simply not as
many black-box testing techniques that focus on software functions as there are In
comparison with white-box testing techniques that are concerned with source
code design. And, most black-box testing techniques rely heavily (if not solely)
on the intuition and subjective system comprehension of the tester.

2. The more prominent black-box testing techniques require automated tools. As

previously discussed, a primary benefit of black-box testing is that it can be
executed by SEs with no programming experience. But to use techniques like the
category-partition method (CPM), resources must be spent to acquire automated
tools and the SE must spend time to learn the tool.

3. Specifications may not be formal. Formal specifications that express functional

requirements in mathematical form would be easier to apply to most black-box
testing methods. But unless the user (SE) has some programming back-ground,
the specifications are likely to be in the form of descriptive text.

 8

VI. Summary of Techniques

The applicability of different specification-based testing techniques to system testing
should be assessed based on how well the technique can address certain key issues:

• Data: What test data should be used? How should test cases be generated from
the test data to avoid redundant tests?

• Coverage: What are the maximum and minimum number of tests that should be
run? How do you know when it is safe to stop testing? How can you make sure
that important test cases are included?

• Functional constraints: How well can tests flush out constraints or errors?

A discussion of some specification-based testing techniques follows:

1. Random (or “ad-hoc”) testing. This is by far the simplest (and probably most-
widely used) approach. Once different types of system input are identified, the
tester (or a software tool) selects and combines test data at random to form test
cases. There can be no guarantees that minimal test cases cover key functions.
As such, this method really can not compete with some of the more formalized
approaches.

2. Decision-table Method. A decision table describes in a precise manner how an

application behaves. It is composed of rows and columns that depict a relationship
between system conditions and actions, which are obtained from the specification.
For each combination of conditions, a rule exists. Each rule comprises a response
that is often binary (e.g. Yes/No, True/False) and an associated list of actions.
Then, for each action, an actions sequence number specifies the order in which an
action should be performed if this set of conditions is true. The columns in the
decision table form test cases. The format of the table is simple and the method is
systematic. But important one limitation is that the decision table method can not
be used to depict constraints among conditions which can result in the generation
of invalid test cases. Figures 1a and 1b illustrate the decision-table method.

Figure 1a: Specification for Store Software that Provides Customer Benefits

 9

 Figure 1b: Decision Table for Store Software that Provides Customer Benefits

3. Cause-Effect Graphing (CEG). This method is actually a hardware-testing

technique that was adapted to software testing by W.R. Elmendorf and others.
From a natural language (informal) specification, the tester identifies causes
(system inputs) and the associated effects (system outputs). Then the graph itself
is constructed as a combinational logic network that connects cause and effect
nodes with Boolean operators based on certain constraints as stated or implied in
the specification. The graph can be traced to a decision table, which can then be
used to generate test cases. The systematic approach is an advance over ad-hoc
methods and provides consideration of constraints that application of the decision-
tree alone does not provide. However, creation of the boolean graph can be a
major draw back for larger or more complicated specifications – identifying
causes and effects would be very tedious and the graphical depiction could be
overwhelming. Figures 2a – 2c illustrate the CEG method [5].

Figure 2a: Specification for the “Sendfile” Command

In a given network, the sendfile command is used to send a file to a user on a different file
server. The sendfile command takes three arguments: The first argument should be an
existing file in the sender’s home directory. The second argument should be the name of the
receiver’s file server. The third argument should be the receiver’s userid. If all the arguments
are correct, then the file is successfully sent; otherwise the sender obtains an error message.

 10

Figure 2b: Cause-Effect Table for the “Sendfile” Command

Figure 2b: CEG for the “Sendfile” Command

4. Category Partition Method (CPM). The standard approach for this method is to
identify categories (or classifications) of system input parameters and their
associated choices (or classes) which are the different values each category could
contain. The tester must also determine constraints based on the specification:
how the choices interact, how the occurrence of one choice can affect the
existence of another, and what special restrictions might affect any choice. Once
categories, choices and constraints are identified, the information is written in a
formal test specification language (TSL) which is processed by generator tool to
produce test cases. While this method provides considerable coverage and
adequate consideration of constraints, its major drawback is the reliance on the
automatic generation tool for generation of test cases. Figures 3a – 3c illustrate
the CPM method [6].

 Figure 3a: Specification for the “Find” Command

 11

Figure 3b: Category Partition for the “Find” Figure 3c: Final Specification for the “Find”
Command Command

5. Classification Tree Method (CTM). CTM takes a similar approach to test case
generation for black box testing as CPM in that it identifies classifications and
associated classes and shows relationships between them based on constraints.
Benefits of CTM include that the constraints among classifications are captured in
a graphical tree representation and that automation tools are helpful but no
necessary for CTM. This user-friendly and easy-to-learn method encompasses all
of the desirable properties discussed at the beginning of this section. A more
detailed discussion of this method is provided in Sections VII and VIII.

VII. Classification Tree Method

CTM was developed by Grotchamann and Grimm in 1993. CTM is executed via the
following steps:

1. Use the informal specification to identify classifications and classes.
Classifications are the different criteria for partitioning the input of the software
to be tested. Classes are the subsets of values for each classification. Each subset
is disjoint and, by definition, classifications are also disjoint.

2. Construct a classification tree. At the top of the tree is the general root note

which represents the unification of all inputs. The next row of figures are the top-
level classifications which represent the highest-level categories of inputs and are
the “children” of the general root node. Each classification has two or more
classes which are also depicted in a parent-child relationship: a parent has

 12

connector lines that fan out to associated children classes. Similarly, classes can
parent classifications. Construction of the tree is complete when all identified
classifications and classes are illustrated. The lowest level classes depicted are
called terminal nodes or leaves.

3. Construct the test-case table. A grid is drawn below the tree. The columns of the

grid result from vertical lines that correspond to the leaves of the classification
tree. A tester can construct a test case via inspection and by hand and by selecting
a single child class of each top-level classification. Then, following vertical lines
from every child classification selected, the tester should recursively select a
single child class. The combinations of marks on any row of the grid indicate
distinct test cases.

4. Determine feasible test cases. The tester can identify all feasible or legal test

cases from the test-case table by referring to the constraints stated or implied by
the specification.

CTM stands apart from the other black-box testing techniques discussed in Section VI
because it encompasses all of the properties of an ideal specification-based testing
technique:

a) CTM offers a systematic approach with well-defined steps that clearly illustrate
how many values of a test-relevant aspect have to be used. As opposed to simple
identifying all combinations and permutations of terminal nodes, the CTM
process identifies the test case cut sets and weeds out the test cases that don’t add
value.

b) The graphical description of the test case specifications permits easy
visualization of test ideas. These ideas can then be easily reviewed by a user
(SE), a developer, or a tester. Ease and clarity in communicating the test ideas
build confidence in appraisals of the test and test designer and assures that no
relevant test case has been overlooked.

c) CTM exhaustively checks a formal or informal specification for consistency,
coverage, and omissions. That is, if an expected behavior for a given test case
cannot be determined from the specification, then there is obviously something
missing in the specification. As a result, CTM can be very useful in developing
well-defined, well-written, testable requirements early in the software
development process.

The entire CTM process can be informed by hand. However, there is a user-friendly tool
that supports CTM and it is particularly useful for large systems. Classification Tree
Editor (CTE) tool was first developed in 1996 by engineers at Daimler-Benz AG and
featured an easy-to-use graphical user interface (GUI) for constructing the classification
tree and the test case tables. Later models were renamed Classification Tree Editor-
eXtended Logics (CTE-XL) added features such as automatic generation of test cases.

 13

The current release of CTE-XL (version 1.6.1,last update 08/09/2005) can be downloaded
free-of-charge at www.systematic-testing.com. More details and uses of CTE-XL are
provided in Section VIII, where CTE-XL is applied in a HST mission operations software
case study.

VIII. Case Study: CTM and HST Charge Control Software Testing

HST power system is supported by six, rechargeable, nickel-hydrogen batteries. Battery
voltage and temperature is continuously monitored and compared to voltage-temperature
(V/T) curves. Figure 5 illustrates the V/T curves used for each battery to determine
charge control. When the HST’s solar arrays are exposed to the Sun’s energy during the
HST orbital day, the batteries are being charged. Once the battery voltage at a given
temperature exceeds the “charge-off” level, batteries are considered fully charged. A
subset of charge-control relays are commanded open interrupt charge current from the
solar arrays, scaling back the battery charge rate and preventing over-charge the batteries.
When HST passes behind the earth, the sun is occulted and HST is in orbital night.
During night, the batteries discharge to support the vehicle load. Once the battery voltage
at a given temperature drops below the “charge-on” level, relays are closed so that the
power system will be configured to resume charging when HST passes back into
sunlight.

Figure 4: V-T Levels for HST Software Charge Control Scheme

Battery charge control in can either be conducted using hardware charge-current
controllers (CCCs) or using by a software algorithm appropriately called Software
Charge Control (SWCC).

Volts

Temp
(degC)

Charge off-level
(relays open)

Charge on-level
(relays close)

0 28
28

35

Volts

Temp
(degC)

Charge off-level
(relays open)

Charge on-level
(relays close)

0 28
28

35

 14

Now an application of CTM will be applied to help develop test cases for the SWCC
algorithm. For ease of illustration, we will consider the power system as a three-battery
system (as opposed to the nominal six-battery system). The informal specification below
is very similar to the “operations concept” description that was provided by EPS SEs
when the SWCC scheme was first proposed:

SWCC monitors voltage and temperature of batteries 1-3 and compares them to the
V/T curves programmed into the Voltage/Temperature Front End (VTFE), a
software emulation of the CCCs. The trickle charge initiation parameter (TCINIT) is
used to verify if the system is in full charge or trickle charge. TCINIT is set to 2
batteries. If two or more batteries are above the charge-off levels, the system should
go into trickle charge and open relays. When at most one battery is above the
charge-on level, then the system exits trickle charge and closes relays. Regardless of
the charge phase, safing tests are active to continuously monitor battery state-of-
charge (SOC) and rate-of-charge (ROC). The SOC test checks to make sure that
system capacity stays at or above 200 Ampere-hours (Ah). The ROC test will check
to verify that total battery charge current is at adequate levels through out the orbit: >
40A for full charge in orbit day, > 12A for trickle charge in orbit day, and > -90A for
discharge in orbit night (negative charge current in vehicle telemetry indicates the
battery is discharging). If any SOC or ROC safing test threshold is crossed, then the
flight computer will activate an automatic vehicle power-down sequence.

From this informal specification, a series of classifications and associated classes can be
identified (see Figure 5).

Figure 5: Classifications and Classes for HST Software Charge Control Scheme
Classification Class
BAT 1 Charging, Discharging
BAT 2 Charging, Discharging
BAT 3 Charging, Discharging
VTFE-Off AboveOff, Belowff
VTFE-On AboveOn, BelowOn
TCINIT Above_ 2batts, Below_2batts
TC_Rate >12A, <12A
SOC Test >200Ah, <200Ah
ROC Test Day, Night
FullChg >40A, <40A
TrickleChg >-10A, <-10A
Dischg >-90A, <-90A

The following constraints must also be generated based on nominal power system
operations:

1. Batteries do not charge in orbit night. But batteries can discharge in orbit day. For example, large
vehicle maneuvers can significantly increase the vehicle load and cause batteries to discharge if
they are at a low, trickle ROC in orbit day.

2. If the batteries are in full-charge during orbit day, the trickle-charge initiation parameter
(TCINIT=2) has not been met.

3. If the batteries are in trickle-charge during orbit day, the trickle-charge initiation parameter
(TCINIT=2) has been met.

4. If the batteries are discharging in orbit night, the trickle-charge initiation parameter (TCINIT=2)
has not been met.

 15

With the classifications, classes and constraints clearly identified, the classification tree
can be constructed. The CTE-XL tool was used (see Figure 6 on the following page).
While there is an easy-to-read help section and tutorial, the icons and functions of the tool
are pretty intuitive to anyone with fundamental computer skills (e.g. Microsoft
applications) so a tester can jump right into to using the tool. The CTE-XL main window
GUI is separated into four quadrants. Here are some important features:

1. The top-right quadrant (labeled (1) in Figure 6) is used to construct the
classification tree. The nodes of the tree are created using the icons or by right-
clicking on the blank space and scrolling through a menu. Lines connecting
parent and child elements are automatically drawn but can be moved or altered
manually.

2. The top-left quadrant (labeled (2) in Figure 6) is the “Properties” window. The

“Standard” tab can be used to enter descriptive text about any selected element in
the classification tree or test-case table. The “Violations” tab will list any defined
constraints that a selected test case violates. The “TCSpecifications” tab lists the
specifications that apply to a selected test case.

3. The bottom-left quadrant (labeled (3) in Figure 6) has the test-case labels. These

can be created manually by right-clicking on the white space in the quadrant or by
using the automatic test case generator. Names for the test cases are automatically
generated by the tool but they can be changed by the tester. If the classes selected
to form a test case are combined in compliance with an active rules (constraints),
then the circle preceding the test case name is green. If the classes selected to
form a test case are not combined in compliance with an active rules, then the
circle preceding the test case name is red.

4. The bottom-right quadrant (labeled (3) in Figure 6) has the actual test-case table.

The vertical lines (associated with leaves from the classification tree) appear as
soon as the first test case is generated. If the test cases are being created manually
(one-by-one), the horizontal lines appear when the test case is labeled. A tester
can move the cursor over points in the grid and select intersection points to select
a leaf. Since classes are disjoint, the tool will prevent the tested from selecting
two leaves from the same parent classification and this prevents invalid test cases
from being formed.

 16

Figure 6: SWCC Classification Tree Analysis using CTE-XL

(1)
(2)

(3) (3)

(5)

 17

5. There is a light bulb icon (labeled (5) in Figure 6) near the top of the CTE-XL

main window. When this icon is highlighted, it means that there are software
rules actively being processed by the tools. These rules inform the green and red
indicators on the test case labels to let the tester know hat test cases are valid.
Rules are entered into the “Dependency Editor” (see Figure 7) and are expressed
as boolean relationships between classes.

Figure 7: CTE-XL Dependency Editor for SWCC

Like most software problems that would be applied to complex space mission operations,
the SWCC has a lot of distinct leaves that could be combined to create an extensive list of
test cases. So, it the automatic test-case generation function of CTE-XL was used. The
“Test Case Generator Editor” (see Figure 8) can be used to identify how top-level
classifications should be combined to create a set of test cases. For SWCC, all top-level
classifications were combined (“AND”) to yield a total of 2,304 test cases!

Figure 7: CTE-XL Dependency Editor for SWCC

 18

However, the tester can easily tell that many of the test cases identified are invalid due to
rule violations when she scrolls through the test case label quadrant and sees all the red
circles. CTE-XL has a statistics function that generates useful metrics about the test
cases that have been generated (see Figure 8).

 Figure 8: CTE-XL Statistics Generator for SWCC

The Statistics tool shows that when the dependency rules are applied, only 128 of the
2,304 test cases generated are required to provide the maximum combination coverage.
The tester can use this inform to identify the distinct combinations of classes that for test
purposes.

IX. Conclusion

This project has discussed how specification-based testing can be a useful tool in
engaging users and non-programmers in software testing in ways that improve the
process of generating requirements and increases the confidence level that software meets
specifications. While several different specification-based testing methods were
discussed, the most effective method was classification tree method. The CTE-XL tool
proved to be a powerful but easy-to-use tool for software programmers and non-
programmers alike to apply the classification tree method.

 19

References

1. Beizer, B. Black-Box Testing: Techniques for Functional Testing of Software and
Systems. New York: John Wiley & Sons, Inc., 1995.

2. Chen, T. Y. and Poon, P. L. “Experience With Teaching Black-Box Testing in a
Computer Science/Software Engineering Curriculum.” IEEE Transactions on Education
47, #1 (2004)

3. Grochtmann, M., Grimm, K., Wegener, J. “Tool-Supported test Case Design for
Black-Box Testing by Means of the Classification-Tree Editor.” EuroSTAR’93—1st
European International Conference on Soaftware Testing Analysis and Review, 25-28
(October 1993): 169-176.

4. Mogyorodi, G. “What is Requirements-Based Testing?” Crosstalk: The Journal of
Defense Software Engineering (March 2003): 12-15

5. Nursimulu, K. and Probert, R. L. “Cause-Effect Graphing Analysis and Validation of
Requirements.” Bell-Northern Reaseach and telecommunications Software Engineering
Research Group, Department of Computer Science, University of Ottawa, Canad.

6. Ostrand, T. J., and Balcer, M. J. “The Category-Partition Method for Specifying and
Generating Functional Tests.” Communications of the ACM ,31, #6 (June 1998):676-686.

7. Pettichord, B. “Five Ways to Think about Black Box Testing.”

 20

ACRONYM LIST

A Ampere
Ah Ampere-hour
BMIC Background Memory Integrity Check
CCC Charge-Current Controller
CEG Cause-Effect Graphing
CPM Category-Partition Method
CTE-XL Classification Tree Editor – eXtended Logics
CTM Classification Tree Method
DMS Data Management Subsystem
EPS Electrical Power Subsystem
FSW Flight Software
GSFC Goddard Space Flight Center
GUI Graphical User Interface
HST Hubble Space Telescope
I&C Instrumentation and Communication Subsystem
NASA National Aeronautics and Space Administration’s
OAT Operations Acceptance Testing
OTA Optical Telescope Assembly Subsystem
PCS Pointing and Control Subsystem
ROC Rate-of-Charge
SI Science Instrument Subsystem
SE System Engineer
SOC State-of-Charge
SWCC Software Charge Control
TCINIT Trickle-Charge Initiation Parameter
TCS Thermal Control Subsystem
TSL Test Specification Language
V/T Voltage/Temperature (Curve)
VTFE Voltage/Temperature Front End

