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I.  Introduction and Purpose 

Specification-based testing is performed on software and other types of systems to 
improve the quality of the system by verifying the intended functionality of the system. 
The goal of this paper was to explore the benefits and uses of specification-based testing, 
particularly in application to software development for Hubble Space Telescope (HST) 
Mission Operations.  The advantages and limitations of different specification-based 
testing techniques are discussed. A case study will be performed to illustrate use the most 
applicable technique for HST Mission Operations. 

 
II.  Overview of HST Mission Operations 
 
Since its April 1990 launch, the Hubble Space Telescope has been orbiting 600 
kilometers above Earth every 96 minutes.  The length of the primary structure of the 
spacecraft is 13.2 meters (43.5 ft.) and the maximum diameter is 4.2 meters (14 ft.) It is 
about the size of a large school bus and weighs over 10 tons.  Since launch, engineers at 
National Aeronautics and  Space Administration’s (NASA’s) Goddard Space Flight 
System (GSFC) have been responsible for the successful maintenance and operation of 
NASA’s most prolific orbiting observatory.  System engineers (SEs) are tasked with 
monitoring and trending spacecraft data to characterize performance, address anomalies 
as they occur, and design and implement configuration changes that would optimize 
performance and extend mission life.  Distinct groups of  SEs are responsible for all of 
the telescope’s primary subsystems: 

• Data Management Subsystem (DMS): Includes the flight computer and 
spacecraft health and safety data management and interface hardware). 

• Electrical Power Subsystem (EPS):  Include batteries, solar arrays, power 
control unit, and other hardware required to generate and distribute power 
for all operating spacecraft components. 

• Instrumentation and Communication Subsystem (I&C): Includes antennae, 
transmitters and other hardware used for data signal acquisition and 
processing. 

• Optical Telescope Assembly Subsystem (OTA):  Includes the primary and 
secondary mirrors, fine guidance sensors and other hardware associated 
with the optics. 

• Pointing and Control Subsystem (PCS): Includes gyroscopes, reaction 
wheels, and other sensors and actuators used to control spacecraft attitude. 

• Safing: Includes a series of computers and software that is used to monitor 
mission-critical data and initiate autonomous actions to protect hardware 
when health and safety thresholds are breached. 

• Science Instruments (SIs): Includes hardware used to expedite science. 
• Thermal Control Subsystem (TCS): Includes a series of heaters, insulators 

and other elements designed to keep all instruments and equipment with a 
safe operating temperature range. 
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While some functions, like data dumps and vehicle configuration changes, require ground 
commanding, there are millions of lines of code that have been developed for 
autonomous monitoring and operations of all vehicle subsystems from HST’s flight 
computer.  The group of flight software (FSW) code designers and testers are a distinct 
group for the SE shop.  SEs identify autonomous operational scheme that either needs 
fixing or enhancement based on some subsystem’s on-orbit performance data.  The SEs 
give a set of functional specifications to the FSW team, who then develops the code and 
keeps track of all FSW changes that are made.  The SEs and the FSW team execute 
various levels of unit-, system- and acceptance-level testing prior to installing the new 
code on-orbit. 
 
III.  Why Do We Test? 
 
The primary reason we test flight software is to make sure that the software performs the 
functions we want it to perform without any unexpected consequences due to “bugs.”  
While the effects of a bug may appear to be innocuous at first, there is usually some 
remote scenario where the bug can propagate and result in a nuisance situation at best or 
a catastrophic failure at worst.  While no testing suite can guarantee that a piece of 
software written by a human is completely free of bugs, a sound testing program provides 
engineers and decision-makers with sufficient information to make reasonably assess that 
a piece of software will me technical objectives without harming existing hardware or 
software subsystems or otherwise jeopardizing the mission. 
 
A standard industry definition of a software “bug” (or “fault”) can be found in IEEE 
Software Engineering Standards: “a design flaw that will result in symptoms exhibited by 
some object (the object under test or some other object) when an object is subjected to an 
appropriate test.”[3]  Further, a “symptom” (or “failure”) is defined as “any observable 
misbehavior of any object (not just the object under test), such as the falsification of a 
requirement or an unexpected processing by-product.[3]  These definitions address some 
key concepts with regard to testing software for HST mission operations applications: 
 

1. Software bugs should be addressed in code design in all possible cases.  Many 
modern systems are like HST in that they are operated by a combination of 
autonomous processes and active management and intervention by human users 
(system engineers, flight operations personnel).  It would, of course, be 
impossible to predict and design for every inadvertent human error.   However, 
the existence of operational policies and procedures illustrate that there are certain 
anticipated scenarios and predictable human behaviors that can result in software 
system failures. So, the best software designers will attempt to address those 
human behaviors in addition to errors in actual code development during the 
coding phase. 
 
HST example: The Background Memory Integrity Check (BMIC) is a software 
routine that continuously monitors critical memory locations and autonomously 
shuts the flight computer off if commands are erroneously made to those areas.  If 
a software development or enhancement requires intentional adjustments to 
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memory monitored by BMIC, then the BMIC must first be disabled. A flight 
computer operations engineer issued a ground command to dump the contents of 
an area of a critical area of memory.  The engineer was unaware that the area was 
being continuously monitored by the BMIC.  Once the command was processed, 
the flight computer recognized the command as an attempt at an illegal function 
and triggered the powering of the flight computer as part of a hard-wired 
autonomous safety mode.  This caused an interruption of a scientific observation 
that had to be rescheduled.  Performing memory dumps are a routine part of 
monitoring and trending the on-board data management subsystem. If software 
designers had anticipated this activity, a software block of dump commands sent 
to areas of memory being actively protected by the BMIC could have prevented 
the untimely shut off of the flight computer and the interruption of the science 
mission. 

 
 
2. A system context must be applied to software testing to fully verify functionality.  

While certain types of unit-level testing can verify that a section of code functions 
as designed, it is insufficient to verify interfaces with existing code.  While these 
interfaces are checked out in full-up flight hardware and software system level 
testing (Operations Acceptance Testing, or OAT), these larger tests are usually 
performed just before planned on-orbit execution so the effects on schedules and 
resources are significant.  Applying a system-level context early in the code 
development process provides a greater confidence in functionality of the code 
and can prevent costly re-tests. 
 
HST Example: EPS SEs wanted to enhance the software scheme used to control 
how the flight batteries are charged during the sunlight portion of the vehicle orbit 
(orbit day).  The legacy scheme began opening charge-control relays to reduce 
charge current on the batteries only after a certain number of batteries reached 
their respective “charge-off” levels. The enhancement was designed to improve 
the state-of-charge balance of the batteries by opening relays as each battery 
reached its individual “charge-off” level.  The flight software designers modified 
the code and it passed unit-level functional testing.  However, the enhancement 
caused charge control relays to open 10-15 minutes earlier in orbit day.  When the 
code enhancement was subjected to system-level acceptance testing, a vehicle 
“Cold Solar Array Protection” safing test failed.  This safing test was designed to 
prevent the flight computer from opening relays early in orbit day when the solar 
array temperatures were low enough to cause relay damage due to electrical 
arcing.  Engineers and managers had to stand down and assess whether the safing 
test needed to be adjusted or if the software charge-control enhancement had to be 
modified to accommodate the safing test.  While unit testing showed the charge-
control enhancement worked as planned, it could not illuminate the important 
safing test interaction at the system level. 
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IV.  What is Specification-based Testing? 
 
Specification-based testing, also known as “black-box” or “functional” testing, is a 
classification of testing methods whereby the tester is only knowledgeable of the inputs 
to the system, the system environment, and the anticipated system output.  As the term 
“black-box” implies, the tester can see or understand internal workings of the item being 
tested.  For example, a black-box tester of a hand-held video game would know how 
objects of the game’s graphical user interface would respond and shift to different control 
inputs from a gamer.  But the tester wouldn’t know how the game was designed.  For 
specification-based testing of any software, this means that the tester selects of test data 
and interprets test results based on the tester’s understanding of the functional properties 
(or “specifications”) of the software as opposed to the tester’s understanding of the 
software code.  
 
Because black-box testing focuses on function, it is often considered a useful way of 
verifying requirements and specifications.  These specifications can either be formal 
(using mathematical notation) or informal (using natural, descriptive language text to 
describe functions). Some testers and developers argue that true black-box testing should 
not be performed by the designer of the software because their intimate knowledge of the 
program internals would prevent separation of what the program is required to do and 
what it is designed to do.  While it would be ideal for it system users to conduct black-
box testing, anyone thoroughly knowledgeable with system functionality can be a tester.  
Users are usually involved in field and laboratory tests.  But black-box tests like volume 
tests, stress tests, and recovery tests often do not involve testers. 
 
 
V.  Advantages and Disadvantages of Specification-Based Testing 
 
As previously discussed, HST SEs develop operational concepts for new or enhanced 
spacecraft functions to improve the performance of the spacecraft and/or to extend 
mission life.  FSW engineers a primarily responsible for developing software 
implementations for these functions.  Specification-based testing is particularly useful for 
the development of test cases and requirements for software applications in mission 
operations for HST for several reasons: 
 

1. The test is unbiased because the designer and the tester are independent of each 
other. SEs and FSW personnel are distinct groups and both provide critical input 
to code development. But since the groups are distinct, SEs can objectively 
conduct black-box testing and verify functionality without bias of a programmer. 
Black-box testing can also be done within the FSW team since code designers are 
distinct from code testers.  However, the FSE testers must be sufficiently 
knowledgeable of subsystem functions. 

 
2. The tester does not need knowledge of any specific programming languages. Most 

HST SEs are not programmers.  So specification-based testing techniques allow 
them to use their subsystem-level technical expertise in hardware design and 
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operation for software development without needing to learn programming 
languages. 

 
3. The test is done from the point of view of the user, not the designer. This keeps the 

focus of testing on achieving the results the SEs desired within the greater context 
of spacecraft operations. Black-box testing can also be done within the FSW team 

 
4. Test cases can be designed at any point in the software development process. As 

soon as SEs release the first draft of specifications, FSW testers and SEs can start 
developing test cases to identify inconsistencies or omissions in functional 
requirements and specifications.  Once all iterations of requirement development 
are complete, the SEs can also use test cases they generated from black box 
testing to verify that the FSW test plan is adequate.  This reduces the lag time 
between development of requirements and code development and testing, reduces 
the overall development time for code, and reduces the risk of finding costly 
errors or omissions in the software late in the development cycle when changes 
are very costly. 

 
Despite its benefits, there are some limitations to a specification-based testing approach 
[2]: 
 

1. Testing techniques are limited in number, less systematic. There are simply not as 
many black-box testing techniques that focus on software functions as there are In 
comparison with white-box testing techniques that are concerned with source 
code design.  And, most black-box testing techniques rely heavily (if not solely) 
on the intuition and subjective system comprehension of the tester. 

 
2. The more prominent black-box testing techniques require automated tools.  As 

previously discussed, a primary benefit of black-box testing is that it can be 
executed by SEs with no programming experience.  But to use techniques like the 
category-partition method (CPM), resources must be spent to acquire automated 
tools and the SE must spend time to learn the tool. 

 
3. Specifications may not be formal.  Formal specifications that express functional 

requirements in mathematical form would be easier to apply to most black-box 
testing methods.  But unless the user (SE) has some programming back-ground, 
the specifications are likely to be in the form of descriptive text.   
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VI.  Summary of Techniques 
 
The applicability of different specification-based testing techniques to system testing 
should be assessed based on how well the technique can address certain key issues: 
 

• Data:  What test data should be used?  How should test cases be generated from 
the test data to avoid redundant tests? 

• Coverage: What are the maximum and minimum number of tests that should be 
run?  How do you know when it is safe to stop testing?  How can you make sure 
that important test cases are included? 

• Functional constraints:  How well can tests flush out constraints or errors? 
 
A discussion of some specification-based testing techniques follows: 
 

1. Random (or “ad-hoc”) testing.  This is by far the simplest (and probably most-
widely used) approach.  Once different types of system input are identified, the 
tester (or a software tool) selects and combines test data at random to form test 
cases.  There can be no guarantees that minimal test cases cover key functions.  
As such, this method really can not compete with some of the more formalized 
approaches. 

 
2. Decision-table Method.  A decision table describes in a precise manner how an 

application behaves. It is composed of rows and columns that depict a relationship 
between system conditions and actions, which are obtained from the specification.  
For each combination of conditions, a rule exists.  Each rule comprises a response 
that is often binary (e.g. Yes/No, True/False) and an associated list of actions.  
Then, for each action, an actions sequence number specifies the order in which an 
action should be performed if this set of conditions is true.  The columns in the 
decision table form test cases. The format of the table is simple and the method is 
systematic.  But important one limitation is that the decision table method can not 
be used to depict constraints among conditions which can result in the generation 
of invalid test cases. Figures 1a and 1b illustrate the decision-table method. 

 
Figure 1a: Specification for Store Software that Provides Customer Benefits 
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     Figure 1b: Decision Table for Store Software that Provides Customer Benefits 
 

 
 

 
3. Cause-Effect Graphing (CEG).  This method is actually a hardware-testing 

technique that was adapted to software testing by W.R. Elmendorf and others. 
From a natural language (informal) specification, the tester identifies causes 
(system inputs) and the associated effects (system outputs).  Then the graph itself 
is constructed as a combinational logic network that connects cause and effect 
nodes with Boolean operators based on certain constraints as stated or implied in 
the specification.  The graph can be traced to a decision table, which can then be 
used to generate test cases.  The systematic approach is an advance over ad-hoc 
methods and provides consideration of constraints that application of the decision-
tree alone does not provide.  However, creation of the boolean graph can be a 
major draw back for larger or more complicated specifications – identifying 
causes and effects would be very tedious and the graphical depiction could be 
overwhelming. Figures 2a – 2c illustrate the CEG method [5]. 

 
Figure 2a: Specification for the “Sendfile” Command 

 
 

 
 
 
 
 
 
 

In a given network, the sendfile command is used to send a file to a user on a different file 
server.  The sendfile command takes three arguments: The first argument should be an 
existing file in the sender’s home directory.  The second argument should be the name of the 
receiver’s file server.  The third argument should be the receiver’s userid.  If all the arguments 
are correct, then the file is successfully sent; otherwise the sender obtains an error message. 
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Figure 2b: Cause-Effect Table for the “Sendfile” Command 

  
 

Figure 2b: CEG for the “Sendfile” Command 

 
 

4. Category Partition Method (CPM).  The standard approach for this method is to 
identify categories (or classifications) of system input parameters and their 
associated choices (or classes) which are the different values each category could 
contain.  The tester must also determine constraints based on the specification:  
how the choices interact, how the occurrence of one choice can affect the 
existence of another, and what special restrictions might affect any choice. Once 
categories, choices and constraints are identified, the information is written in a 
formal test specification language (TSL) which is processed by generator tool to 
produce test cases.  While this method provides considerable coverage and 
adequate consideration of constraints, its major drawback is the reliance on the 
automatic generation tool for generation of test cases. Figures 3a – 3c illustrate 
the CPM method [6]. 
 

 Figure 3a: Specification for the “Find” Command 
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Figure 3b: Category Partition for the “Find”   Figure 3c: Final Specification  for the “Find” 
Command     Command 

 
           
 
 
 

 
 
 

 

5. Classification Tree Method (CTM).  CTM takes a similar approach to test case 
generation for black box testing as CPM in that it identifies classifications and 
associated classes and shows relationships between them based on constraints.  
Benefits of CTM include that the constraints among classifications are captured in 
a graphical tree representation and that automation tools are helpful but no 
necessary for CTM.  This user-friendly and easy-to-learn method encompasses all 
of the desirable properties discussed at the beginning of this section. A more 
detailed discussion of this method is provided in Sections VII and VIII. 

 
VII.  Classification Tree Method 
 
CTM was developed by Grotchamann and Grimm in 1993. CTM is executed via the 
following steps: 
 

1. Use the informal specification to identify classifications and classes.  
Classifications are the different criteria for partitioning the input of the software 
to be tested.  Classes are the subsets of values for each classification.  Each subset 
is disjoint and, by definition, classifications are also disjoint.   

 
2. Construct a classification tree.  At the top of the tree is the general root note 

which represents the unification of all inputs. The next row of figures are the top-
level classifications which represent the highest-level categories of inputs and are 
the “children” of the general root node.  Each classification has two or more 
classes which are also depicted in a parent-child relationship: a parent has 
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connector lines that fan out to associated children classes.  Similarly, classes can 
parent classifications.  Construction of the tree is complete when all identified 
classifications and classes are illustrated.  The lowest level classes depicted are 
called terminal nodes or leaves. 

 
3. Construct the test-case table.  A grid is drawn below the tree.  The columns of the 

grid result from vertical lines that correspond to the leaves of the classification 
tree.  A tester can construct a test case via inspection and by hand and by selecting 
a single child class of each top-level classification.  Then, following vertical lines 
from every child classification selected, the tester should recursively select a 
single child class.  The combinations of marks on any row of the grid indicate 
distinct test cases. 

 
4. Determine feasible test cases.  The tester can identify all feasible or legal test 

cases from the test-case table by referring to the constraints stated or implied by 
the specification. 

 
CTM stands apart from the other black-box testing techniques discussed in Section VI 
because it encompasses all of the properties of an ideal specification-based testing 
technique: 
 

a) CTM offers a systematic approach with well-defined steps that clearly illustrate 
how many values of a test-relevant aspect have to be used.  As opposed to simple 
identifying all combinations and permutations of terminal nodes, the CTM 
process identifies the test case cut sets and weeds out the test cases that don’t add 
value. 
 
b) The graphical description of the test case specifications permits easy 
visualization of test ideas.  These ideas can then be easily reviewed by a user 
(SE), a developer, or a tester.  Ease and clarity in communicating the test ideas 
build confidence in appraisals of the test and test designer and assures that no 
relevant test case has been overlooked. 
  
c) CTM exhaustively checks a formal or informal specification for consistency, 
coverage, and omissions.  That is, if an expected behavior for a given test case 
cannot be determined from the specification, then there is obviously something 
missing in the specification.  As a result, CTM can be very useful in developing 
well-defined, well-written, testable requirements early in the software 
development process. 

 
The entire CTM process can be informed by hand. However, there is a user-friendly tool 
that supports CTM and it is particularly useful for large systems. Classification Tree 
Editor (CTE) tool was first developed in 1996 by engineers at Daimler-Benz AG and 
featured an easy-to-use graphical user interface (GUI) for constructing the classification 
tree and the test case tables.  Later models were renamed Classification Tree Editor-
eXtended Logics (CTE-XL) added features such as automatic generation of test cases.  
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The current release of CTE-XL (version 1.6.1,last update 08/09/2005) can be downloaded 
free-of-charge at www.systematic-testing.com.  More details and uses of CTE-XL are 
provided in Section VIII, where CTE-XL is applied in a HST mission operations software 
case study. 
 
VIII.  Case Study: CTM and HST Charge Control Software Testing 
 
HST power system is supported by six, rechargeable, nickel-hydrogen batteries. Battery 
voltage and temperature is continuously monitored and compared to voltage-temperature 
(V/T) curves. Figure 5 illustrates the V/T curves used for each battery to determine 
charge control.  When the HST’s solar arrays are exposed to the Sun’s energy during the 
HST orbital day, the batteries are being charged.  Once the battery voltage at a given 
temperature exceeds the “charge-off” level, batteries are considered fully charged.  A 
subset of charge-control relays are commanded open interrupt charge current from the 
solar arrays, scaling back the battery charge rate and preventing over-charge the batteries.  
When HST passes behind the earth, the sun is occulted and HST is in orbital night.  
During night, the batteries discharge to support the vehicle load.  Once the battery voltage 
at a given temperature drops below the “charge-on” level, relays are closed so that the 
power system will be configured to resume charging when HST passes back into 
sunlight. 
 

Figure 4:  V-T Levels for HST Software Charge Control Scheme 
 
 

 
 
 
 
 
 
 

 
Battery charge control in can either be conducted using hardware charge-current 
controllers (CCCs) or using by a software algorithm appropriately called Software 
Charge Control (SWCC).  
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Now an application of CTM will be applied to help develop test cases for the SWCC 
algorithm.  For ease of illustration, we will consider the power system as a three-battery 
system (as opposed to the nominal six-battery system).  The informal specification below 
is very similar to the “operations concept” description that was provided by EPS SEs 
when the SWCC scheme was first proposed: 
 

SWCC monitors voltage and temperature of batteries 1-3 and compares them to the 
V/T curves programmed into the Voltage/Temperature Front End (VTFE), a 
software emulation of the CCCs.  The trickle charge initiation parameter (TCINIT) is 
used to verify if the system is in full charge or trickle charge. TCINIT is set to 2 
batteries.  If two or more batteries are above the charge-off levels, the system should 
go into trickle charge and open relays.  When at most one battery is above the 
charge-on level, then the system exits trickle charge and closes relays.  Regardless of 
the charge phase, safing tests are active to continuously monitor battery state-of-
charge (SOC) and rate-of-charge (ROC). The SOC test checks to make sure that 
system capacity stays at or above 200 Ampere-hours (Ah). The ROC test will check 
to verify that total battery charge current is at adequate levels through out the orbit: > 
40A for full charge in orbit day, > 12A for trickle charge in orbit day, and > -90A for 
discharge in orbit night (negative charge current in vehicle telemetry indicates the 
battery is discharging).   If any SOC or ROC safing test threshold is crossed, then the 
flight computer will activate an automatic vehicle power-down sequence. 

 
From this informal specification, a series of classifications and associated classes can be 
identified (see Figure 5). 
 
Figure 5:  Classifications and Classes for HST Software Charge Control Scheme 
Classification Class 
BAT 1 Charging, Discharging 
BAT 2 Charging, Discharging 
BAT 3 Charging, Discharging 
VTFE-Off AboveOff, Belowff 
VTFE-On AboveOn, BelowOn 
TCINIT Above_ 2batts, Below_2batts 
TC_Rate >12A, <12A 
SOC Test >200Ah, <200Ah 
ROC Test Day, Night 
FullChg >40A, <40A 
TrickleChg >-10A, <-10A 
Dischg >-90A, <-90A 
 
The following constraints must also be generated based on nominal power system 
operations: 
 

1. Batteries do not charge in orbit night. But batteries can discharge in orbit day.  For example, large 
vehicle maneuvers can significantly increase the vehicle load and cause batteries to discharge if 
they are at a low, trickle ROC in orbit day. 

2. If the batteries are in full-charge during orbit day,  the trickle-charge initiation parameter 
(TCINIT=2) has not been met. 

3. If the batteries are in trickle-charge during orbit day,  the trickle-charge initiation parameter 
(TCINIT=2) has been met. 

4. If the batteries are discharging in orbit night,  the trickle-charge initiation parameter (TCINIT=2) 
has not been met. 
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With the classifications, classes and constraints clearly identified, the classification tree 
can be constructed.  The CTE-XL tool was used (see Figure 6 on the following page).  
While there is an easy-to-read help section and tutorial, the icons and functions of the tool 
are pretty intuitive to anyone with fundamental computer skills (e.g. Microsoft 
applications) so a tester can jump right into to using the tool.  The CTE-XL main window 
GUI is separated into four quadrants.  Here are some important features: 
 

1. The top-right quadrant (labeled (1) in Figure 6) is used to construct the 
classification tree.  The nodes of the tree are created using the icons or by right-
clicking on the blank space and scrolling through a menu.  Lines connecting 
parent and child elements are automatically drawn but can be moved or altered 
manually. 

 
2. The top-left quadrant (labeled (2) in Figure 6) is the “Properties” window.  The 

“Standard” tab can be used to enter descriptive text about any selected element in 
the classification tree or test-case table.  The “Violations” tab will list any defined 
constraints that a selected test case violates.  The “TCSpecifications” tab lists the 
specifications that apply to a selected test case. 

 
3. The bottom-left quadrant (labeled (3) in Figure 6) has the test-case labels.  These 

can be created manually by right-clicking on the white space in the quadrant or by 
using the automatic test case generator. Names for the test cases are automatically 
generated by the tool but they can be changed by the tester.  If the classes selected 
to form a test case are combined in compliance with an active rules (constraints), 
then the circle preceding the test case name is green.   If the classes selected to 
form a test case are not combined in compliance with an active rules, then the 
circle preceding the test case name is red.      

 
4. The bottom-right quadrant (labeled (3) in Figure 6) has the actual test-case table.  

The vertical lines (associated with leaves from the classification tree) appear as 
soon as the first test case is generated.  If the test cases are being created manually 
(one-by-one), the horizontal lines appear when the test case is labeled.  A tester 
can move the cursor over points in the grid and select intersection points to select 
a leaf.  Since classes are disjoint, the tool will prevent the tested from selecting 
two leaves from the same parent classification and this prevents invalid test cases 
from being formed.  
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Figure 6:  SWCC Classification Tree Analysis using CTE-XL 

(1) 
(2) 

(3) (3) 

(5) 
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5. There is a light bulb icon (labeled (5) in Figure 6) near the top of the CTE-XL 

main window.  When this icon is highlighted, it means that there are software 
rules actively being processed by the tools.  These rules inform the green and red 
indicators on the test case labels to let the tester know hat test cases are valid.  
Rules are entered into the “Dependency Editor” (see Figure 7) and are expressed 
as boolean relationships between classes. 

 
Figure 7:  CTE-XL Dependency Editor for SWCC 

 
 
Like most software problems that would be applied to complex space mission operations, 
the SWCC has a lot of distinct leaves that could be combined to create an extensive list of 
test cases.  So, it the automatic test-case generation function of CTE-XL was used.  The 
“Test Case Generator Editor” (see Figure 8) can be used to identify how top-level 
classifications should be combined to create a set of test cases.  For SWCC, all top-level 
classifications were combined (“AND” ) to yield a total of 2,304 test cases! 
 

Figure 7:  CTE-XL Dependency Editor for SWCC 
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However, the tester can easily tell that many of the test cases identified are invalid due to 
rule violations when she scrolls through the test case label quadrant and sees all the red 
circles.  CTE-XL has a statistics function that generates useful metrics about the test 
cases that have been generated (see Figure 8). 
 

 Figure 8:  CTE-XL Statistics Generator for SWCC 
 

 
 
The Statistics tool shows that when the dependency rules are applied, only 128 of the 
2,304 test cases generated are required to provide the maximum combination coverage.  
The tester can use this inform to identify the distinct combinations of classes that for test 
purposes. 
 
IX.  Conclusion 
 
This project has discussed how specification-based testing can be a useful tool in 
engaging users and non-programmers in software testing in ways that improve the 
process of generating requirements and increases the confidence level that software meets 
specifications.  While several different specification-based testing methods were 
discussed, the most effective method was classification tree method. The CTE-XL tool 
proved to be a powerful but easy-to-use tool for software programmers and non-
programmers alike to apply the classification tree method.   
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ACRONYM LIST 
 

A  Ampere 
Ah  Ampere-hour 
BMIC  Background Memory Integrity Check 
CCC  Charge-Current Controller 
CEG  Cause-Effect Graphing 
CPM  Category-Partition Method 
CTE-XL Classification Tree Editor – eXtended Logics 
CTM  Classification Tree Method 
DMS   Data Management Subsystem 
EPS  Electrical Power Subsystem 
FSW  Flight Software 
GSFC  Goddard Space Flight Center 
GUI  Graphical User Interface 
HST  Hubble Space Telescope 
I&C  Instrumentation and Communication Subsystem 
NASA  National Aeronautics and Space Administration’s 
OAT  Operations Acceptance Testing 
OTA  Optical Telescope Assembly Subsystem 
PCS  Pointing and Control Subsystem 
ROC  Rate-of-Charge 
SI  Science Instrument Subsystem 
SE  System Engineer 
SOC  State-of-Charge 
SWCC  Software Charge Control 
TCINIT Trickle-Charge Initiation Parameter 
TCS  Thermal Control Subsystem 
TSL  Test Specification Language 
V/T  Voltage/Temperature (Curve) 
VTFE  Voltage/Temperature Front End 


