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Outline of the talk

Outline

1 Vehicle Routing using Linear Temporal Logics [GNC’08]

2 Vehicle Routing using Metric Temporal Logics [CDC’08]

3 Optimal Control & Model Checking of Dynamical Systems with
Linear Temporal Logic Specifications [CDC’08]

4 A Roadmap of Some of the Possible Short Term Research
Directions

5 Experiments and Simulations [GNC’08]
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Linear Temporal Logic Introduction to Linear Temporal Logic

Quick Introduction to Linear Temporal Logic

Linear Temporal Logic is an extension of classical propositional logic
Extends classical operators
NOT (¬P), AND (P ∧Q), OR (P ∨Q), IMPLICATION (P → Q) with

EVENTUALLY (♦P) : Proposition P will eventually be true at some future time.

ALWAYS (�P) : Proposition P will always be true throughout the future

UNTIL (PUQ) : P will hold to be until Q becomes true

UNLESS (PWQ) : P must be true unless

Advantages of applications in mission planning

* LTL is remarkably close to natural language

* studied for several years by philosophers computer scientists

* fits quite well into a Vehicle Routing setting
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Linear Temporal Logic Introduction to Linear Temporal Logic

Mission Planning Problems and LTL

Some examples of reasoning using Linear Temporal Logic

Safety
A SAM Site should always

not be engaged
�¬SAMSite

Reachability
A target should be monitored

eventually
♦Target1

Order
An event should happen

unless an other one occurs
(¬Target1)WTarget2

More complicated examples can be built using the operators of classical logic

From Mission Planning with LTL Specifications to MILP

• For any LTL formula we present Mixed-integer Linear Constraints that are
satisfied if and only if the formula is satisfied

• These constraints can be merged with slightly modified versions of MILP
based formulations of mission planning problems
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Linear Temporal Logic An Example: Mission Planning using Linear Temporal Logic

Mission Specifications

• Vehicles travel with V1 : 25mph, V2 : 25mph, V3 : 40mph, V4 : 12mph
• Mission is to either destroy T1 and T3 or T2 and T3. If T2 is destroyed then take V4 to C2.
• T1 and T2 are protected by SAMs S1 and S2. V1 is vulnerable to S1 where as V2 is

vulnerable to both S1 and S2. V3 can not engage T1 and T2.

Several mission specifications can be represented using Linear Temporal Logics, e.g.,

♦(T 1 ∨ T 2) ∧ ♦T 3 ¬(V1@T1 ∨ V2@T1)WSAM1 �¬V2@T1
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Linear Temporal Logic An Example: Mission Planning using Linear Temporal Logic

Mission Specifications

• Vehicles travel with V1 : 25mph, V2 : 25mph, V3 : 40mph, V4 : 12mph
• Mission is to either destroy T1 and T3 or T2 and T3. If T2 is destroyed then take V4 to C2.
• T1 and T2 are protected by SAMs S1 and S2. V1 is vulnerable to S1 where as V2 is

vulnerable to both S1 and S2. V3 can not engage T1 and T2.

Solution of the mission: minimize the total time that UAVs were employed

The solution employs a single vehicle considering the risk factors.
Optimal solution changes in structure for slight changes in the mission.
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Linear Temporal Logic Modeling Cooperation / Risk Aversion

A closer look at the cost function of the optimization problem

We have minimized the total amount of time that assets were employed, i.e.,

f :=
PK

k=1 rk tk where
tk : time that asset k finishes the mission
rk : relative risk coefficient of an asset

• Using an extra vehicle is of high risk.
• Optimal solution is generally to use small number of vehicles effectively

One can minimize the mission time, i.e.,

f := tmax subject to tk ≤ tmax for k ∈ {1, . . . ,K} (tmax is the mission time)

• An extra vehicle can be employed as long as the mission time is not increased
• Optimal solution employs as many vehicles as possible to minimize the mission time

Can we use a mixture of the two?
Let cost function be a convex combination of the two, i.e.,

f := α(
PK

k=1 rk tk ) + (1− α)tmax subject to tk ≤ tmax for k ∈ {1, . . . ,K}

• α becomes a "knob" which can be tuned for desired performance (human supervision).
• α→ 1 : generate more risk averse solutions, employ few vehicles, do not worry about time
• α→ 0 : look for more cooperative solutions, get the whole mission done in minimum time
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Linear Temporal Logic Modeling Cooperation / Risk Aversion

Mission Specifications

• Vehicles travel with V1 : 25mph, V2 : 25mph, V3 : 40mph, V4 : 12mph
• Mission is to either destroy T1 and T3 or T2 and T3. If T2 is destroyed then take V4 to C2.
• T1 and T2 are protected by SAMs S1 and S2. V1 is vulnerable to S1 where as V2 is

vulnerable to both S1 and S2. V3 can not engage T1 and T2.

Minimum risk solution of the mission

The solution employs a single vehicle considering the risk factors. The mission time is not
the best possible (using the slowest vehicle to do all the job by itself).

Total Time: 1.92h, Mission Time: 1.92h
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Linear Temporal Logic Modeling Cooperation / Risk Aversion

Mission Specifications

• Vehicles travel with V1 : 25mph, V2 : 25mph, V3 : 40mph, V4 : 12mph
• Mission is to either destroy T1 and T3 or T2 and T3. If T2 is destroyed then take V4 to C2.
• T1 and T2 are protected by SAMs S1 and S2. V1 is vulnerable to S1 where as V2 is

vulnerable to both S1 and S2. V3 can not engage T1 and T2.

Minimum time solution of the mission

The optimal solution employs as many assets as needed to complete the mission in
minimum time. High risk is taken since all the assets can be lost if mission fails.

Total Time: 2.62h, Mission Time: 0.94h
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Linear Temporal Logic Modeling Cooperation / Risk Aversion

Mission Specifications

• Vehicles travel with V1 : 25mph, V2 : 25mph, V3 : 40mph, V4 : 12mph
• Mission is to either destroy T1 and T3 or T2 and T3. If T2 is destroyed then take V4 to C2.
• T1 and T2 are protected by SAMs S1 and S2. V1 is vulnerable to S1 where as V2 is

vulnerable to both S1 and S2. V3 can not engage T1 and T2.

Solution for α = 0.5

Only two vehicles are employed. Mission time is between the two extremes.
Total Time: 2.0h, Mission Time: 1.1h

Best Total Time: 1.92h (up to 2.62h), Best Mission Time: 0.94h (up to 1.92h)
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Metric Temporal Logic Introduction to Metric Temporal Logic

Limitations of Linear Temporal Logic

LTL reasons about qualitative properties of time. Quantitative properties can not be expressed!
• Safety : After 30 minutes from the mission start always do not engage with Target

Perhaps it will be too late - enemy has gathered more units near the target
• Reachability: Within the first 50 minutes eventually destroy the target

The target must be destroyed and this must be done in first 50 minutes
• Order: Between 20 and 50 minutes do not engage target 1 unless SAM site is destroyed

If target is to be destroyed in this interval then SAM site should have been destroyed first

Metric Temporal Logic (MTL)

• Metric Temporal Logic is one of the many real time logics
• MTL is based on bounded operators
• extends all the temporal operators with real intervals. Let I be any interval of R
• Bounded Eventually (♦IP)
• Bounded Always (�IP)
• Bounded Until (PUIQ)
• Bounded Unless (PWIQ)

Examples of reasoning using MTL
• Bounded Safety : �[30,∞]¬Target
• Bounded Reachability: ♦[0,50]Target
• Bounded Order: (¬Target)W[20,50]SAMSite
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Metric Temporal Logic Introduction to Metric Temporal Logic

Mission Planning Problems with MTL Specifications

Advantages of Metric Temporal Logics in a Vehicle Routing setting
• quantitative properties are crucial in mission planning
• MTL is quite close to natural language (unlike most other real-time logics)
• MTL is as expressive as other real-time propositional temporal logics

Mission Planning with MTL Specifications to MILP

• If the temporal operators are only applied to atomic propositions or their
negations then we provide a set of mixed-integer linear constraints that
are satisfied if and only if the formula is satisfied

• These constraints can be merged with the existing MILP-based
formulations of mission planning
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Metric Temporal Logic An Example: Mission Planning with Metric Temporal Logic

Mission objectives

• Vehicles V1, V2, and V3 have
speeds 15, 18, and 20 mph

• service T2, T3 in 0.7 hours or
service T1, T4, T5 in 1.5 hours

• if former option then eventually
V1@C2 and no landing on C2
before N4 is destroyed

• T2 must be serviced by V2 and
do not service T4 in the first 0.4
hours

• If latter option then do not
service T2 in first 0.6 hours

• Do not service T3 unless T2 is
serviced

Metric Temporal Logics

(♦[0,1.5]T1 ∧ ♦[0,1.5]V2@T4 ∧ ♦[0,1.5]T5 ∧ ♦[0,1.5]V1@C2 ∧�[0,0.4]¬V2@T4 ∧ (¬V1@C2)UV2@T4) ∨
(♦[0,0.7]V2@T2 ∧ (¬T2)U[0,0.7]V3@T3 ∧�[0,0.6]¬T2)
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Metric Temporal Logic An Example: Mission Planning with Metric Temporal Logic

Mission objectives

• service T2, T3 in 0.7 hours or
service T1, T4, T5 in 1.5 hours

• if former option then eventually
V1@C2 and no landing on C2
before N4 is destroyed

• T2 must be serviced by V2 and
do not service T4 in the first 0.4
hours

• If latter option then do not
service T2 in first 0.6 hours

• Do not service T3 unless T2 is
serviced

Solution: minimizing the risk

• V1 launches after 0.05 hours. tT 5 = 0.32, tT4 = 0.43, and tT1 = 0.59
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Metric Temporal Logic An Example: Mission Planning with Metric Temporal Logic

Mission objectives

• service T2, T3 in 0.7 hours or
service T1, T4, T5 in 1.5 hours

• if former option then eventually
V1@C2 and no landing on C2
before N4 is destroyed

• T2 must be serviced by V2 and
do not service T4 in the first 0.4
hours

• If latter option then do not
service T2 in first 0.6 hours

• Do not service T3 unless T2 is
serviced

Old solution

• V1 launches after 0.05 hours. tT 5 = 0.32, tT4 = 0.43, and tT1 = 0.59

New solution : slightly modified scenario

• T4 can not be serviced within first 0.5 hours
• V2 starts after 0.11 hours. tT 2 = 0.6 and tT3 = 0.4
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Model Checking and Optimal Control Introduction to Model Checking

How general is our MILP formulation?

• For many years, LTL has been used as a specification language in AI planning
• Recently, LTL has also been employed in control theory to synthesize controllers
• Most of these control techniques employ model checking based techniques
• We have also been doing planning: among all the possible plans we pick the optimal
• Is it possible to reverse this process allowing us to propose new model checking

algorithms?

Quick Introduction to Model Checking

Problem Definition : (Clarke et.al, Model Checking ’99)

Given a Transition System (states, transitions, and labeling) and a temporal logic formula φ
expressing some desired specification, find the set of all states that satisfy φ

p,r

p

r

p,q

p

p,q
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Model Checking and Optimal Control Introduction to Model Checking

Model Checking
• Many applications in debugging concurrent algorithms
• Several model checker software available, e.g., SPIN and NuSMV

• Given several programs executing concurrently and a formula, model checker gives the set of all
initial conditions for the programs to satisfy the properties
• formula can be a safety property (always avoid infinite loops or deadlocks),
• a reachability condition (all programs eventually terminate),
• an ordering property (program 1 completes before program 2 prints its message)

• Global Model Checking: Find all the states that satisfy φ
• Local Model Checking: Find out whether a given specific state satisfies φ

Model Checking Dynamical Systems

Problem Definition
Given a dynamical system and a temporal logic formula φ find all the initial states
of the dynamical system that satisfy the formula φ
(atomic propositions are polytopes in state space)

• model checking controllable linear systems is decidable! (Pappas’03)
• such results led to control design techniques (Pappas TAC’06, Belta TAC’07)

S. Karaman (LIDS, MIT) Formal Approaches to Mission Planning MACCCS Review, UMich, 2008 17 / 29



Model Checking and Optimal Control Introduction to Model Checking

Model Checking
• Many applications in debugging concurrent algorithms
• Several model checker software available, e.g., SPIN and NuSMV

• Given several programs executing concurrently and a formula, model checker gives the set of all
initial conditions for the programs to satisfy the properties
• formula can be a safety property (always avoid infinite loops or deadlocks),
• a reachability condition (all programs eventually terminate),
• an ordering property (program 1 completes before program 2 prints its message)

• Global Model Checking: Find all the states that satisfy φ
• Local Model Checking: Find out whether a given specific state satisfies φ

Model Checking Dynamical Systems

Problem Definition
Given a dynamical system and a temporal logic formula φ find all the initial states
of the dynamical system that satisfy the formula φ
(atomic propositions are polytopes in state space)

• model checking controllable linear systems is decidable! (Pappas’03)
• such results led to control design techniques (Pappas TAC’06, Belta TAC’07)

S. Karaman (LIDS, MIT) Formal Approaches to Mission Planning MACCCS Review, UMich, 2008 17 / 29



Model Checking and Optimal Control Our Results

Finite Time Horizon (FTH) Model Checking of Linear Systems (Kwan and Agha HSCC’08)
• model checking linear systems is decidable under finite time horizon
• stress that their results can be used in LTL model predictive control
• we also employ the FTH in mission planning examples

FTH model checking of hybrid affine systems is decidable (Karaman et.al. CDC’08)
• model checking hybrid affine systems is decidable under finite time horizon assumption
• we show that our results are directly applicable to optimal control
• similar MILP formulation is employed which was used for mission planning
• work in progress for model predictive control

Small illustrative example: second order hybrid linear system in x − y plane

Eventually visit region 1 and region 2 and always avoid region 3, i.e., ♦(R1 ∧ R2) ∧�¬R3

Model Checking

!1 0 1 2 3 4 5 6

!2
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2
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6
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14

y
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y
2

Optimal Control
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Model Checking and Optimal Control Our Results

Relaxing the finite time horizon assumption
Recent Results

• Very recently we have extended our algorithm to relax FTH assumption!
• We provide an algorithm which terminates in finite time if the formula is satisfied and runs

for ever otherwise
• Work in progress to find a way to detect termination conditions for the algorithm
• Our results still extend to the optimal control case
• We propose the first Integer Programming based LTL Satisfiability Solver

• In practice, SAT Solvers are used as a subroutine for model checking of concurrent programs
(There are commercial model checkers using SAT solvers, e.g. NuSMV)

• There are Integer programming based SAT solvers for classical propositional logic
• We have not experimented the performance of our SAT solver in a comparison study yet

Two time horizons and extending the formulation

Consider a prefix and a suffix time horizon which will model a loop and a path to the loop

Theorem: If there exists an infinite execution that
satisfies an LTL formula then there must be an
infinite execution with a periodic loop that satisfies
the formula
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Model Checking and Optimal Control Our Results

An illustrative example
Double integrator in x − y plane

The model
x1(t + 1) = x1(t) + ∆tx2(t)

x2(t + 1) = x2(t) + ∆tux (t)

y1(t + 1) = y1(t) + ∆ty2(t)

y2(t + 1) = y2(t) + ∆tuy (t)

LTL Specification
Eventually go to region 1 and always eventually visit region
2 and always eventually visit region 3 always avoid region 4.

♦R1 ∧�♦R2 ∧�♦R3 ∧�¬R4

Model Checking
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Road Map Planning Persistent Missions using LTL without FTH

Modeling Persistency: Routing, Surveillance, and Reconnaissance Missions

Does the VRP make sense without the Finite Time Horizon Assumption?

• In mission planning we have assumed finite time horizon, i.e., UAVs are launched and after
servicing a number of targets they all land and the mission is completed

• Let us consider a mission that is persistent in the sense that
• Mission plan for a vehicle can be service some of the targets then go to a base to get fuel and

then service a possible different set of targets and go back to the same base to get fuel again.
Repeat the final loop forever.

• A feasible mission plan satisfies the given temporal formula and finds a loop and a path to that
loop for each vehicle that is launched

• Then one can optimize to obtain the best solution among the feasible

LTL with persistent missions

• Always eventually visit a region : �♦P
• It is always the case that an event requires occurrence of another eventually : �(P → ♦Q)

Quantitative properties

Metric Temporal Logics also has this infinite time understanding. Similar arguments also hold for
the MTL case. Even more interesting conditions can be modeled.

�♦[0,5]P ∧�
`
P →

`
♦[0,2]Q ∧�(0,2]¬P

´´
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Road Map Planning Persistent Missions using LTL without FTH

Modeling Persistency: Routing, Surveillance, and Reconnaissance Missions

Mission Specification

• Eventually destroy Target 3 and either Target 1 or 2 : (♦T1 ∨ ♦T 2) ∧ ♦T 3
• Always patrol R3, R4, R5, and R6 : �♦R3 ∧�♦R4 ∧�♦R5 ∧�♦R6
• If destroyed Target 1 then always patrol R1 : (♦T1)→ (�♦R1)

• If destroyed Target 2 then always patrol R2 : (♦T2)→ (�♦R2)

• If destroyed T1 then eventually search R7 : (♦T1)→ (♦R7)
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Road Map Large-scale problems

Human supervised strategic mission planning with optimal tactics

Humans vs. Computers

Humans

• Humans are good at seeing the big picture
• They can provide high level insights
• They have much better reasoning abilities
• They have a better sense of strategy

Computers

• Computers are good at running messy
computations quickly given algorithms

• They can determine the tactics that involve
several complex and conflicting details

Humans provide reasonable strategy

Humans provide several different
decoupled missions using LTL. A
human operator associates vehicles
with missions providing strategy

Computers provide optimal tactics

Computer first checks feasibility of
mission and vehicle assignments. If
so computes the optimal tactics
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Experiments/Simulations Tracking Dubins Paths

off-the-shelf autopilots / off-the-shelf algorithms

Procerus UAV, Kestrel Autopilot and Virtual Cockpit (Not funded through MACCCS)

• Virtual Cockpit provides a TCP based communication interface
• Access to data and uploading commands to the UAV in real-time

Tracking Dubins Paths in Hardware-in-the-loop simulation

• Several planning algorithms assume bounded curvature model (Dubins model) of the UAVs
and generate motion plans accordingly

• Can we control Procerus UAVs to effectively follow a given Dubins path?
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Experiments/Simulations Tracking Dubins Paths

A Dubins Path Tracking Implementation in HiL Environment
Implementation of a rendezvous algorithm using waypoint commands
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Implementation using roll and speed commands
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• Better tracking performance by directly using
the roll and speed commands

• Work in progress to implement several different
planning algorithms that rely on Dubins models
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Experiments/Simulations Human/Hardware/Software/UAV-in-the-loop Simulation Environment

Hardware Diagram
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Conclusions

Conclusions

• Linear Temporal Logic is remarkably close to natural language and turns
out to model several interesting cases in mission planning problems.

• Metric Temporal Logics are even more expressive than LTL. MTL seems
to model several crucial quantitative properties naturally.

• We have shown application of our methods to model checking of
dynamical systems and controls.

• Infinite time horizon in Temporal Logics allows modeling several
interesting scenarios. We are employing theoretical tools from automata
theory and infinite games to solve these problems.

• We are putting together an experimental setup that will allow us to do
many human-in-the-loop experiments by realistic simulation.
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Thanks

Formal Approaches to Mission Planning
Questions?
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