NETWORKING SYSTEMS

verview of Controller
etwor«

by M. Farsi, K. Ratcliff and Manuel Barbosa

The Controller Area Network is a well-established networking system
specifically designed with real-time requirements in mind. Developed in
the 1980s by Robert Bosch, its ease of use and low cost has led to its
wide adoption throughout the automotive and automation industries.
However, for the beginner using CAN may seem somewhat bewildering.
This article goes some way into explaining how CAN is used both at the

hardware and the software levels.

he Controller Area Network (CAN) was
originally developed in the 1980s for the
interconnection of control components in
automotive vehicles. The complexity of the

control functions implemented by engine management-

systems, anti-lock brakes and skid controls normally
requires dedicated lines for the interconnection of the
different control components. However, a continuous
increase in complexity has led to a physical maximum
not only in the quantity of wires required but also in
physical connector size. CAN enabled a huge reduction
in wiring complexity and, additionally, made it possible
to interconnect several devices using a single pair of
wires, allowing data exchange between them at the same
time.

Needless to say, it was not long before this idea
migrated from vehicles into the machine and automation
markets. Nowadays' CAN has found its way into such
diverse areas as agricultural machinery, medical
insttumentation, elevator controls, fairground rides,
public transportation systems and industrial automation
control components. It is because of its widespread use
that CAN semiconductors are inexpensive. Furthermore,
since a large number of semiconductor manufacturers,
such as Philips, Motorola, National Semiconductors,
Siemens and Intel (to name but a few) produce CAN
devices, CAN technology is guaranteed well into the
future. ‘)

The basic features of CAN are:

o High-speed serial interface: CAN is configurable to
operate from a few kilobits per second right up to
1 Mbit/s transmission rates.

o Low-cost physical medium: CAN operates over a simple
twisted wire pair, therefore cabling a CAN network is
inexpensive compared to multicore or coaxial cables
often required by other bus systems.

Short data lengths: The short data lengths of CAN
messages mean that CAN has very low latency when
compared to other systems.

Fast reaction times: The ability to transmit informa-
tion without requiring a token or permission from a
bus arbiter results in extremely fast reaction times.
Multi-master and peer-to-peer communication: Using
CAN it is simple to broadcast information to all or a
subset of nodes on the bus and just as easy to
implement peer-to-peer communication.

Error detection and corrvection: The high level of error
detection and number of error detection mechanisms
provided by the CAN hardware means that CAN is
extremely reliable as a networking solution.

[e}

o]

[¢]

o

CAN operating principles

CAN allows the implementation of peer-to-peer and
broadcast or multicast communication functions with
lean bus bandwidth use. The basic principles of CAN
communication are explained in the following sub-
sections.

Communication modes and data exchange

When data is transmitted over a CAN network no
individual nodes are addressed. Instead, the message is
assigned an identifier that works as a unique tag on its
data content. The identifier not only defines the message
contents but also the message priority. .

.- When a node wishes to transmit information it simply

COMPUTING & CONTROL ENGINEERING JOURNAL JUNE 1999

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 16,2010 at 19:37:42 UTC from IEEE Xplore. Restrictions apply.

NE TWORKING SYSTEMS

bus arbitration field control
idle » o]

<+ — <t

Fﬂa

11 bit identifier - DLC

0to 8 bytes 15 bit

data CRC ACK| EOF
1< D<H

S

IDE

ihlerframe
space

Fig. 1 Format of a CAN telegram

passes the data and the identifier to its CAN controller
and sets the relevant transmit request. It is then up to the
CAN controller to format the message contents and
transmit the data in the form of a CAN frame. Once the
node_has gained access to the bus and is transmitting
its message, all other nodes become receivers. Having
received the message correctly, these nodes then perform
an acceptance test to determine if the data is relevant to
that particular device, based on the
identifier of the message.

Therefore, it is not only possible to
perform communication on a peer-
to-peer basis where a single node
accepts the message but also to
perform broadcast and synchronised
communication whereby multiple
nodes can accept the same message
using a single transmission.
Furthermore, the ability to send data
on an event basis means that bus
load utilisation can be kept to a
minimal amount.

This concept has become known
in the networking world ‘as the
producer/consumer mechanism
whereby one node produces data on-
the bus for other nodes to consume.
One difference with CAN over other fieldbus solutions is
that this mechanism requires no interaction from a bus
master or arbiter.

Telegram format

Fig. 1 shows the format of a CAN telegram (standard
format). It shows the CAN message format that uses
11-bit identifiers (2.0A format); however, an extended
CAN format (2.0B format) also exists that uses 29-bit
identifiers instead. CAN controllers supporting the
extended format will in general also work with the
standard format communication using 11-bit identifiers
although the reverse is not always true. Some devices

The albility t@
send data omn
amn event basis
means that bus
load wiilisation
camn be kept t© a
mimnimal amoeoumt

supporting purely the standard format will be able to -
tolerate other devices transmitting CAN frames using the
extended format (2.0B passive devices) and function
correctly.

A message in the standard format begins with the start
bit or start of frame (SOF). This is followed by the
arbitration field which contains the identifier of the CAN
telegram and is used to arbitrate access to the bus. Also
part of the arbitration field is the
RTR Dbit (remote transmission
request) which indicates whether the
frame is a request frame (without
any data, this type of message is
used to trigger a transmission by
another node) or a data frame.

The control field contains the IDE
bit (identifier extension), which
indicates whether the frame is a
standard format frame or an
extended one, the 7, bit that is
reserved for future extensions and
four additional bits containing the
length of the data field (data length
code).

Next comes the data field which
can be from zero to eight bytes in
length and the CRC field that
contains a 15 -bit code that is used to check frame
integrity.

The acknowledge (ACK) field comprises an ACK slot
bit and an ACK delimiter bit. The ACK slot is transmitted
as a recessive bit (a bit with a value of 1) and receivers
that retrieve the message correctly (regardless of whether
the message is meant for the controller or not) overwrite
this field with a dominant bit (a bit with a value of 0). The
detection of this dominant bit by the transmitter means
that the message was accepted by at least one node and
was therefore error-free (a further explanation of what
are dominant and recessive bits can be foundin the next
section).

COMPUTING & CONTROL ENGINEERING JOURNAL JUNE 1999

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 16,2010 at 19:37:42 UTC from IEEE Xplore. Restrictions apply.

The end of frame field (EOF) denotes that the frame
terminated. Finally, the intermission (Int) space repre-
sents the minimum number of bit periods that need to
elapse following the frame before another station is
allowed to transmit a message. If no other transmissions
follow the frame the bus remains in its bus idle state.

Avrbitration

CAN employs the carrier sense multiple access with
collision detection (CSMA/CD) mechanism in order to
arbitrate access to the bus. It uses a priority scheme
based on numerical identifiers in order to resolve
collisions between two nodes wishing to transmit at the
same time.

On the CAN bus a ‘zero’ is called a dominant bit
because it overwrites a ‘one’ (a recessive bit). Therefore, a
node transmitting a ‘one’ whilst another transmits a ‘zero’
will result in a ‘zero’ level on the. bus (the one is
overwritten). This process is shown in Fig. 2.

When two or more nodes wish to transmit, they sense
the bus and if there is no bus activity, they begin to
transmit their message identifier (most significant bit
first). At the same time that they transmit their
identifiers, they also monitor the bus levels. If one
node transmits a recessive bit on the bus and the other
transmits a ‘dominant bit the resulting bus level is
a dominant bit, Therefore, the node transmitting a
recessive bit will see a dominant bit on the bus (situation

where A and B lose in Fig. 2) and stop transmitting any -

further information. This allows the node with the lowest
number in its identifier field to gain access to the bus and
transmit its message. Any node that has lost during the
arbitration process then waits until the bus becomes free
before trying to retransmit its message.

Note that this scheme means that no bandwidth is

NETWORKING SYSTEMS

wasted during the arbitration process. Ethernet (for

-example) also uses CSMA/CD, but if there is a collision

between two nodes, one node will transmit a jamming

signal causing both nodes to abort the transmission. Both

nodes will then wait a random period before trying to
. retransmit.

The bus arbitration process used by CAN means that
the node with the highest priority (lowest value in the
identifier field) will continue to transmit without any
interruption. This gives CAN very predictable behaviour
(no random waiting) and very efficient use of the bus. In
fact, it is possible to have CAN networks operating at
near 100% bus bandwidth. .

Acknowledgment and ervor checking/signalling
mechavisms

Unlike other bus systems CAN does not use acknow-
ledgment messages that by comparison represent a waste
of bandwidth on the bus. As mentioned previously, each
receiver that receives the message correctly acknow-
ledges the message by transmitting a dominant bit in
the ACK slot. This will notify the transmitter that the
message was received correctly by at least one node. All
nodes' check all frames for errors and any node in the
system that detects an error actively signals this to the
transmitter. This means that CAN has network wide data
security as a transmitted frame is checked for errors by
allnodes regardless of any filtering of the CAN telegrams.

The error-checking mechanisms implemented in CAN
are:

® Bit errors: When a transmitter places a bit on the bus
it simultaneously monitors the bus to detérmine
whether the actual bit level on the bus matches the
intended one.

resulting bus tevel

recessive

ID=319=0100111111

ID=311= 0100110111

g

ID= 310 0100110110
B loses A Ioses T

Fig. 2 Arbitration -
mechanism in
CAN showing the -

‘~<node A

b~

bit levels as
transmitted by
three nodes A, B
and C and the
resulting bus bit
levels

B loses
< node C

L

COMPUTING & CONTROL ENGINEERING JOURNAL JUNE 1999

- 115

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 16,2010 at 19:37:42 UTC from IEEE Xplore. Restrictions apply.

NETWORKING SYSTEMS

Fig. 3 CAN controller
organisation

bit stream
processor

message buffer
memory

CPU data and

CPU interface
address bus

logic

error management
logic

bit timing logic }————————i clock generator |-———————‘I oscillator

transceiver control logic

l output driver logic

input driver logic l

o Bit stuffing errors: Bit stuffing consists in inserting
a bit of opposite polarity when five consecutive bits
of the same polarity are transmitted on the bus. The
stuffing bits are removed at the receiver end before
the message is processed. CAN uses bit stuffing for
two purposes. The first is to provide frequent level

transitions on the bus to allow receivers to re--

synchronise and adjust internal timing accordingly.
The second is as an error checking mechanism
whereby a violation of the bit stuffing rule is deemed
an error. For example, the reception of six consecutive
recessive bits is a bit stuffing error.

o Cyclic redundancy check (CRC): Each CAN telegram
carries a 15-bit CRC code. This 15-bit CRC code is
calculated by both the transmitter and the receiver.
The transmitter transmits the CRC as part of the frame
and this is compared with the receiver’s own inde-
pendent CRC calculation. If the two calculations do not
agree, an error has occurred during transmission of
the frame. :

o Form ervors: Incoming CAN frames are checked by the
receiver to make sure that the size in bits of individual
parts of the frame are as expected, i.e. there are no
illegal bits in a predefined field of the frame.

o Acknowledgment errors: As mentioned earlier, frames
are acknowledged by receivers by inserting a
dominant bit into the ACK slot of the frame. If no
acknowledgment is detected by the transmitter, there
may be an error detected by the recipients. It could also
mean the ACK slot has been corrupted or that no
receivers exist on the network.

If an error is detected by any of the other nodes (regard-
less of whether the message was mieant for it or not) the

transmission is aborted by transmission of an active
error frame from at least one node. An active error frame
consists of six consecutive dominant bits and it prevents
the other nodes from accepting the erroneous message.
The active error frame violates bit stuffing and may
corrupt the fixed form of the frame causing other nodes
to transmit their own active error frames. After an active
error frame, the transmitting node begins re-trans-

_ mission of the erroneous frame automatically.

CAN controllers implement two transmit and receive
error counters through which they keep track of the
number of errors detected during transmission and
reception of frames, respectively. These counters are
implemented in hardware and their operation is regulated
by a rather intricate set of rules. In a very simplistic view
of this mechanism, we can say that the counters are
incremented by ‘eight’ every time a frame is found
erroneous and decremented by ‘one’ every time a message
is transmitted or received correctly. Over a period of time,
the error count may increase even if there are fewer
corrupted frames than uncorrupted ones. .

During normal operation, the CAN controller is said to
be in its error-active state. In this state, the node is able to
transmit an active error frame every time a CAN frame is
found to be corrupt. If one of the error counters reaches a
warning limit of 96 error counts (indicating significant
accumulation of errors)this is signalled by the controller
usually using an interrupt. The controller operates in its
error active mode until a limit of 127 error counts has
been exceeded. .

Once 128 error counts have been reached, the CAN
controller enters an error-passive state. In this state, an
error-passive controller is still able to transmit and
receive messages but signals errors by transmitting a

COMPUTING & CONTROL ENGINEERING JOURNAL JUNE 1999

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 16,2010 at 19:37:42 UTC from IEEE Xplore. Restrictions apply.

NETWORKING SYSTEMS

passive error frame, A passive error frame consists of six on the CAN bus. It monitors the bus line through a
recessive bits and this frame will only abort trans- differential input comparator. The BTL synchronises
missions performed by the node itself or in situations on a transition at the start of the frame and re-
where the node is the only receiver. Otherwise it will be synchronises on further transitions during reception of
ignored and overwritten by other CAN controllers. If the - the frame. The BTL also provides programmable time
error count drops below 128 again the controller then segments to compensate for propagation delays and
becomes error-active again transmitting active error phase shifts.
frames as required. o The transceiver control logic (TCL) consists of bit

If the error count reaches or exceeds a limit of 256, stuffing logic, programmable output driver logic, CRC
the controller enters its bus-OFF state. In this state the logic and data shift registers. The BSP co-ordinates the
controller can no longer transmit or receive messages individual elements of the TCL. Message reception,
until it has been reset by the host processor. A node can arbitration, message transmission and error signalling
also recover from its bus-OFF state when a series of 128 are actually performed by the TCL.
frames of 11 recessive bits have been detected on the bus. o The message buffer memory stores individual CAN
In this case the error counters are reset to zero by the objects for transmission or reception. The CPU
controller, which then becomes error-active again. communicates only with this area in order to transmit

and receive messages. The bus interface logic manages

CARN comtroller orgamisation the bus traffic.

Fig. 3 shows how a typical CAN controller is organised o The clock generator is simply used to derive a suitable
at the silicon level: clock frequency for the CAN controller based on the

frequency of an external clock oscillator.
o The CPU interface logic (CIL) executes commands
from the host processor and controls data transfers on Sofftware register erganisation

the serial bus. Global status and control registers bits Due to the popularity of CAN, there is a large variety
as well as the control bits of the communication objects of CAN controllers and integrated microcontrollers
are used primarily by the CPU interface logic. available on the market. However, they all present
o The bit stream processor (BSP) controls the data common functionality and many of the registers are
stream between the message buffer memory (parallel programmed in a similar manner, from one controller to
data) and the bus line (serial data). It controls the entire “another.
. protocol, differentiates between the frame types and
detects frame errors. Message filtering
o The error management logic receives error messages Generally two kinds of CAN controllers exist and these
" from the bit stream processor and, in turn, sends back were formerly known as full CAN and basic CAN. The
information about the error state to the bit stream distinction between the two is less important nowadays,
processor and the CPU interface logic. considering most of the newer full CAN controllers also
o The bit timing logic (BTL) determines the timing of the provide some of the functionality of basic CAN.
bits and synchronises with the edges of the bit stream In full CAN controllers, individual sections or objects

1 incoming message | ID=401]————>‘ 1D=301 l receive object 1 [

| incoming message l ID=500 }—— ID match, store

1D=401 l receive object 2 message in this

object

] 1D=402 | receive object3 | $.
notify CPU .
—¢>‘ ID=545 I receive object N I

no ID match with any
object, message rejected

Fig. 4 Principles of full CAN operation

COMPUTING & CONTROL ENGINEERING JOURNAL JUNE 1999 B . .17

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 16,2010 at 19:37:42 UTC from IEEE Xplore. Restrictions apply.

NETWORKING SYSTEMS

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 16,2010 at 19:37:42 UTC from IEEE Xplore. Restrictions apply.

mask
mismatch

message identifier (ID)

D10 [109 [108 | 107 [106 | 5 | 1Da | D3

1D bits
ignored
|[-—

[i02 [0t | oo |
!
1

o1=[o[A[A1 [1 [[1]o[o[1]

acceptance mask (AM)

i

, wz=[o[11] 11 [1]1]o]1]1]v

|

i

'

:

[am7 [ave | Ams [ama [ama | amz | am1 | amo
1 1
X

1

1

|

ac7 [ace | acs [aca [Aca [acz [act | Ao [

»
am=[o]o[ofo[o]o[1]o]

acceptance code (AC)

ac=[of 1] Jof+]s]1]

Fig. 5 Basic CAN acceptance filtering registers

of the message buffer memory (see Fig. 4) are reserved for
the reception or transmission of CAN frames with preset

programmable identifiers. When receiving a message, if -

the identifier matches the one programmed into the
header of the object, the data is stored in that object or
memory area. If the identifier does not match any of the
programmed object identifiers, the message is rejected by
the hardware.

In basic CAN implementations, the controller receives
all messages regardless of their identifier and puts them
into a receive message buffer. It is then up to software
to accept or reject the incoming messages. Therefore, a
software interrupt routine is invoked every time a CAN
message is received, regardless of whether the CAN
message is intended for the application or not. This can
add a large amount of code and processing overhead to an

application. Overheads may be reduced in some instances
as a basic CAN controller will normally provide a
rudimentary acceptance filtering scheme that allows the
controller to reject a subset of the CAN identifier range.
In a Philips 8x592 microcontroller, and the Motorola
68HCO05X family of microcontrollers, for example, the
filter consists of an acceptance mask (AM) register and an
acceptance code (AC) register as shown in Fig. 5.

Both the acceptance code and acceptance mask
registers are normally eight bits in length and the
filtering is usually based on the eight most significant
bits of the CAN identifier. The acceptance mask register
defines whether the corresponding bits in the acceptance
code register and in the CAN identifier must match to
pass the acceptance test (the acceptance mask bits set to
zero if a match is required). For this reason, in Fig. 5, ID1

7

0

[sow1 [siwo | BRP5 [BRP4 | BRP3 | BRP2 | BRP1 | BRPO |

7

bus timing register 0

0

tsvncsea

{ saM [TsEG2.2] TSEG2.1 [TSEG2.0 | TSEG1.3 | TSEG1.2 | TSEG1.1 [TSEG1.0|

bus timing register 1

one bit period)

tSJW1

'TSEG1

B tope —><— tsuwz

S

1 clock cycle (tgow)

‘sample point

Fig. 6 Bus timing registers and bit periods

COMPUTING & CONTROL ENGINEERING JOURNAL JUNE 1999

fails the acceptance test whilst ID2 passes. It should be
noted that the last three bits of the identifier are not taken
into consideration. Therefore if the acceptance code in the
example is set to 01110111 binary (952 decimal) and all
bits in the acceptance mask are set to ‘zero’ (meaning that
the top eight bits of the identifier must equal the eight bits
of the acceptance code register) then a range of identifiers
from 952 to 960 will pass the filtering test by the CAN
controller. The software is then required to complement
the filtering if only some of these messages are to be
accepted.

Bus timing ,
In most CAN controllers, two eight bit registers are
used to program the bit rate for CAN communication.
Additionally, it is also possible to control the bit sample
point and the maximum amount of adjustment of bit
width that can be applied in order to resynchronise with
the bit stream on the bus. Fig. 6 shows the two bus timing
registers and their relationship with these parameters.

The timing of one bit period, shown as tine it period),
comprises several bit timing logic (BTL) cycles (tscr).
Furthermore, the bit period is divided into five segments:
tsyncsec, tswi, tywe, trsect and trsece.

During the period tsyncsec the incoming edge of a bit is
expected. This segment corresponds to one BTL cycle.
The synchronisation jump widths (SJW1 and SJW2) are
adjusted to compensate for phase shifts between the
clock oscillators of the bus nodes. The width of SJW1
is increased to a maximum of twice the programmed
width during resynchronisation. The width of SJW2 is
reduced or cancelled to shorten the bit time during
resynchronisation. Thus, the overall position and width
of the bit time are adjusted according to incoming edge
transitions. Both SJW1 and SJW2 are values set between
one and four BTL cycles and programmed using SJW1
and SJWO0 in bus timing register 0.

NETWORKING SYSTEMS

Table 1 Worst case inter-frame spacing

baudrate inter-frame space
1000 kbit/s 47 ps

500 kbit/s 94 us

250 kbit/s 188 ps

125 kbit/s 376 us

three samples is restricted to low-speed applications due
to the operating speed of the CAN controller but may help
reduce errors in bit sampling.

The baud rate prescaler (BRP) divides the oscillator
clock to give the BTL cycle time. The BTL cycle time is
set to twice the oscillator cycle time multiplied by BRP+1.
Therefore, given how one bit period is made up of several
smaller segments it is possible to calculate the overall bit
time tone bit perioy i BTL cycles as:

e SJW1 = SJW2 = 25JW.1+SJW.0+1 (BTL cycles)

® TSEG1 = 8TSEG1.3+4TSEG1.2+2TSEG1.1+
TSEG1.0+1 (BTL cycles)

o TSEG2 = 4TSEG2.2+2TSEG2.1+TSEG2.0+1
(BTL cycles)

L4 ttcne bit period) = SYNCSEG + SJWl + TSEG1 + TSEG2
+ SJW2 (BTL cycles)

Note that certain restrictions apply to the values placed

in these parameters. This is due to restrictions in the.

processing times of the various functional parts of
the CAN controller.

- Software implementation

Consideration of how the application software
handles the hardware interface between the CAN
controller and processor can play a major part in the
communication process. Whether we are using basic or
full CAN devices it is vitally important that messages

The position of the sample point
is defined by trsgc1 and trsgce. These
are periods programmed by TSEG2

and TSEG1 in bus timing register 1.
For most applications, the sample
point will be set at around 75 to 88%
(i.e. TSEG2 normally set to a value

microcontroller

external data/address bus

microcontroller

integrated
CAN controller

of 1) of the total bit width. This will

allow for any distortion effects to bit Ciﬁlﬁgﬂﬁer RX1 1} RX0

levels caused by signal propagation .
and the transmission media, _— RX1} | RXO *t1| |Tx0

particularly at higher baud rates. i

The bit SAM controls the number of [busdriver bus driver |

samples that the CAN controller CANH

makes when determining the bit

level on the bus. If SAM= 0 then one

sample is taken. If SAM=1 then

three samples are taken and a CAN_L

simple majority rule scheme

determines the bit level. The use of

Fig. 7 Variants of CAN hardware

COMPUTING & CONTROL ENGINEERING JOURNAL JUNE 1999

119

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 16,2010 at 19:37:42 UTC from IEEE Xplore. Restrictions apply.

NETWORKING SYSTEMS

Table 2 Selection of transceiver chips

part number max speed manufacturer
SN75LBC031D 500 kbit/s Texas Instruments
UC5350 1 Mbit/s Unitrode
82C250, 82C251 1 Mbit/s Philips Semiconductors

Table 3 Standalone and integrated CAN
semiconductors

part number extended ID microcontroller manufacturer

FM2C yes 16-bit Fujitsu
H8/300H yes 16-bit Hitachi
AN 82527 yes none Intel
ANB7C196C4 yes 16-bit Intel
68HCO5X4 no 8-bit Motorola
M37630 E4/M4 yes 8-bit Mitsubishi
COP684BC passive 8-bit National
Semiconductors
UPD70F3xxx yes 32-bit NEC
P8X592/8 no 8-bit Philips
ST10F167 yes 16-bit SGS Thompson
SAE81C90/91 passive none Siemens
C167CR yes 16-bit Siemens
TMP88PP87 yes 8-bit Toshiba
TCG54AF yes none Toshiba

are retrieved from the CAN controller receive buffer
areas before they are overwritten by further incoming
messages. This is especially true at high network speeds,
as shown in Table 1.

Given this data, it is generally not possible for a
processor to retrieve a message from the CAN controller
buffer and process it before the next message arrives. In
some cases, the CAN hardware implements its own
buffering scheme whereby multiple areas of buffer
memory in the hardware are used to store incoming
telegrams. However, in most cases received messages
must be temporarily stored by the software in memory so
that they can be processed at a later date. If possible,
copying to a memory buffer should be done using any
on-chip facilities available for optimum data transfer
speed. For example, Philips 80C592 microcontroller on-
chip DMA facilities allow transfer of a CAN message
from its CAN controller to internal data memory in a
period of two instruction cycles.

An important consideration is the fact that when
assessing the capability of the software avoiding
message overruns, the number of back-to-back messages
is not the only important factor. The length of each CAN
message also plays a vital role. If all the messages in the
‘burst’ are of 8 bytes in length the processor has more
time before having to deal with the next message in its
receive buffer. If the burst contains messages of just a few
bytes in length, a particular processor cannot deal with
them in time. In other words, it is not only the number of
messages in the burst but also the length of each message
that counts. This was found out by the authors at an early
stage when, after having built an automation cell where
the master (based around a Basic CAN controller) could
quite happily cope with the other microcontrollers on the
network sending 8 byte messages, it could not cope when

one or two of the processors were configured to send 1 or
2 byte messages.

Most of all, it is important that a device that does suffer
from message overruns is able to detect this situation and
notify the application using predefined error recovery
mechanisms.

Hardware implementation

Two basic mechanisms exist for integrating CAN
into a product. For existing products a standalone
CAN controller can be interfaced to the same micro-
controller using the external address and data bus. For
new products a different microcontroller with integrated
CAN interface can be used. The two are shown in Fig. 7.

A number of different manufacturers produce bus
driver or transceiver chips and a few of them are shown
in Table 2.

Table 3 shows a list of some of the integrated and
standalone CAN controllers available. This is by no
means an exhaustive list and many other variants exist.
Most of the manufacturers listed here produce more
than one CAN product. Note that most of these CAN
controllers support the extended 29-bit identifier range
although some only support 29-bit identifiers passively,
ie. they can be used on the same network as CAN
controllers using the extended 29-bit ID but use standard
11-bit identifiers only.

Concluding remarks

The popularity of CAN (11 million chips were sold to
the end of 1997) is due to its ease of use, to its extremely
high efficiency and reliability and to the low costs of CAN
implementations. CAN is as simple to use as a serial
UART, and currently the cost of CAN controllers is
still decreasing as CAN finds its way into more and
more applications, not only in the car and automation
industries, but also into fields such as medical
instrumentation and domestic appliances.

References

1 ‘CAN specification 2.0’, Parts A and B, Robert Bosch, September 1991

2 MACLAUGHLIN, R.: ‘Introduction to CAN’, CANopen Workshop,
Savoy Place, London, October 1997

2 MONK, F: “Producer/consumer the new network paradigm’,
Fieldcomms UK 97 Conference, Hanover International Hotel,
Leicestershire, October 1997

4 ‘CAN—a serial bus system not just for vehicles’, CAN in Automation
Organisation (CiA)

5 ‘P8x592 8-bit microcontroller with on-chip CAN', datasheet, Philips
Semiconductors, June 1996

6 ‘8x196 microcontroller family’, datasheet, Intel, June 1995

7 ‘MC68HC05X4, MC68HC705X4 Technical Data’, datasheet, Motorola,
1996

8 ‘SAE81C90/91 standalone full CAN controller’, datasheet, Siemens,
January 1997

9 ‘CAN communication model and its implications’, Holger Zeltwanger
(CiA), CAN Solutions Directory, 1997, Miller Freeman

©IEE: 1999

The authors are with the Department of Electrical and Elec-
tronic Engineering, Merz Court, The University of Newcastle,
Newcastle upon Tyne NE1 7RU, UK.

COMPUTING & CONTROL ENGINEERING JOURNAL JUNE 1999

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 16,2010 at 19:37:42 UTC from IEEE Xplore. Restrictions apply.

