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Local floods induce large-scale abrupt failures
of road networks
Weiping Wang 1,2,3,4, Saini Yang 1,2,3, H. Eugene Stanley4 & Jianxi Gao 5,6

The adverse effect of climate change continues to expand, and the risks of flooding are

increasing. Despite advances in network science and risk analysis, we lack a systematic

mathematical framework for road network percolation under the disturbance of flooding. The

difficulty is rooted in the unique three-dimensional nature of a flood, where altitude plays a

critical role as the third dimension, and the current network-based framework is unsuitable

for it. Here we develop a failure model to study the effect of floods on road networks; the

result covers 90.6% of road closures and 94.1% of flooded streets resulting from Hurricane

Harvey. We study the effects of floods on road networks in China and the United States,

showing a discontinuous phase transition, indicating that a small local disturbance may lead

to a large-scale systematic malfunction of the entire road network at a critical point. Our

integrated approach opens avenues for understanding the resilience of critical infrastructure

networks against floods.
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Increased greenhouse gas emissions due to human activity have
resulted in an irreversible warming trend1. The additional
moisture generated by global warming has increased pre-

cipitation worldwide, and floods have become more frequent2–5.
Expanding populations and the exposure of assets in river basins
and deltas have also increased the risk of future catastrophic
floods6,7.

Recently, the spatiotemporal properties of floods have attracted
researchers’ attention8 and encouraged the study of the impact of
floods on critical infrastructure systems9–18. On the one hand,
risk analyses have focused on methodologies of the road network
absorption capacity9, hazard impact framework19, level of service
remaining, and cascading effects within critical infrastructure
systems10,11. These analyses help clarify the propagation of flood
risk among infrastructure systems at different spatial scales12. On
the other hand, since 2010, cascading failures on a network of
networks20,21, sometimes called multilayer networks22,23 or
multiplex networks24, have attracted more attention in network
science. Relevant research has been motivated by the fact that
diverse critical infrastructure systems, including transportation,
power, energy, water, and communication systems, are coupled
and depend on each other21,25–29. In interdependent networks,
the failure of nodes in one network leads to the failure of
dependent nodes in other networks, which in turn may cause
further damage to the first network, leading to cascading failures
and possibly catastrophic consequences25.

Percolation theory, based on statistical physics, allows analysis
of the robustness of a network or a network of networks. In the
percolation approach, network robustness is measured by the
topological connectivity, the largest connected component, under
the losses of links and nodes. In the case of transportation, an
individual car can only travel along connected components;
likewise, in the case of communication, a user can only send
messages or emails along connected components. The largest
connected component, also called the giant connected compo-
nent, is thus assumed to be functional30–32. This measure is
especially relevant to the robustness of a system, representing the
function of mutual navigability under shocks33. The percolation
approach was also shown to be extremely useful in addressing
other scenarios, such as efficient damage and immunization34–37,
in obtaining optimal paths38, and in designing robust networks39.
Most studies, however, have focused on the network robustness
against random40, localized41, and target damage35,42 rather than
the network robustness against a realistic disturbance, such as a
flood or earthquake.

A flood, as a special and realistic type of disturbance, threatens
the robustness of infrastructure systems12,43,44. As shown in
Fig. 1, floods are locally destructive and the situation is similar to
localized damage from this perspective. However, a flood can also
affect the entire network owing to its wide spatial dispersion
through rivers and the altitude of roads with a three-dimensional
(3D) network structure, which is similar to the case of random
damage. For example, risk analysis shows that local disruptions to
infrastructure networks may have far-ranging effects in areas of
indirect flooding45. Currently, limited research has focused on the
structure and dynamics of 3D networks46. The currently used
network-based framework, however, is unsuitable for 3D dis-
turbances and 3D network topologies, where the altitude of a
node or link, as the third dimension, crucially affects function-
ality. We thus still lack a systematic mathematical framework,
such as percolation theory, with which to address the function-
ality of road networks under the disturbance of floods.

In this work, we develop a failure model to study the effect of
floods on road networks and validate this failure model using
historical data for Hurricane Harvey of 2017. We find that 90.6%
of reported road closures and 94.1% of reported flooded streets

are covered by the total failures obtained using the failure model
and that the reported failures of each county in Houston strongly
correlate with the coverage of total failures obtained using the
failure model. We use the failure model to examine the effects of
floods on the road networks of China and the United States (US)
with millions of intersections and roads at varying altitudes. We
simulate the flood using the CaMa-Flood global river flood
model8 for given runoffs with three scenarios of flood distribution
and obtain the direct failures of a road network measured by the
inundated intersections. By applying the flood disturbance and
percolation theory to road networks, we numerically study the
properties of direct, indirect, and total failures due to flooding
and compare them with those of random and localized damage. A
flood is more locally destructive and has a stronger effect on the
neighborhood or community than random damage and is dif-
ferent from localized damage because rivers may spread damage
from one location to other locations. Surprisingly, direct failures
are the major damage to road networks (as for localized damage)
in the event of a small flood whereas indirect failures are the
major damage (as for random damage) in the event of extreme
floods. There is thus a discontinuous phase transition that sig-
nificantly differs from the continuous phase transition observed
in random and localized damage. Our findings reveal that at a
critical point, a small local disturbance may lead to a large-scale
systematic malfunction of the entire road network, allowing us to
design effective strategies for preventing network-wide damage by
identifying critical components that are the last line of defense
against catastrophic abrupt collapses. These critical components
have relatively high altitude and are closer to a river, in contrast
to the measurements of degree, betweenness, and coreness cen-
trality in classic two-dimensional (2D) networks. We finally use a
message passing approach47–50 to develop an analytical solution
for the effect of floods on road networks. These findings show
that our integrated approach (of a failure model and analytical
solution) opens avenues for understanding the robustness of 3D
infrastructure networks against floods, with direct implications
for risk reduction and management.

Results
Hurricane Harvey of 2017. We propose a failure model (see
Methods for details) to study the effects of floods on road net-
works. Before we use this model, we take the catastrophic
flooding in Houston and South East Texas due to Hurricane
Harvey51 as a case study to validate the results of the proposed
failure model. We collected the maximum observed flooding from
Dartmouth Flood Observatory data sets52. After inputting the
flood information to the actual US road network, we use our
failure model to identify road intersections that have directly and
indirectly failed (as shown in Supplementary Fig. 1). We collected
information of road closures reported by TranStar and flooded
streets (road segments) reported by public media53 in Houston
and refer to these road closures and flooded streets as reported
failures.

Comparing the total failures (road segments) identified by the
proposed failure model with reported failures, we find that
90.625% of reported road closures and 94.10995% of reported
flooded streets are covered by the total failures. Tðr;f Þ (the
reported failures) strongly correlates with Tðc;f Þ (the reported
failures covered by total failures) (correlation coefficient r= 1, as
shown in Fig. 2a) and Tðf Þ (the total failures) (correlation
coefficient r= 0.99, as shown in Fig. 2b).

We then use key words to categorize the damage descriptions
in the region (see Methods for details) from the post tropical
cyclone report of Hurricane Harvey issued by the National
Oceanic and Atmospheric Administration (NOAA)54.
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Supplementary Table 1 lists the details of all nine categories, the
number of totally failed nodes obtained using our failure model
jN ij, and the ratio of failures in each category i, Fðt;f Þ

i . We find
that the failure ratio is highly consistent with the category
descriptions. For categories of catastrophic or major flooding with
numerous roads inundated, the failure ratios are high, which
shows the simulation results effectively reflect the actual pattern
of flooding damage. The spatial distributions of total failures in
counties are labeled using the nine categories, as shown in Fig. 2c.
The spatial distribution of total failures obtained using our failure
model is basically consistent with that of descriptions of flooding
damage in the post tropical cyclone report.

With these comparisons, we can claim that the proposed model
allows us to reasonably estimate the flood effect on a road system.

Features of flood-induced failures. Floods are locally destructive
and can affect an entire network, which is similar to the case for
localized damage and random damage but there are unique fea-
tures. To identify the features of flood-induced failures, we

compare the effects of floods on a road network with those of
random and localized damage (see Methods and Supplementary
Note 1 for details) using the verified failure model. We apply
three flood scenarios (see Methods for details) to produce various
flood events and select the road networks of mainland China and
the US for our national case study. Supplementary Fig. 2 shows
the sizes of the giant connected components of Chinese and US
road networks when disturbed by three different types of dis-
turbance (i.e., flood events, random damage, and localized
damage) with the same fraction of direct failures. We also select
five flood-prone provinces in China and nine flood-prone states
in the US as regional case study areas (see Supplementary Figs. 3
and 4). Figure 3 shows the national and regional simulation
results for China and the US, revealing various characteristics of
flood-induced failures. Figure 3a, b shows that the fraction of the
giant connected component (P∞) in a road network after a flood
(blue dotted line) lies between that of random damage (red line)
and that of localized damage (green line) in all scenarios for both
direct and indirect failures. This indicates that the effect of floods

Floods

a b

c

e f g

h

d

Map data ©2018 Google Map data ©2018 Google

G C C

G

G

Random damage

Runoff channel

Road network

Direct failures

Rain

Runoff direction

Indirect faillures

Flood

River

Land

Road cross section

Funcational road intersections

Localized damage
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is between that of random damage and that of localized damage.
This result suggests that floods are a new type of disturbance that
has a unique damage pattern, which has rarely been studied in the
network science literature.

We further explore the spatial distribution of flood-induced
failure. Figure 3c–h and Supplementary Fig. 5 show an aggregated
vulnerability map of road intersections under random damage,
floods, and localized damage (see Methods for aggregated
vulnerability and the notations of aggregated vulnerability are
given in Supplementary Table 2). We obtain the following results
for China.

The aggregated vulnerability of totally failed road intersections
due to random damage (hqðt;rÞi i) is largest but is not spatially
aggregated. The aggregate vulnerabilities of totally failed road
intersections due to floods (hqðt;f Þi i) and localized damage (hqðt;lÞi i)
are spatially aggregated but lower in value (see Fig. 3c–e).

The aggregated vulnerability of the direct failed road intersec-
tion due to flooding (hqðd;f Þi i) is largest and spatially aggregated
[see Supplementary Fig. 5a–c].

The geographical distributions of the aggregated vulnerability
of indirectly failed road intersections in China due to random
damage (hqði;rÞi i) and floods (hqði;f Þi i) are similar to the distribution
for direct failures, and the aggregated vulnerability of indirectly
failed road intersections under random damage is larger than that
of directly failed road intersections under random damage (see
Supplementary Fig. 5a, b, d, e). The aggregated vulnerability of
indirectly failed road intersections due to localized damage
(hqði;lÞi i) in China spatially aggregates but is smaller than that of
directly failed road intersections (hqðd;lÞi i)(see Supplementary
Fig. 5c, f).

Figure 3f–h and Supplementary Fig. 5g–l show similar results
for the US but the geographical distributions of the aggregated
vulnerability of indirect failures and total failures due to random
damage in the US have two clearly separated areas, not one area
as for China (see Fig. 3c, f and Supplementary Fig. 5d, j). This
difference may be a result of regional simulations owing to

random damage in the US (see Supplementary Fig. 4a) not totally
destroying the network as they did in China (see Supplementary
Fig. 3a).

We also examine the relationship between vulnerability and
population density and find similar results (see Supplementary
Fig. 6). The aggregated vulnerability of each population density to
random-damage-induced total failures is the largest among the
three types of disturbance, and the aggregated vulnerability is
highest for flood-induced direct failures among the three types of
disturbance.

Random damage thus causes the most destructive total failures,
where the largest contribution is from indirect failures. All
failures due to random damage are spatially randomly distrib-
uted, while the total failures due to floods and localized damage
have geographical agglomerations. Direct failures make the
largest contribution to flood-induced total failure, and indirect
failures make the largest contribution to local damage-induced
total failures.

Percolation analysis. When comparing the effects of floods on a
road system with the effects of random and localized damage, we
discover that both China and US road networks show dis-
continuous phase transitions, indicating that a tiny increase in
runoff may cause a large-scale systematic malfunction of the
whole road network when the system is close to a critical point.
Percolation phase transition occurs when the giant connected
component disintegrates as the second largest connected com-
ponent reaches its maximum55. The network of New York
(Fig. 4b), for example, shows the phase transition for disturbance
by floods. The simulation results indicate that the fraction of
nodes in the second largest connected component (S) in the road
network of the USA reaches a maximum value when the flood
input runoff in New York (Fig. 4b) under a normal flood scenario
increases from 40 to 45 mm per day. To clarify these potential
critical points, we plot the geographical layout of road intersec-
tions disturbed by floods in New York (Fig. 4a) under a normal
flood scenario. This set of newly failed (inundated) road
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intersections (red in Fig. 4a) is less destructive but is catastro-
phically destructive when combined with previously failed road
intersections (blue in Fig. 4a). We observe similar percolation
phenomena in other provincial case study areas; e.g., Sichuan
(Supplementary Fig. 7). We compare four important measures
(i.e., the degree, betweenness, altitude (DEM), and distance to a
river) for the set of newly added inundated intersections (Vary)
and that of all road intersections (Normal) in Sichuan, China
when a phase transition emerges. Supplementary Fig. 8 shows
that the newly inundated intersections at the critical point have
higher altitude and are closer to a river. It is interesting to note
that these intersections are not the traditionally recognized
important components or critical components in a network,

because their degree and betweenness values are small. However,
they are the last line in a networks defense against being broken
into disconnected components of subextensive size. These inter-
sections should therefore be prioritized when developing strate-
gies of disaster prevention; i.e., the road intersections that have
higher altitude and are closer to a river are more crucial in flood
mitigation.

Comparison of numerical and analytical solutions. The present
study uses failures obtained using the failure model to measure
the effect of floods on a road network. To identify failures, we
need to find the giant connected component of road networks
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under floods. Straightforwardly, using a numerical solution (see
Methods for details), we can identify all nodes in the giant
connected component of a network under flood but this may
require much computer power and time. To alleviate this
problem, we adopt a message passing approach47–50 and
develop an analytical solution with which to compute the
fraction of nodes in giant connected components P∞ under
floods with a low computational cost. It is feasibly effective and
helpful to derive the analytical solution for the effect of floods
on a road network.

To test our analytical solution, we quantitatively compare
simulation and analytical results. We extract the road

intersections in a province from the national road network to
form the initial subnetwork. We then obtain the final subnetwork
by excluding the road intersections that are not in the giant
connected component of the initial subnetwork. We apply this
process to obtain the subnetworks for the other provinces and
states. Figure 5 and Supplementary Fig. 9 show that our analytical
results agree well with the giant component obtained from
simulations. The analytical and simulation results are not
perfectly consistent for Zhejiang, Florida, and New York because
the networks in these regions are large (see Supplementary
Table 3), have dense connections, and are no longer tree-like
random systems.
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Discussion
The present paper introduces floods as a new type of disturbance
in network science and explores the robustness of a road network
against extreme floods. The aim of a road network, as part of
critical infrastructure, is to facilitate the movement of people and
goods and ensure economic activity. We develop a failure model
with which to study the effects of floods on road networks.
Coverage of 90.6% of reported road closures and 94.1% of
reported flooded streets during Hurricane Harvey of 2017 vali-
dates the failure model. To quantify the relationship between the
characteristics of floods and the different groups of induced
failure (i.e., direct, indirect, and total), we use the failure model to
study the characteristics of flood-induced failures and compare
them with those of random and localized damage. We finally
develop an analytical solution with which to calculate the effects
of floods on road networks. Scientific findings of this work, such
as road network percolation under a flood disturbance and a new
type of important node in a road network, and their implications
for reducing disaster risk are explored.

There are three unique aspects of flood-induced effects. First,
the number of total failures due to floods lies between that due to
random damage and that due to localized damage (as shown in
Fig. 3a, b). Floods are more locally destructive and more strongly
affect a neighborhood or community than random damage and
are more globally destructive than localized damage because they
can affect entire river basins. The destructive effect of floods is
therefore between that of random damage and that of localized
damage. This suggests that we may want to prioritize floods above
most other natural hazards, e.g., earthquakes, which mainly
conform to the features of localized damage. Second, the main
contributor to total failures due to floods is direct failures while
that to random damage and that to localized damage are indirect
failures (as shown in Fig. 3c–h and Supplementary Fig. 5). This
indicates that engineering and non-engineering measures of
preventing direct failures are the best approaches of reducing
flood damage. Third, a direct failure due to floods can destroy

components that are considered more important (e.g., more
populated nodes) and may affect more people than a direct failure
due to other types of damage (Supplementary Fig. 6). Throughout
human history, most major cities have been settled along rivers
because rivers are vital to transportation and trade. Road systems,
as the backbone of human activity and social development, are
naturally concentrated in major river basins. It is thus expected
that more-populated areas will be more affected by floods than by
other hazards, which calls for more attention to be paid to the
reduction of the disaster risk posed by floods.

More importantly, road networks in both China and the US
show discontinuous phase transitions under a flood disturbance
(Fig. 4 and Supplementary Fig. 7), which are different from
continuous phase transitions that we observe under random
damage and localized damage (Supplementary Figs. 3 and 4).
This finding reveals that the road network is more vulnerable to a
flood disturbance than to random or localized damage. The
reason is that for a continuous phase transition, a small pertur-
bation can only result in a small damage; i.e., dP1

dp is finite.
However, for discontinuous phase transition, a small perturbation
can cause much damage; i.e., dP1dp is infinite at a critical point. It is
essential to predict the threshold of the discontinuous phase
transition, because even when the giant connected component is
large, a small fraction of direct failures may cause the large-scale
collapse of the entire system. For the same fraction of node
removal, random damage may cause more damage to a road
network than a flood, but their damage is predictable because of
the continuous phase transition. It is thus important to analyze
the percolation function and predict the critical threshold. We
analyze the percolation phenomena adopting the message passing
approach by solving a set of equations. The analytical results are
highly consistent with the simulation results. While the compu-
tation time of searching for the giant component from the large-
scale road network with multiple types and numerous possibilities
of disturbances may be hopelessly long, the time required to
compute the analytical solution of the threshold is much shorter.
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We can therefore analyze the robustness of the road network for
all possible scenarios of floods and identify the critical intersec-
tions/roads, allowing us to better reduce risks to infrastructure by
protecting the critical intersections/roads and designing quanti-
tative analysis tools for an early warning system, and providing
decision-making support in infrastructure planning and design.

We also note that some nodes that have low centrality (i.e., low
degree and betweenness values) but higher altitude and are closer
to a river, seemingly unimportant in a 2D network, are the last
line of defense against a collapse of the whole network into several
smaller connected components (see Fig. 4, Supplementary Figs. 7
and 8). This finding contrasts with the common understanding
and existing disaster risk reduction practices, which tend to
focus and invest much more on nodes considered important with
higher centrality. Why the unimportant nodes become the last
straw that breaks the camels back and how these nodes combine
with damage patterns to trigger abrupt systematic malfunctions
call for more research in the broad field of disaster risk science.
Comparing the affected population between China and the US
(see Supplementary Fig. 10 and Supplementary Note 2 for
details), we find that more highly populated counties are affected
by floods more in China than in the US; counties with an
extremely high population density ([95, 100] percentile) are more
likely to be directly affected by floods in China; and more people
are indirectly affected by floods in China. All these findings
indicate that flood mitigation will be more challenging in China
than in the US.

Floods are typical 3D disturbances. The coupling of floods with
infrastructure systems, which are usually 3D, will create unique
damage patterns. For example, road segments in a low-lying area
will be submerged by water while those at high altitude may
remain intact in the event of flooding. The coupling may also
contribute to waterlogging after storms, a problem with which
many modern cities are struggling. The mechanism of this cou-
pling of two 3D systems should be explored in future research.

When networked critical infrastructure systems, such as
transportation systems and power grids, are disturbed by floods,
knowing the temporal-spatial properties of direct, indirect, and
total failures is essential for risk assessment and reduction. If we
find universal features of failures due to floods, we can use them
to optimize the planning and design of networked critical infra-
structure systems. The proposed integrated approach that we
have applied to floods can also be applied to other realistic spatial
disturbances, including tropical cyclones, tornadoes, and
debris flows.

Methods
Data and pre-processing. All data sets used in this analysis are publicly available.
The boundary of study areas in China and the US are respectively collected from
the National Geomatics Center of China (http://www.ngcc.cn/) and United States
Census Bureau (https://www.census.gov/geo/maps-data/data/cbf/cbf_counties.
html). The digital elevation model (DEM) and the river network of the study areas
are extracted from HydroSHEDS (https://hydrosheds.cr.usgs.gov/). The population
density is taken from the Gridded Population of the World, Version 4 (GPWv4)
(http://sedac.ciesin.columbia.edu/data/collection/gpw-v4). The maximum observed
flooding caused by Hurricane Harvey is collected from the Dartmouth Flood
Observatory data sets (http://floodobservatory.colorado.edu/Events/2017USA4510/
2017USA4510.html). We collect information of road closures reported by TranStar
and flooded streets (road segments) via public media53 in Houston from https://
www.chron.com/news/houston-weather/hurricaneharvey/article/These-are-the-
roads-that-are-closed-in-Houston-12003482.php.

We select five types of major road and four types of highway link from
OpenStreet data sets (https://www.openstreetmap.org) as our road data sets (as
shown in Supplementary Table 4). After importing these road data sets (in
shapefile format), we use geographical information system software including
ArcGIS to obtain the starting point and ending point of each road segment. After
removing duplicates, these starting and ending points can be seen as road
intersections and are abstracted as nodes. We build an edge between two nodes if
and only if one of the nodes is the starting point of a road segment and the other
node is the ending point of the same road segment. We finally obtain the road

network to represent the road system. We thus use networks to represent road
systems in China and the US, after representing road intersections as nodes and
road segments as edges. The road network in China contains 1,143,837 nodes and
944,600 major links, and its giant component has 329,802 nodes. The US road
network contains 2,231,327 nodes and 2,191,289 links, and its giant component has
1,590,077 nodes. To ensure the connectivity of the entire road system, we use the
giant connected component of a road network to represent the road system.

We use the CaMa-flood model to simulate flood events. The source codes,
executable scripts, global river map, and regionalization tools for the CaMa-flood
model are available at http://hydro.iis.u-tokyo.ac.jp/yamadai/cama-flood/index.
html. The methods of producing input runoffs for the CaMa-flood model are
described in Methods and MATLAB code for producing these input runoffs is
available at a GitHub repository (https://github.com/wpwang90/
IAERCURNetworks). We obtain a flood inundation depth map from the CaMa-
flood outputs and use the ArcGIS extract tool to extract the inundation depth of
road nodes from this inundation depth map. The MATLAB code for format
conversion from the binary file resulting from the CaMa-flood model to GeoTIFF
is available at a GitHub repository (https://github.com/wpwang90/
IAERCURNetworks).

We use geodata from Google Maps to map the road nodes in our study areas
after calling functions from ggmap (an R package)56.

Flood simulation. Runoff is the rainfall that falls to the surface and flows on the
surface or underground under the action of gravity. The ratio of surface runoff to
rainfall has a different empirical value for different land cover types. We thus use
surface runoff to represent the rainfall. Inputting different surface runoffs repre-
senting different degrees of rainfall, we use the CaMa-Flood57 global river model
(see Supplementary Note 3 for details) to simulate floods at different intensities. In
this paper, we propose three types of flood scenario to simulate floods as follows.

Normal flood scenarios. Surface runoff is the same everywhere within the study
area. To produce floods at different intensities, we set the surface runoff from 1 to
9 mm per day with a step size of 1 and from 10 to 300 mm per day with a step size
of 5 mm. We finally have 68 unique runoff scenarios that induce 68 flood events in
the study area.

Random flood scenarios. To produce floods at different intensities, we set the
reference surface runoff from 20 to 300 mm per day with a step size of 5 mm. For
each position in the study area, we choose a reference surface runoff minus a
uniform random value, which ranges from 0 to 20 mm, as the actual surface runoff.
We thus have 57 unique runoff scenarios. To reduce the effect of random numbers,
we independently repeat this process 20 times. We finally have 1140 unique runoff
scenarios that induce 1140 flood events in the study area.

Pearson flood scenarios. We set the reference surface runoff from 20 to 300 mm
per day with a step size of 5 mm. For each position in the study area, we choose a
reference surface runoff minus a Pearson-III random number, which ranges from 0
to 20 mm, as the actual surface runoff. We thus have 57 unique runoff scenarios.
To reduce the effect of random numbers, we independently repeat this process 20
times. We finally have 1140 unique runoff scenarios that induce 1140 flood events
in the study area.

We select the road networks of mainland China and the US to be our national
simulation cases and five flood-prone provinces in China and nine flood-prone
states in the US as regional simulation cases. Applying the three types of flood
scenario in these study areas, we have a total of 37,568 unique flood events.

Failure model. A road system consists of many road segments and intersections.
We can use a network to represent the road system, after representing intersections
as nodes and road segments as edges. In this study, we use the size of failures (i.e.,
the number of failed nodes) to measure the effect of floods on road systems. We
categorize road intersection failures due to disturbances into three groups: a direct
failure, where the road intersection is located in the flooded area and is lower than
the water surface, an indirect failure, where the road intersection cannot maintain
traffic flow because it is disconnected from the giant connected component of the
road system after some road intersections undergo direct failure, and a total failure,
which is a direct failure or indirect failure.

Comparing floods with random damage and localized damage. Because a flood
has three-dimensional features, it is crucial to explore the common and specific
characteristics among a flood disturbance and well-studied random damage and
localized damage. The direct failures resulting from these three types of disturbance
are as follows.

For a flood disturbance, we use the CaMa-Flood global river model8 to simulate
the inundation depth in an area after inputting a runoff scenario. In this study,
three types of runoff scenario are used to represent a multitude of flood events (see
Methods). Each flood event has a unique distribution of the inundation depth
depending on the DEM of the area. The altitudes of the water surface and road
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intersections are compared, and those road intersections (nodes) lower than the
water surface are considered to have directly failed.

For a random damage, we randomly remove road intersections from the entire
network. To compare the damage effect between a pair of a flood disturbance and
random damage on a road network, we count the number of direct failures due to
flood disturbance and generate the same number of removed nodes in the paired
random damage. These removed nodes are direct failures due to paired random
damage.

For a localized damage, we remove road intersections by adopting a random
walk starting from a random node (intersection) in the network. To compare the
damage effect between a pair of a flood disturbance and localized damage on a road
network, we count the number of removed nodes due to flood disturbance and
generate the same number of removed nodes in the paired localized damage. These
removed nodes are direct failures due to paired localized damage.

As shown in Fig. 1, we use this sketch network (jN j ¼ 20) to compare the
failures resulting from floods with those resulting from random damage and
localized damage on the network. The nodes are removed as a result of any type of
disturbance; i.e., the red nodes in Fig. 1e–g. We refer to these removed nodes as
direct failures D. When one flood event occurs, we acquire the inundated nodes
(direct failures) in the road network, remove them, and its size is jDj ¼ 5 (Fig. 1e).
When comparing the effect of this flood event with the effects of random damage
and localized damage, we set the fraction of direct failures in total nodes, 1$ p ¼ 1

4,
for all three types of disturbance in this example. After removing these nodes
(direct failures), some nodes are disconnected from the giant connected component
of the road system (i.e., the majority of the road system). This means the vehicles
on these nodes cannot reach the majority of nodes in a network. These nodes are
referred to as indirect failures and the set of these nodes is denoted I . In the
example of Fig. 1, we find the fractions of indirect failures among all nodes are 11

20,
1
2,

and 2
5, and the network breaks into three distinct connected components (C), two

distinct connected components (C & P), and only one connected component (P)
for random damage, floods, and localized damage respectively. The joint set of
direct and indirect failures is referred to as the total failures T, and our order
parameter, P1 ¼ jPj

jN j, is the fraction of nodes in the giant component. When
comparing floods with random damage, we generate random damage according to
the results of each flood event. When a flood event occurs, some nodes will be
inundated and removed from the road network. For a corresponding random
damage event, we randomly remove the same number of nodes from the road
network as in a flood event. Owing to the randomness of simulation, we generate
20 random damage events for one flood event. We then calculate and compare the
sizes of the giant connect component under this flood event and random damage.
The comparison of floods and localized damage is performed in a similar manner.

Failures resulting from Hurricane Harvey. To validate the failure model, we
classify five groups of failure as follows.

Reported failures. We collect information of road closures reported by TranStar
and flooded streets (road segments) via public media53 for the flood in Houston
and refer to these as reported failures (Tðr;f Þ).

Direct failures. In this empirical study, we do not have the inundation depth
and we therefore simply remove nodes in a flooded area from the network and
refer to them as direct failures.

Indirect failures. By removing direct failures resulting from flooding, some
nodes or connected components may become disconnected from the new giant
connected component; these are referred to as indirect failures (I ðf Þ).

Total failures. The total failures (Tðf Þ) resulting from floods refer to the
combination of direct and indirect failures; i.e., Tðf Þ ¼ Dðf ÞSI ðf Þ .

Reported failures covered by total failures. For a reported failure, if there exists a
total failure within a geographical distance of 10 meters, we deem that this reported
failure is covered by the total failures in the context of a flood. The set of these
reported failures covered by total failures is denoted Tðc;f Þ.

Categorization of descriptions of damage. The post tropical cyclone report
issued by NOAA (NOAA, 2018) provides descriptions of flooding damage for the
majority of counties in Houston, Texas. We categorize these descriptions into nine
groups by key words. For instance, the damage description for the county of
Colorado is as follows.

“Major flooding occurred along the Colorado River with widespread
inundation of crop land near Eagle Lake, as well as numerous roads
inundated included US HWY90, FM950 and lowest homes flooded in the
vicinity of the gauge or in the floodplain. Colorado overtops its levees around
47 feet from Columbus down to Bay City, causing extensive flooding in low
lying areas along the left bank.”
We abstract the damage description for the county of Colorado using the key

words major flooding occurred and numerous roads inundated and then categorize
this county into group MN in Supplementary Table 1. We define the ratio of total

failures resulting from floods (Fðt;f Þ
i ) in a county i as

Fðt;f Þ
i ¼ jTðf Þ

i j
jN ij

; ð1Þ

where N i and Tðf Þ
i respectively denote the sets of nodes and totally failed nodes

obtained using our failure model in county i.

Percolation theory. A connected component C in a network is a subnetwork in
which any nodes can be connected to the others by paths, which can be represented
by a sequence of connected edges. The giant connected component is the con-
nected component that contains the largest fraction of the whole network. Per-
colation theory has been introduced to study network stability and predicted the
critical percolation threshold. The robustness of a network is usually either char-
acterized by the value of the critical threshold analyzed using percolation theory or
defined as the integrated size of the giant connected component during the entire
damage process21. When the fraction of removed nodes (direct failures) reaches a
certain value 1− pc, there is a percolation phase transition where the whole system
will completely fragment and lose its function. This critical (percolation) threshold
pc indirectly reflects the robustness of the network. Phase transition emerges when
a tiny change in a state variable of a system causes an abrupt change in some
properties of the system; e.g., the vaporization of water, superconductivity in
metals, and the spreading of epidemic disease. The order of the phase transition
can be specified from whether the macroscopic statistical property changes con-
tinuously (second order) or discontinuously (first order) at the transition. We also
refer to this drastic change in some properties of the network system as percola-
tion58. The system percolation in different disturbance scenarios has been widely
studied25,28,30–32,34,55,58–69.

Aggregated vulnerability. We quantify the vulnerability of a road intersection
(node) i using probability qi, which is the probability of failure of a road inter-
section when disturbed. The aggregated vulnerability 〈qi〉 is the average of the
failure probability of a simulated road intersection and is expressed as

hqii ¼

P
j
qi;j

P
j
1
; ð2Þ

where i is the indicator of simulation runs while qi,j is the probability that road
intersection i fails during simulation j.

Numerical solution. The giant connected component P is the largest connected
component. This measure is especially relevant to the reliability of a road system in
that it represents the ability of the system to remain navigable in the face of failures.
We use the fraction of nodes in the giant connected component of a road network
after disturbance to measure the effect of a disturbance on a road network.
Straightforwardly, when a flood disturbance affects a road network, some nodes are
removed from the road network and we can use either a breadth-first search or
depth-first search to identify all nodes in the connected components of a network.
In this study, we use the following depth-first algorithm70 to calculate the con-
nected component for each node v (Cv).

Step 1. Choose a node v in a network, identify all its adjacent nodes (denoted
Q), and set the connected component of Cv as empty (Cv ¼ ;).

Step 2. Pop a node from Q, add it to Cv , and add all its adjacent nodes to Q.
Step 3. Repeat Step 2 until Q is empty.

Analytical solution. We also use our theoretical model to compute giant con-
nected components. In other words, the fraction of nodes in the giant connected
component P∞ can be obtained by searching through simulation, which may
require much computer power and time. The size of the giant connected com-
ponent can also be obtained using equations.

A network is a set of nodes N connected by edges M. The vector n ¼
ðn1; :::; njN jÞ

T represents which nodes have and have not failed. The vectors

e ¼ ðe1; :::; ejMjÞ
T , o ¼ ðo1; :::; ojMjÞ

T , and d ¼ ðd1; :::; djMjÞ
T respectively

represent the edge, starting node, and ending node of an edge. A given node i can
be disconnected from the giant connected component P, either because it has
directly failed or because it has been indirectly detached via the failure of other
nodes. The variable vi is the probability of node i belonging to the giant connected
component, vi= 1 if i 2 P, vi= 0. vij= 1, 0 represents the probability of i
belonging to the giant connected component in the absence of j. The fraction of
nodes in the giant component under direct failure condition n is then given by

P1ðnÞ ¼

PjN j

i¼1
vi

jN j :
ð3Þ
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For a real loopy network (strictly valid for the locally tree-like random
network), we have the message passing formula47–50,61

vi;j ¼ ni½1$
Y

k2∂inj
ð1$ vk;iÞ&; ð4Þ

where ∂i/j is a set of nearest neighbors of i minus j. We can finally put j back in
the network and get the value of vi as

vi ¼ ni½1$
Y

k2∂i
ð1$ vk;iÞ&: ð5Þ

The Eq. (4) can be rewritten as

vel ¼ nol ½1$
YjMj

k¼1

ð1$ vek Þ
Bek ;el &; ð6Þ

where

Bek ;el
¼

1 if dk ¼¼ ol andok≠dl
o else

!
ð7Þ

The Eq. (6) can be rewritten as

vel ¼ nol ½1$ e

PjMj

k¼1

Bek ;el
lnð1$vek Þ&: ð8Þ

We write vector V ¼ ðve1 ; ve2 ; :::; vejMjÞ
T , matrix B ¼ jBei ;ej

jjMj ´ jMj (known as a

non-backtracking matrix), 1=(1, 1,..., 1)T|M|, and vector NE ¼ ðnoe1 ; noe2 ; :::; noejMj
ÞT ,

and use circle to indicate Hadamard product, and Eq. (8) can then be rewritten as

V ¼ NE ' ½1$ eBlnð1$VÞ&: ð9Þ
After solving Eq. (9) and putting the solution V back into Eq. (5), we use Eq. (3)

to find the giant connected component under failure condition n.
We propose the following algorithm to solve Eq. (9).
Step 1. Initialize the vector V and direct failure condition n. A random number

v0,i ~ U(0, 1) is placed on each edge i of the spatial network (denoted
V0 ¼ ðvo;1; vo;2; :::; vo;jMjÞ

T . We obtain the value of NE according to direct failure
condition n.

Step 2. Update the vector V. We calculate V ¼ NE ' ½1$ eBlnð1$V0Þ& using
Eq. (9).

Step 3. Check for accuracy. If |V−V0| < δ (where we set δ= 0.0001 in this
study), go to Step 4; else set V0=V and go to Step 2.

Step 4. Calculate vi. Put the solution V back into Eq. (5) and obtain the value of vi.
Step 5. Calculate P∞(n). Using Eq. (3), we obtain the value of the fraction of

nodes in the giant component under direct failure condition n.

Data availability
The data sets are publicly available and are open access online as stated in Data and
preprocessing. All data sets are available from the authors upon reasonable request.

Code availability
The source codes, executable scripts, regionalization tools for CaMa-flood model are
available at http://hydro.iis.u-tokyo.ac.jp/yamadai/cama-flood/index.html. The data
generation and/or analyses in this study are coded in R and/or MATLAB and are
available at a GitHub repository (https://github.com/wpwang90/IAERCURNetworks).
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