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NOISE IS UNWANTED  or harmful sound from 
environmental sources, including traffic, construction, 
industrial, and social activity. Noise pollution is one 
of the topmost quality-of-life concerns for urban 
residents in the U.S., with more than 70 million people 
nationwide exposed to noise levels beyond the limit the 
U.S. Environmental Protection Agency (EPA) considers 
harmful.12 Such levels have proven effects on health, 
including sleep disruption, hypertension, heart disease, 
and hearing loss.5,11,12 In addition, there is evidence 
of harmful effects on educational performance, with 
studies showing noise pollution causing learning and 
cognitive impairment in children, resulting in 

decreased memory capacity, reading 
skills, and test scores.2,5 

The economic impact of noise is 
also significant. The World Health Or-
ganization estimates that, as of 2012, 
one million healthy life-years in West-
ern Europe were being lost annually 
to environmental noise.11 Other esti-
mates put the external cost of noise-re-
lated health issues in the E.U. between 
0.3%–0.4% of GDP14 and 0.2% of GDP 
in Japan.16 Studies in the U.S. and Eu-
rope also demonstrate the relationship 
between environmental noise and real 
estate markets, with housing prices 
falling as much as 2% per decibel (dB) 
of noise increase.21,30 Noise pollution 
is not merely an annoyance but an im-
portant problem with broad societal 
effects that apply to a significant por-
tion of the population. It is clear that 
effective noise mitigation is in the pub-
lic interest, with the promise of health, 
economic, and quality-of-life benefits.

Mitigation 
Noise can be mitigated at the receiver’s 
end by, say, wearing earplugs or along 
the transmission path by, say, erecting 
sound barriers along major roads. These 
strategies do not, however, reduce noise 
emissions but instead put the burden of 
mitigation on the receiver.12 Alternative-
ly, noise can be mitigated at the source 
(such as by designing aircraft with 
quieter engines, acoustically treating 
night clubs, muffling jackhammers for 
roadwork, and stopping unnecessary 
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honking). These actions are commonly 
encouraged and incentivized through 
a regulatory framework that uses fines 
and other penalties to raise the cost of 
emitting noise.20 However, enforcing 
noise codes in large urban areas, to the 
point where they effectively deter noise 
emissions, is far from trivial. 

Consider New York City. Beyond 
the occasional physical inspection, 
the city government monitors noise 
through its 311 service for civil com-
plaints. Since 2010, 311 has logged 
more than 2.7 million noise-related 
complaints, significantly more than 

for any other type of complaint.a This 
averages approximately 834 com-
plaints a day, the most comprehen-
sive citizen noise-reporting system in 
the world. However, research by New 
York City’s Department of Health and 
Mental Hygiene (DOHMH) found 311 
data does not accurately capture in-
formation about all noise exposure in 
the city.22 It identified the top sources 
of disruptive noise to be traffic, si-
rens, and construction; the effect to 
be similar in the boroughs of Manhat-

a	 http://www1.nyc.gov/311

tan, Brooklyn, and the Bronx; and low-
income and unemployed New Yorkers 
among the most frequently exposed. 
In contrast, 311 noise-complaint data 
collected for the same period empha-
sized social noise (such as parties, car 
alarms, loud talking, music, and TV), 
with fewer complaints citing traffic 
or construction. Notably, residents of 
Manhattan, home to many affluent 
New Yorkers, are more than twice as 
likely to file 311 complaints than those 
in the other boroughs. This pattern 
clearly highlights the need to collect 
objective noise measurements across 
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weighted decibels (dBA)20 that aggre-
gate all sound energy in an acoustic 
scene. Existing technologies are un-
able to isolate the effect of offending 
sources, especially in urban environ-
ments flooded with multiple sounds. 
As a result, inspectors resort to long, 
complicated measurement strategies 
that often require help from the peo-
ple responsible for the violation in the 
first place, an additional factor con-
tributing to the difficulty and reduced 
efficiency of the enforcement process. 

Here, we outline the opportunities 
and challenges associated with SONYC, 
our cyber-physical systems approach 
to the monitoring, analysis, and mit-
igation of urban noise pollution. 
Connecting various subfields of com-
puting, including wireless sensor net-
works, machine learning, collaborative 
and social computing, and computer 
graphics, it creates a potentially 
transformative solution to this im-
portant quality-of-life issue affecting 
millions of people worldwide. To il-
lustrate this potential, we present 
findings from an initial study we con-

ducted in 2017 showing how SONYC 
can help understand and address im-
portant gaps in the process of urban 
noise mitigation.

SONYC
Multiple research projects have sought 
to create technological solutions to 
improve the cycle of urban noise pol-
lution. For example, some have used 
mobile devices to crowdsource instan-
taneous SPL measurements, noise la-
bels, and subjective responses3,24,28 but 
generally lag well behind the coverage 
in space-time of civic complaint sys-
tems like 311, while the reliability of 
their objective measurements suffers 
from a lack of adequate calibration. 
Others have deployed static-sensing 
solutions that are often too costly to 
scale up or go beyond the capabilities 
of standard noise meters.4,23,29 On the 
analytical side, a significant amount of 
work has focused on noise maps gener-
ated from sound propagation models 
for major urban noise sources (such as 
industrial activity and road, rail, and 
air traffic).13,17 However, these maps 

the city, along with citizen reporting, 
to fully characterize the phenomenon. 

A closely related challenge involves 
how to respond to potential violations 
of the noise code. In New York, the 
subset of noise complaints pertain-
ing to static, systemic sources (such as 
construction, animals, traffic, air con-
ditioning, and ventilation units) are 
routed to the city’s Department of En-
vironmental Protection (DEP), which 
employs approximately 50 highly 
qualified inspectors to measure sound 
levels and issue a notice of violation 
as needed. Unfortunately, the limited 
human resources and high number of 
complaints result in average response 
times of more than five days. Given 
the ephemeral nature of sound, a very 
small proportion of inspections actu-
ally result in a violation observed, let 
alone penalized. 

To complicate matters, even when 
noise sources are active during in-
spections, isolating their individual 
effect is difficult. Noise is commonly 
measured in overall sound pressure 
levels (SPL) expressed in so-called A-

Figure 1. The SONYC cyber-physical system loop, including intelligent sensing, noise analysis at city-scale, and data-driven mitigation. SONYC 
supports new research in the social sciences and public health while providing the data citizens need to improve their communities. 
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cilitate seamless interaction between 
humans and cyber-infrastructure. 
Worth emphasizing is that this line of 
work is fundamentally different from 
current research on human-in-the-
loop cyber-physical systems that often 
focuses on applications in which con-
trol is centralized and fully or mostly 
automated while usually only a single 
human is involved (such as in assis-
tive robots and intelligent prosthet-
ics). The synthesis of approaches from 
social computing, citizen science, and 
data science to advance integration, 
management, and control of large and 
variable numbers of human agents in 
cyber-physical systems is potentially 
transformative, addressing a crucial 
bottleneck for the widespread adop-
tion of similar methods in all kinds 
of socio-technical systems, including 
transportation networks, power grids, 
smart buildings, environmental con-
trol, and smart cities. 

Finally, SONYC uses New York 
City, the largest, densest, noisiest city 
in North America, as its test site. The 
city has long been at the forefront of 
discussions about noise pollution, 
has an exemplary noise codeb and, 
in 311, the most comprehensive citi-
zen noise-reporting system. Beyond 
noise, the city collects vast amounts 
of data about everything from public 

b	 http://www.nyc.gov/html/dep/html/noise/ 
index.shtml

lack temporal dynamics and make 
modeling assumptions that often 
render them too inaccurate to sup-
port mitigation or action planning.1 
Few of these initiatives involve act-
ing on the sensed or modeled data 
to affect noise emissions, and even 
fewer have included participation from 
local governments.15 

SONYC (Sounds of New York City), 
our novel solution, as outlined in Fig-
ure 1, aims to address these limitations 
through an integrated cyber-physical 
systems’ approach to noise pollution. 

First, it includes a low-cost, intelli-
gent sensing platform capable of con-
tinuous, real-time, accurate, source-
specific noise monitoring. It is scalable 
in terms of coverage and power con-
sumption, does not suffer from the 
same biases as 311-style reporting, and 
goes well beyond SPL-based measure-
ments of the acoustic environment. 
Second, SONYC adds new layers of 
cutting-edge data-science methods for 
large-scale noise analysis, including 
predictive noise modeling in off-net-
work locations using spatial statistics 
and physical modeling, development 
of interactive 3D visualizations of noise 
activity across time and space to enable 
better understanding of noise patterns, 
and novel information-retrieval tools 
that exploit the topology of noise events 
to facilitate search and discovery. And 
third, it uses this sensing and analysis 
framework to improve mitigation in 
two ways—first by enabling optimized, 
data-driven planning and scheduling 
of inspections by the local government, 
thus making it more likely code viola-
tions will be detected and enforced; and 
second, by increasing the flow of infor-
mation to those in a position to control 
emissions (such as building and con-
struction-site managers, drivers, and 
neighbors) thus providing credible in-
centives for self-regulation. Because the 
system is constantly monitoring and 
analyzing noise pollution, it generates 
information that can be used to vali-
date, and iteratively refine, any noise-
mitigating strategy. 

Consider a scenario in which a sys-
tem integrates information from the 
sensor network and 311 to identify a 
pattern of after-hours jackhammer 
activity around a construction site. 
This information triggers targeted in-
spections by the DEP that results in 

an inspector issuing a violation. Sta-
tistical analysis can then be used by 
researchers or city officials to validate 
whether the action is short-lived in 
time or whether its effect propagates 
to neighboring construction sites or 
distant ones by the same company. By 
systematically monitoring interven-
tions, inspectors can understand how 
often penalties need to be issued be-
fore the effect becomes long term. The 
overarching goal is to understand how 
to minimize the cost of interventions 
while maximizing noise mitigation, 
a classic resource-allocation prob-
lem that motivates much research in 
smart-cities initiatives. 

All this is made possible by formu-
lating our solution in terms of a cyber-
physical system. However, unlike most 
cyber-physical systems covered in the 
literature, the distributed and decen-
tralized nature of the noise-pollution 
problem requires multiple socioeco-
nomic incentives (such as fines and 
peer comparisons) to exercise indi-
rect control over tens of thousands of 
subsystems contributing noise emis-
sions. It also calls for developing and 
implementating a set of novel mecha-
nisms for integrating humans in the 
cyber-physical system loop at scale 
and at multiple levels of the system’s 
management hierarchy, including ex-
tensive use of human-computer inter-
action (HCI) research in, say, citizen 
science and data visualization, to fa-

Figure 2. Acoustic sensing unit deployed on a New York City street. 
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housed in an aluminum casing we 
chose to reduce RFI interference and 
solar heat gain. The microphone mod-
ule is mounted externally via a flexible 
metal gooseneck attachment, making 
it possible to reconfigure the sensor 
node for deployment in varying loca-
tions, including sides of buildings, 
light poles, and building ledges. 
Apart from continuous SPL measure-
ments, we designed the nodes to 
sample 10-second audio snippets at 
random intervals over a limited peri-
od of time, collecting data to train 
and benchmark our machine-listen-
ing solutions. SONYC compresses the 
audio using the lossless FLAC audio 
coding format, using 4,096-bit AES 
encryption and the RSA public/pri-
vate key-pair encryption algorithm. 
Sensor nodes communicate with the 
server via a virtual private network, up-
loading audio and SPL data at one-
minute intervals. 

As of December 2018, the parts of 
each sensor cost approximately $80 
using mostly off-the-shelf compo-
nents. We fully expect to reduce the 
unit cost significantly through custom 
redesign for high-volume, third-party 
assembly. However, even at the cur-
rent price, SONYC sensors are signifi-
cantly more affordable, and thus ame-
nable to large-scale deployment, than 
existing noise-monitoring solutions. 
Moreover, this reduced cost does not 
come at the expense of measurement 
accuracy, with our sensors’ perfor-
mance comparable to high-quality 
devices that are orders of magnitude 
more costly while outperforming solu-
tions in the same price range. Finally, 
the dedicated computing core opens 
the possibility for edge computing, 
particularly for in-situ machine lis-
tening intended to automatically and 
robustly identify the presence of com-
mon sound sources. This unique fea-
ture of SONYC goes well beyond the 
capabilities of existing noise-monitor-
ing solutions. 

Machine Listening at the Edge 
Machine listening is the auditory coun-
terpart to computer vision, combining 
techniques from signal processing and 
machine learning to develop systems 
able to extract meaningful information 
from sound. In the context of SONYC, 
we focus on developing computational 

methods to automatically detect specif-
ic types of sound sources (such as jack-
hammers, idling engines, car horns, 
and police sirens) from environmental 
audio. Detection is a challenge, given 
the complexity and diversity of sources, 
auditory scenes, and background con-
ditions routinely found in noisy urban 
acoustic environments. 

We thus created an urban sound tax-
onomy, annotated datasets, and vari-
ous cutting-edge methods for urban 
sound-source identification.25,26 Our 
research shows that feature learning, 
using even simple dictionary-based 
methods (such as spherical k-means) 
makes for significant improvement in 
performance over the traditional ap-
proach of feature engineering. More-
over, we have found that temporal-
shift invariance, whether through 
modulation spectra or deep convolu-
tional networks, is crucial not only for 
overall accuracy but also to increase 
robustness in low signal-to-noise-ra-
tio (SNR) conditions, as when sources 
of interest are in the background of 
acoustic scenes. Shift invariance also 
results in more compact machines 
that can be trained with less data, 
thus adding greater value for edge-
computing solutions. More recent re-
sults highlight the benefits of using 
convolutional recurrent architectures, 
as well as ensembles of various models 
via late fusion. 

Deep-learning models necessitate 
large volumes of labeled data tradi-
tionally unavailable for environmental 
sound. Addressing this lack of data, we 
have developed an audio data augmen-
tation framework that systematically 
deforms the data using well-known 
audio transformations (such as time 
stretching, pitch shifting, dynamic 
range compression, and addition of 
background noise at different SNRs), 
significantly increasing the amount of 
data available for model training. We 
also developed an open source tool 
for soundscape synthesis.27 Given a 
collection of isolated sound events, 
it functions as a high-level sequencer 
that can generate multiple sound-
scapes from a single probabilistically 
defined “specification.” We generated 
large datasets of perfectly annotated 
data in order to assess algorithmic 
performance as a function of, say, 
maximum polyphony and SNR ratio, 

safety, traffic, and taxi activity to con-
struction, making much of it publicly 
available.c Our work involves close 
collaboration with city agencies, in-
cluding DEP, DOHMH, various busi-
ness improvement districts, and 
private initiatives (such as LinkNYC) 
that provide access to existing infra-
structure. As a powerful sensing-and-
analysis infrastructure, SONYC thus 
holds the potential to empower new 
research in environmental psychol-
ogy, public health, and public policy, 
as well as empower citizens seeking 
to improve their own communities. 
We next describe the technology and 
methods underpinning the project, 
presenting some of our early findings 
and future challenges.

Acoustic Sensor Network
As mentioned earlier, SONYC’s intel-
ligent sensing platform should be 
scalable and capable of source iden-
tification and high-quality, round-
the-clock noise monitoring. To that 
end we have developed an acoustic 
sensor18 (see Figure 2) based on the 
popular Raspberry Pi single-board 
computer outfitted with a custom 
microelectromechanical systems 
(MEMS) microphone module. We 
chose MEMS microphones for their 
low cost and consistency across units 
and size, which can be 10x smaller 
than conventional microphones. 
Our custom standalone microphone 
module includes additional circuitry, 
including in-house analog-to-digital 
converters and pre-amp stages, as 
well as an on-board microcontroller 
that enables preprocessing of the 
incoming audio signal to compen-
sate for the microphone’s frequency 
response. The digital MEMS micro-
phone features a wide dynamic range 
of 32dBA–120dBA, ensuring all urban 
sound pressure levels are monitored 
effectively. We calibrated it using a 
precision-grade sound-level meter as 
reference under low-noise anecho-
ic conditions and was empirically 
shown to produce sound-pressure-
level data at an accuracy level compli-
ant with the ANSI Type-2 standard20 
required by most local and national 
noise codes. 

The sensor’s computing core is 

c	 https://nycopendata.socrata.com
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fectively over time, suggesting we 
can expect higher-quality annota-
tions with only a small amount of ad-
ditional training. 

We found the value of additional 
annotators decreased after five to 10 
annotators and that having 16 an-
notators was sufficient for capturing 
90% of the gain in annotation qual-
ity. However, when resources are lim-
ited and cost is a concern, our find-
ings suggest five annotators may be 
a reasonable choice for reliable an-
notation with respect to the trade-off 
between cost and quality. These find-
ings are valuable for the design of 
audio-annotation interfaces and the 
use of crowdsourcing and citizen sci-
ence strategies for audio annotation 
at scale.

Noise Analytics
One main SONYC promise is its future 
ability to analyze and understand noise 
pollution at city-scale in an interactive 
and efficient manner. As of December 
2018, we had deployed 56 sensors, pri-
marily in the city’s Greenwich Village 
neighborhood, as well as in other lo-
cations in Manhattan, Brooklyn, and 
Queens. Collectively, the sensors have  
gathered the equivalent of 30 years of 
audio data and more than 60 years of 
sound-pressure levels and telemetry. 
These numbers are a clear indication of 
the magnitude of the challenge from a 
data-analytics perspective. 

We are currently developing a flex-
ible, powerful visual-analytics frame-
work that enables visualization of 
noise levels in the context of the city, 
together with other related urban data 
streams. Working with urban data 
poses further research challenges. 
Although much work has focused on 
scaling databases for big data, exist-
ing data-management technologies do 
not meet the requirements needed to 
interactively explore massive or even 
reasonable-size datasets.8

Accomplishing interactivity re-
quires not only efficient techniques 
for data and query management but 
for scalable visualization techniques 
capable of rendering large amounts of 
information. 

In addition, visualizations and in-
terfaces must be rendered in a form 
that is easily understood by domain 
experts and non-expert users alike, in-

studies that would be prohibitive at 
this scale and precision using manu-
ally annotated data. 

The combination of an augmented 
training set and increased capacity and 
representational power of deep-learn-
ing models yields state-of-the-art perfor-
mance. Our current machine-listening 
models can perform robust multi-label 
classification for 10 common classes of 
urban sound sources in real time run-
ning on a laptop. We will soon adapt 
them to run under the computational 
constraints of the Raspberry Pi. 

However, despite the advantages 
of data augmentation and synthesis, 
the lack of a significant amount of an-
notated data for supervised learning 
remains the main bottleneck in the 
development of machine-listening so-
lutions that can detect more sources 
of noise. To address this need, we de-
veloped a framework for Web-based 
human audio annotation and con-
ducted a large-scale, experimental 
study on how visualization aids and 
acoustic conditions affect the annota-
tion process and its effectiveness.6 We 
aimed to quantify the reliability/re-
dundancy trade-off in crowdsourced 
soundscape annotation, investigate 
how visualizations affect accuracy 
and efficiency, and characterize how 
performance varies as a function of 
audio characteristics. Our study fol-
lowed a between-subjects factorial ex-
perimental design in which we tested 
18 different experimental conditions 
with 540 participants we recruited 
through Amazon’s Mechanical Turk. 

We found more complex audio 
scenes result in lower annotator 
agreement and that spectrogram 
visualizations are superior at pro-
ducing higher-quality annotations 
at lower cost in terms of time and 
human labor. Given enough time, 
all tested visualization aids enable 
annotators to identify sound events 
with similar recall, but the spec-
trogram visualization enables an-
notators to identify sounds more 
quickly. We speculate this may be 
because annotators are able to more 
easily identify visual patterns in the 
spectrogram, in turn enabling them 
to identify sound events and their 
boundaries more precisely and effi-
ciently. We also found participants 
learn to use each interface more ef-

It is scalable in 
terms of coverage 
and power 
consumption,  
does not suffer  
from the same 
biases as 311-style 
reporting, and 
goes well beyond 
SPL-based 
measurements 
of the acoustic 
environment. 
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Figure 4. Case study involving the area around Washington Square Park: (a) Distribution of 311 outdoor noise complaints in the focus area 
during the study period; the bar graph shows clear predominance of after-hours construction noise. (b) Distribution of complaint resolution for 
after-hours construction complaints; almost all complaints result in “violation not observed” status. (c) Sensor data for the after-hours period 
corresponding to six complaints: continuous SPL data (blue), background level (green), event-detection threshold at 10dB above background 
level (black), and potential noise code violation events (red). 
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Figure 3. (left) Interactive 3D visualization of a New York neighborhood using Urbane. By selecting specific sensors (red pins) and buildings 
(purple) researchers can retrieve and visualize multiple data streams associated with these locations. (right) SPL data at various resolutions 
and time scales retrieved using the time lattice. Each sub-figure reflects different individual (gray) and aggregated (red) sensor data for the 
three sensor units highlighted in the left plot. 



FEBRUARY 2019  |   VOL.  62  |   NO.  2  |   COMMUNICATIONS OF THE ACM     75

contributed articles

sensor data of a potential violation. 
How does this evidence stack up 

against the enforcement record for 
the complaints? Citizen complaints 
submitted via 311 and routed to the 
DEP trigger an inspection, and pub-
lic-record repositories made avail-
able by the city include information 
about how each complaint was re-
solved. Examining the records, we 
found that, for all complaints in this 
study, 78% resulted in a “No viola-
tion could be observed” status and 
only 2% in a violation ticket being is-
sued. Figure 4b shows, in the specific 
case of after-hours construction 
noise, no violation could be observed 
in 89% of all cases, and none of the in-
spections resulted in a violation ticket 
being issued. 

There are multiple possible expla-
nations for the significant gap be-
tween the evidence collected by the 
sensor network and the results of the 
inspections. For example, we specu-
late it is due in part to the delay in the 
city’s response to complaints, four to 
five days on average, which is too 
great for phenomena that are both 
transient and traceless. Another fac-
tor is the conspicuousness of the in-
spection crew that alone modifies the 
behavior of potentially offending 
sources, as we observed during our 
site visits with the DEP. Moreover, un-
der some circumstances the city gov-
ernment grants special, after-hours 
construction permits under the as-
sumption of minimal noise impact, 
as defined by the noise code. It is 
thus possible that some after-hours 
activity results from such permits. 
We are currently mining after-hours-
construction-permit data to under-
stand this relationship better. 

In all cases, the SONYC sensing 
and analytical framework is able to 
address the shortcomings of cur-
rent monitoring and enforcement 
mechanisms by providing hard data 
to: quantify the actual impact of af-
ter-hours construction permits on 
the acoustic environment, and thus 
nearby residents; provide historical 
data that can validate complaints 
and thus support inspection efforts 
on an inconspicuous and continuous 
basis; and develop novel, data-driven 
strategies for the efficient alloca-
tion of inspection crews in space and 

cluding crowdsourcing workers and 
volunteers, and bear meaningful rela-
tionship to the properties of the data 
in the physical world that, in the case 
of sound, implies the need for three-
dimensional visualization. 

We have been working on a three-
dimensional, urban geographic in-
formation system (GIS) framework 
called Urbane9 (see Figure 3), an 
interactive tool, including a novel 
three-dimensional map layer, we de-
veloped from the ground up to take 
advantage of the GPU capabilities 
of modern computing systems. It 
allows for fast, potentially real-time 
computation, as well as integration 
and visualization of multiple data 
streams commonly found in major 
cities like New York City. In the con-
text of SONYC, we have expanded 
Urbane’s capabilities to include ef-
ficient management of high-reso-
lution temporal data. We achieve 
this efficiency through a novel data 
structure we call the “time lattice” 
that allows for fast retrieval, visual-
ization, and analysis of individual 
and aggregate sensor data at multi-
ple time scales (such as hours, days, 
weeks, and months). An example of 
data retrieved through this capabil-
ity can be seen in Figure 3, right plot. 
We have since used Urbane and the 
time lattice to support the prelimi-
nary noise analysis we cover in the 
next section, but their applicability 
goes well beyond audio. 

We are currently expanding Ur-
bane to support visual spatiotempo-
ral queries over noise data, including 
computational-topology methods for 
pattern detection and retrieval. Similar 
tools have proved useful in smart-cities 
research projects, including prior col-
laborations between team members 
and the New York City Department of 
Transportation and Taxi and Limou-
sine Commission.7,10

Data-Driven Mitigation 
We conducted a preliminary study in 
2017 on the validity and response of 
noise complaints around the Wash-
ington Square Park area of Manhattan 
using SONYC’s sensing and analytics 
infrastructure.19 The study combined 
information mined from the log of civ-
ic complaints made to the city over the 
study period through the 311 system, 

the analysis of a subset of our own sen-
sor data during the same period, and 
information gathered through inter-
actions and site visits with inspectors 
from the DEP tasked with enforcing 
the city’s noise code. 

For the study we chose an area in 
Greenwich Village with a relatively 
dense deployment of 17 nodes. We 
established a 100-meter boundary 
around each node and merged them 
to form the focus area. From 311, 
we collected all non-duplicate noise 
complaints occurring within this area 
that had been routed to the DEP while 
neighboring sensors were active. Note 
this criterion discards complaints 
about noise from residents that are 
routed to the police department and 
tend to dominate the 311 log; see Fig-
ure 4a for a breakdown of selected 
complaint types. 

Over an 11-month period—May 
2016 to April 2017—51% of all noise 
complaints in the focus area were re-
lated to after-hours construction ac-
tivity (6 P.M.–7 A.M.), three times the 
amount in the next category. Note com-
bining all construction-related com-
plaints adds up to 70% of this sample, 
highlighting how disruptive to the lives 
of ordinary citizens this particular cat-
egory of noise can be. 

Figure 4c includes SPL values (blue 
line) at a five-minute resolution for 
the after-hours period during or im-
mediately preceding a subset of the 
complaints. Dotted green lines corre-
spond to background levels, comput-
ed as the moving average of SPL mea-
surements within a two-hour window. 
Dotted black lines correspond to SPL 
values 10dB above the background, 
the threshold defined by the city’s 
noise code to indicate potential vio-
lations. Finally, we were able to iden-
tify events (in red) in which instanta-
neous SPL measurements were above 
the threshold. Our analysis resulted 
in detection of 324 such events we 
classified by noise source and deter-
mined 76% (246) were related to con-
struction as follows: jackhammer-
ing (223), compressor engines (16), 
metallic banging/scraping (7), and 
the remainder to non-construction 
sources, mainly sirens and other traf-
fic noise. Our analysis found for 94% 
of all after-hours construction com-
plaints quantitative evidence in our 
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citizens will necessarily be sparse in 
space and time. In order to perform 
meaningful analyses and help inform 
decisions by city agencies, it is essen-
tial for the system to compensate for 
this sparseness. Several open datas-
ets are available that could, directly 
or indirectly, provide information 
on the noise levels in the city; for 
example, locations of restaurants, 
night clubs, and tourist attractions 
indicate areas where sources of so-
cial noise are likely, while social me-
dia data streams can be used to un-
derstand the temporal dynamics of 
crowd behavior. Likewise, multiple 
data streams associated with taxi, 
bus, and aircraft traffic can pro-
vide indirect information on traf-
fic-based noise levels. We plan to 
develop noise models that use spa-
tiotemporal covariance to predict 
unseen acoustic responses through 
a combination of sensor and open 
data. We will also explore combina-
tions of data-driven modeling, ap-
plying physical models that exploit 
the three-dimensional geometry of 
the city, sound type and localization 
cues from sensors and 311, and basic 
principles of sound propagation. We 
expect that through a combination 
of techniques from data mining, sta-
tistics, and acoustics, as well as our 
own expertise developing models 
suitable for GPU implementation 
using ray-casting queries in the con-
text of computer graphics, we will 
be able to create accurate, dynamic, 
three-dimensional urban noise maps 
in real time. 

Citizen science and civic participa-
tion. The role of humans in SONYC is 
not limited to annotating sound. In 
addition to the fixed sensors located 
in various parts of the city, we will be 
designing a SONYC mobile platform 
aimed at enabling ordinary citizens 
to record and annotate sounds in 
situ, view existing data contributed 
and analyzed by others, and contact 
city authorities about noise-related 
concerns. A mobile platform will 
allow them to leverage slices taken 
from this rich dataset to describe 
and support these concerns with 
evidence as they approach city au-
thorities, regulators, and policymak-
ers. Citizens will not only be more 
informed and engaged with their envi-

time using the same tools from oper-
ations research that optimize routes 
for delivery trucks and taxis. Worth 
noting is that, even though our pre-
liminary study focused on validating 
311 complaints, SONYC can be used 
to gain insight beyond complaint 
data, allowing researchers and city 
officials to understand the extent and 
type of unreported noise events, iden-
tify biases in complaint behavior, and 
accurately measure the level of noise 
pollution in the local environment.

Looking Forward
The SONYC project is currently in 
the third of five years of its research 
and development agenda. Its initial 
focus was on developing and deploy-
ing intelligent sensing infrastructure 
but has progressively shifted toward 
analytics and mitigation in collabo-
ration with city agencies and other 
stakeholders. Here are some areas we 
intend to address in future work: 

Low-power mesh sensor network. To 
support deployment of sensors at 
significant distances from Wi-Fi or 
other communication infrastruc-
ture and at locations lacking ready 
access to electrical power, we are de-
veloping a second generation of the 
sensor node to be mesh-enabled and 
battery/solar powered. Each sensor 
node will serve as a router in a low-
power multi-hop wireless network in 
the 915MHz band, using FCC-compat-
ible cognitive radio techniques over 
relatively long links and energy-effi-
cient multi-channel routing for com-
municating to and from infrastruc-
ture-connected base stations. The 
sensor design will further reduce pow-
er consumption for multi-label noise 
classification by leveraging heteroge-
neous processors for duty-cycled/
event-driven hierarchical computing. 
Specifically, the design of the sensor 
node will be based on a low-power sys-
tem-on-chip—the Ineda i7d—for 
which we are redesigning “mote-scale” 
computation techniques originally 
developed for single microcontroller 
devices to support heterogeneous 
processor-specific operating sys-
tems via hardware virtualization. 

Modeling. The combination of 
noise data collected by sensors and 

d	 http://inedasystems.com/wearables.php

The dedicated 
computing core 
opens the possibility 
for edge computing, 
particularly for 
in-situ machine 
listening intended  
to automatically  
and robustly identify 
the presence  
of common  
sound sources. 
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ronment, they will be better equipped 
to voice their concerns when interact-
ing with city authorities. 

Conclusion
SONYC is a smart-cities, next-gener-
ation application of a cyber-physical 
system. Its development calls for in-
novation in various fields of com-
puting and engineering, including 
sensor networks, machine learning, 
human-computer interaction, citizen 
science, and data science. The tech-
nology will be able to support novel 
scholarly work on the effects of noise 
pollution on public health, public 
policy, environmental psychology, 
and economics. But the project is far 
from purely scholarly. By seeking to 
improve urban-noise mitigation, a 
critical quality-of-life issue, SONYC 
promises to benefit urban citizens 
worldwide. Our agenda calls for the 
system to be deployed, tested, and 
used in real-world urban conditions, 
potentially resulting in a model that 
can be scaled and replicated through-
out the U.S. and beyond. 
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