
Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Python Tutorial – Part 2: Objects and Classes

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688P, Spring Semester 2022

January 13, 2023

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Overview

1 Working with Objects and Classes

2 Data Hiding and Encapsulation

3 Relationships Among Classes

4 Inheritance Mechanisms

5 Composition of Object Models

6 Working with Groups of Objects
Pathway from Objects to Groups of Objects

7 Case Study: GeoModeling the World’s Cities

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Working with Objects

and Classes

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Working with Objects and Classes

Working with Objects and Classes:
Collections of objects share similar traits (e.g., data, structure,
behavior).
Collections of objects will form relationships with other
collections of objects.

Definition of a Class
A class is a specification (or blueprint) of an object’s structure and
behavior.

Definition of an Object
An object is an instance of a class.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Working with Objects and Classes

From Collections of Objects to Classes:

Generation of Objects from Class Specifications:

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Working with Objects and Classes

Principles for Development of Reusable Code:
Inheritance: Create new (specialized) classes from existing
classes through mechanism of concept extension.
Encapsulation: Hide some details of a class from other
(external) classes.
Polymorphism: Use common operation in different ways
depending on details of data input.

Key Design Tasks
Identify objects and their attributes and functions,
Establish relationships among the objects,
Implement and test the individual objects,
Assemble and test the system.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 1. Working with Points

A Very Simple Class in Python
1 # ===
2 # Point .py: Create point objects ...
3 #
4 # Modified by: Mark Austin October , 2020
5 # ===
6
7 import math
8
9 class Point :

10
11 def __init__ (self , xCoord =0, yCoord =0):
12 self. __xCoord = xCoord
13 self. __yCoord = yCoord
14
15 # compute distance between two points ...
16
17 def distance (self , second):
18 x_d = self. __xCoord - second . __xCoord
19 y_d = self. __yCoord - second . __yCoord
20 return (x_d **2 + y_d **2)**0.5
21
22 # return string represention of object ...
23
24 def __str__ (self):
25 return "(%6.2f, %6.2f) " % (self.__xCoord , self. __yCoord)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 1. Working with Points

Create and Print two Point Objects
8 pt1 = Point (0.0 , 0.0)
9 pt2 = Point (3.0 , 4.0)

10
11 print (" --- pt1 = %s ..." % (pt1))
12 print (" --- pt2 = %s ..." % (pt2))

Output:
--- pt1 = (0.00, 0.00) ...
--- pt2 = (3.00, 4.00) ...

Compute Distance between Two Points
10 distance = pt1. distance (pt2)
11 print (" --- Distance between pt1 and pt2 --> %.2f ..." % (distance))

Output:
--- Distance between pt1 and pt2 --> 5.00 ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 2. Working with Circles

A circle can be described by the (x,y) position of its center and
by its radius.

y

(x, y)

radius

x

There are numerous things we can do with circles:
Compute their circumference, perimeter or area,
Check if a point is inside a circle.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 2. Working with Circles

1 # ===
2 # Circle .py: Simplified modeling of a circle ...
3 #
4 # Written by: Mark Austin October , 2020
5 # ===
6
7 import math
8
9 class Circle :

10 radius = 0
11 area = 0
12 perimeter = 0
13
14 def __init__ (self , x, y, radius):
15 self. radius = radius
16 self.area = math.pi* radius * radius
17 self. perimeter = 2.0* math.pi* radius
18 self.x = x
19 self.y = y
20
21 # Set circle radius , recompute area and perimeter ...
22
23 def setRadius (self , radius):
24 self. radius = radius
25 self.area = math.pi* radius * radius
26 self. perimeter = 2.0* math.pi* radius

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 2. Working with Circles

27
28 # Print details of circle ...
29
30 def printCircle (self):
31 print (" --- Circle : (x,y) = (%.2f, %.2f): radius = %.2f: area = %.2f: perimeter = %.2f"
32 % (self.x, self.y, self.radius , self.area , self. perimeter))

Create and Print two Circle Objects
1 x = Circle (0.0 , 0.0 , 3.0)
2 y = Circle (1.0 , 2.0 , 4.0)
3 x. printCircle ()
4 y. printCircle ()

Output:
--- Circle: (x,y) = (0.00, 0.00): radius = 3.00: area = 28.27
--- Circle: (x,y) = (1.00, 2.00): radius = 4.00: area = 50.27

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 3. Object Model of a Person

Part I: Person Object Model:
1 # ===
2 # Person .py: Simplified model of a person ...
3 #
4 # Written by: Mark Austin October , 2022
5 # ===
6
7 class Person :
8 age = 0
9 ssn = 0

10
11 def __init__ (self , fname , lname):
12 self. firstname = fname
13 self. lastname = lname
14
15 def printname (self):
16 print (" --- Name: %s, %s" % (self.firstname , self. lastname))
17
18 # Get first and last names ...
19
20 def getFirstName (self):
21 return self. firstname
22
23 def getLastName (self):
24 return self. lastname
25
26 # Set / print age ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 3. Object Model of a Person

Part I: Person Object Model: (Continued) ...
27
28 def setAge (self , age):
29 self.age = age
30
31 def printAge (self):
32 print (" --- Age = %d " % (self.age))
33
34 # Set / print social security number ...
35
36 def setSSN (self , ssn):
37 self.ssn = ssn

Part II: Person Test Program:
1 # ===
2 # TestPerson .py: Test program for person objects ...
3 # ===
4
5 from Person import Person
6
7 # main method ...
8
9 def main ():

10 print (" --- Enter TestPerson .main () ... ");
11 print (" --- =============================== ... ");

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 3. Test Program for Person Object Model

Part II: Person Test Program: (Continued) ...
13 # Exercise methods in class Person ...
14
15 x = Person (" Angela ", " Austin ")
16 x. printname ()
17
18 print (" --- First name: %s" % (x. getFirstName ()))
19 print (" --- Family name: %s" % (x. getLastName ()))
20
21 # Initialize attribute values ..
22
23 x. setAge (29)
24 x. setSSN (123456789)
25
26 # Print attribute values ..
27
28 x. printAge ()
29 x. printSSN ()
30
31 print (" --- =============================== ... ");
32 print (" --- Finished TestPerson .main () ... ");
33
34 # call the main method ...
35
36 main ()

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 3. Object Model of a Person

Output:
--- Enter TestPerson.main() ...
--- =============================== ...
--- Name: Angela, Austin
--- First name: Angela
--- Family name: Austin
--- Age = 29
--- Social Security No: 123456789
--- =============================== ...
--- Finished TestPerson.main() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Data Hiding and

Encapsulation

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Hiding Information

Data Hiding
Data Hiding is isolation of the client from a part of program
implementation. Some objects in the module are kept internal,
invisible, and inaccessible to the user.

Principle of Information Hiding
The principle of information hiding states that information which is
likely to change (e.g., over the lifetime of a software/systems
package) should be hidden inside a module.

Key Advantages
Prevents accidental linkage to incorrect data.
It heightens the security against hackers that are unable to
access confidential data.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Data Hiding and Encapsulation

Encapsulation – User’s view of AbstractionDesigner’s view of Aggregation

Unstructured Components Aggregation

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Data Hiding and Encapsulation

Application. Process for Implementation of Information Hiding.

Processes and data Private processeshiding
Information

and data

and data.
Access to public processesAll data and processes

are public.

Data Hiding in Python (Private and Protected) ...
Data hiding is implemented by using a double underscore
before (prefix) the attribute name. Making an attribute
private hides it from users.
Use of a single underscore makes the variable/method
protected. The variables/methods will be available to the
class, and all of its subclasses.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 4. Revised Circle Object Model

Part I: Revised Circle Object Model
1 # ==
2 # Circle .py: Implementation of circle model with encapsulation
3 # (hiding) of circle parameters and properties .
4 #
5 # Written by: Mark Austin October , 2020
6 # ==
7
8 import math
9

10 class Circle :
11 __radius = 0 # <-- private parameters
12 __area = 0
13 __perimeter = 0
14
15 def __init__ (self , x, y, radius):
16 self. __radius = radius
17 self. __area = math.pi* radius * radius
18 self. __perimeter = 2.0* math.pi* radius
19 self.__x = x
20 self.__y = y
21
22 # Set circle coordinates ...
23
24 def setX(self , x):
25 self.__x = x

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 4. Revised Circle Object Model

Part I: Revised Circle Object Model (Continued) ...
27 def setY(self , y):
28 self.__y = y
29
30 # Set circle radius , recompute area and perimeter ...
31
32 def setRadius (self , radius):
33 self. __radius = radius
34 self. __area = math.pi* radius * radius
35 self. __perimeter = 2.0* math.pi* radius
36
37 # Get circle parameters ...
38
39 def getX(self):
40 return self.__x
41
42 def getY(self):
43 return self.__y
44
45 def getRadius (self):
46 return self. __radius
47
48 def getArea (self):
49 return self. __area
50
51 def getPerimeter (self):
52 return self. __perimeter

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 4. Revised Circle Object Model

Part I: Revised Circle Object Model (Continued) ...
54 # String represention of circle ...
55
56 def __str__ (self):
57 return " --- Circle : (x,y) = (%.2f, %.2f): radius = %.2f: area = %.2f:
58 perimeter = %.2f" % (self.__x , self.__y , self.__radius ,
59 self.__area , self. __perimeter)

Part II: Test Program for Circle Object Model
1 # ===
2 # TestCircles .py: Exercise circle objects .
3 #
4 # Written by: Mark Austin December 2022
5 # ===
6
7 from Circle import Circle
8
9 # main method ...

10
11 def main ():
12 print (" --- Enter TestCircles .main () ... ");
13 print (" --- =============================== ... ");
14
15 print (" --- Part 1: Create and print circle ... ");
16
17 x = Circle (0.0 , 0.0 , 3.0)
18 print (x)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 4. Revised Circle Object Model

Part II: Test Program for Circle Object Model (Continued) ...
20 print (" --- =============================== ... ");
21 print (" --- Finished TestCircles .main () ... ");
22
23 # call the main method ...
24
25 main ()

Part III: Program Output
--- Enter TestCircles.main() ...
--- =============================== ...
--- Circle: (x,y) = (0.00, 0.00): radius = 3.00: area = 28.27
--- =============================== ...
--- Finished TestCircles.main() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Relationships Among

Classes

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Relationships Among Classes

Motivation

Classes and objects by themselves are not enough to describe
the structure of a system.
We also need to express relationships among classes.
Object-oriented software packages are assembled from
collections of classes and class-hierarchies that are related in
three fundamental ways.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Relationships Among Classes

1. Use: Class A uses Class B (method call).

Call Method

CLASS A CLASS B

Class A uses Class B if a method in A calls a method in an object of
type B.

Example

import math

dAngle = math.sin (math.PI / 3.0);

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Relationships Among Classes

2. Containment (Has a): Class A contains a reference to Class
B.

CLASS BCLASS A

Clearly, containment is a special case of use (i.e., see Item 1.).

Example

class LineSegment
self.start = Point() ...
self.end = Point() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Relationships Among Classes

3. Inheritance (Is a): In everyday life, we think of inheritance as
something that is received from a predecessor or past generation.
Here, Class B inherits the data and methods (extends) from Class
A.

CLASS A CLASS B

Extends

Two Examples from Python

class ColoredCircle (Circle)
class Student (Person)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Inheritance

Mechanisms

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Inheritance Mechanisms

Inheritance Structures
Inheritance structures allow you to capture common characteristics
in one model artifact and permit other artifacts to inherit and
possibly specialize them. Class hierarchies are explicitly designed
for customization through extension.

In this approach to development:
Forces us to identify and separate the common elements of a
system from those aspects that are different/distinct.
Commonalities are captured in a super-class and inherited and
specialized by the sub-classes.
Inherited features may be overridden with extra features
designed to deal with exceptions.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Base and Derived Classes

Goal: Avoid duplication and redundancy of data in a problem
specification.

In
cr

ea
sin

g
sp

ec
ia

liz
at

io
n

Derived Class

Base Class

public constants ...
public methods ...

public constants ...
public methods ...

Interface to the base class

Interface to the derived class

extends

In
cr

ea
sin

g
ab

st
ra

ct
io

n

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Base and Derived Classes

Points to note:

A class in the upper hierarchy is called a superclass (or base,
parent class).
A class in the lower hierarchy is called a subclass (or derived,
child, extended class).
The classes in the lower hierarchy inherit all the variables
(static attributes) and methods (dynamic behaviors) from the
higher-level classes.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Base and Derived Classes

Python Syntax:

Base Class ...

class BaseClass:

Constructor of Base Class

Base class variables and methods ...

Derived class extends Base Class ...

class DerivedClass(BaseClass):

Constructor of Derived Class

Derived class variables and methods ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part Ia: Circle Object Model (with Protected Variables)
1 # ==
2 # Circle .py: Implementation of circle model with protection of
3 # circle parameters and methods .
4 #
5 # Written by: Mark Austin October , 2020
6 # ==
7
8 import math
9

10 class Circle :
11 _radius = 0
12 _area = 0
13 _perimeter = 0
14
15 def __init__ (self , x, y, radius):
16 self. _radius = radius
17 self. _area = math.pi* radius * radius
18 self. _perimeter = 2.0* math.pi* radius
19 self._x = x
20 self._y = y
21
22 # Set circle coordinates ...
23
24 def setX(self , x):
25 self._x = x
26
27 def setY(self , y):

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part Ia: Circle Object Model (Continued) ...
28 self._y = y
29
30 # Set circle radius , recompute area and perimeter ...
31
32 def setRadius (self , radius):
33 self. _radius = radius
34 self. _area = math.pi* radius * radius
35 self. _perimeter = 2.0* math.pi* radius
36
37 # Get circle parameters ...
38
39 def getX(self):
40 return self._x
41
42 def getY(self):
43 return self._y
44
45 def getRadius (self):
46 return self. _radius
47
48 def getArea (self):
49 return self. _area
50
51 def getPerimeter (self):
52 return self. _perimeter

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part Ia: Circle Object Model (Continued) ...
54 # String represention of circle ...
55
56 def __str__ (self):
57 return " --- Circle : (x,y) = (%.2f, %.2f): radius = %.2f: area = %.2f: perimeter = %.2f" % (
58 self._x , self._y , self._radius , self._area , self. _perimeter)

Part Ib: Colored Circle Object Model
1 # ===
2 # ColoredCircle .py: Extend circle to create coloredcircles .
3 #
4 # Written by: Mark Austin October , 2022
5 # ===
6
7 from Circle import Circle
8
9 class ColoredCircle (Circle):

10 def __init__ (self , x, y, radius , color):
11 Circle . __init__ (self , x, y, radius)
12 self. _color = color
13
14 def printColoredCircle (self):
15 print (" --- ColoredCircle :", self. color)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part II: Colored Circle Test Program
1 # ===
2 # TestColoredCircles .py: Exercise colored circle objects .
3 #
4 # Written by: Mark Austin December 2022
5 # ===
6
7 from Circle import Circle
8 from ColoredCircle import ColoredCircle
9

10 # main method ...
11
12 def main ():
13 print (" --- Enter TestCircles .main () ... ");
14 print (" --- =============================== ... ");
15
16 print (" --- Part 1: Create and print circle ... ");
17
18 x = Circle (0.0 , 0.0 , 3.0)
19 print (x)
20
21 print (" --- Part 2: Create and print colored circle ... ");
22
23 y = ColoredCircle (0.0 , 0.0 , 0.0 , "blue")
24 print (y)
25 y. setRadius (1.0)
26 print (y)
27 y. setRadius (2.0)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part II: Colored Circle Test Program (Continued) ...
28 print (y)
29
30 print (" --- Part 3: Change coordinates and color ... ");
31
32 y.setX(1.0)
33 y.setY(1.0)
34 y. setColor ("red")
35 y. setRadius (3.0)
36
37 print (y)
38
39 print (" --- =============================== ... ");
40 print (" --- Finished TestCircles .main () ... ");
41
42 # call the main method ...
43
44 main ()

Source Code: See: python-code.d/inheritance/

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 5. Model Colored Circles by Extending Circle

Part III: Abbreviated Output:
--- Enter TestCircles.main() ...
--- =============================== ...
--- Part 1: Create and print circle ...
--- Circle: (x,y) = (0.00, 0.00): radius = 3.00: area = 28.27: perimeter = 18.85
--- Part 2: Create and print colored circle ...
--- ColoredCircle: (x,y) = (0.0, 0.0): radius = 0.00: area = 0.00: color = blue
--- ColoredCircle: (x,y) = (0.0, 0.0): radius = 1.00: area = 3.14: color = blue
--- ColoredCircle: (x,y) = (0.0, 0.0): radius = 2.00: area = 12.57: color = blue
--- Part 3: Change coordinates and color ...
--- ColoredCircle: (x,y) = (1.0, 1.0): radius = 3.00: area = 28.27: color = red
--- =============================== ...
--- Finished TestCircles.main() ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part Ia: Person Object Model (with Protected Variables)
1 # ==
2 # Person .py: Simple model of a Person . The scope of variables
3 # _age and _ssn are protected to Person and all subclasses ..
4 #
5 # Written by: Mark Austin November 2022
6 # ==
7
8 class Person :
9 _age = 0 # <-- protected variable !!

10 _ssn = 0
11
12 # Constructor method ...
13
14 def __init__ (self , fname , lname):
15 self. _firstname = fname
16 self. _lastname = lname
17
18 def printname (self):
19 print (" --- Name: %s, %s" % (self. _firstname , self. _lastname))
20
21 # Get first and last names ...
22
23 def getFirstName (self):
24 return self. _firstname
25
26 def getLastName (self):
27 return self. _lastname

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part Ia: Person Object Model (Continued) ...
28
29 # Set /get / print age ...
30
31 def setAge (self , age):
32 self._age = age
33
34 def getAge (self):
35 return self._age
36
37 def printAge (self):
38 print (" --- Age = %d " % (self._age))
39
40 # Set /get / print social security number ...
41
42 def setSSN (self , ssn):
43 self._ssn = ssn
44
45 def getSSN (self):
46 return self._ssn
47
48 def printSSN (self):
49 print (" --- Social Security No: %d " % (self._ssn))
50
51 # return string represention of object ...
52
53 def __str__ (self):
54 return " Person : %6.2f %6.2f: age = %f " % (self. _firstname , self._lastname , self._age)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part Ib: Student Object Model
1 # ==
2 # Student .py: A Student is a specialization of Person ...
3 # ==
4
5 from Person import Person
6
7 class Student (Person):
8
9 # Example of a parameterized constructor ...

10
11 def __init__ (self , fname , lname , year):
12 Person . __init__ (self , fname , lname)
13 self. _graduationyear = year
14
15 # Boolean to confirm person is a student ...
16
17 def isStudent (self):
18 return True
19
20 # String represention of student ...
21
22 def __str__ (self):
23 return " --- Student : %s %s, age = %d, graduation year = %d " % (

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part II: Student Test Program
1 # ===
2 # TestStudent .py: Exercise methods in Student class ...
3 #
4 # Written by: Mark Austin November 2022
5 # ===
6
7 from Student import Student
8
9 # main method ...

10
11 def main ():
12 print (" --- Enter TestStudents .main () ... ");
13 print (" --- ===================================== ... ");
14
15 print (" --- Part 1: Create student Angela Austin ...")
16
17 y = Student (" Angela ", " Austin ", 2023)
18 y. setAge (20)
19 y. setSSN (1234)
20
21 print (" --- Part 2: Retrieve student parameters ...")
22
23 print (" --- First Name: %s" % (y. getFirstName ()))
24 print (" --- Last Name: %s" % (y. getLastName ()))
25 print (" --- Age = %d" % (y. getAge ()))
26 print (" --- Social Security Number = %d" % (y. getSSN ()))
27 print (" --- Is student : %s" % (y. isStudent ()))

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 6. Student is an Extension of Person

Part II: Student Test Program (Continued) ...
28
29 print (" --- Part 3: String representation of student ...")
30
31 print (y. __str__ ())
32
33 print (" --- ===================================== ... ");
34 print (" --- Finished TestStudents .main () ... ");
35
36 # call the main method ...
37
38 main ()

Part III: Abbreviated Output:
--- Part 1: Create student Angela Austin ...
--- Part 2: Retrieve student parameters ...
--- First Name: Angela
--- Last Name: Austin
--- Age = 20
--- Social Security Number = 1234
--- Is student: True
--- Part 3: String representation of student ...
--- Student: Angela Austin, age = 20, graduation year = 2023

Source Code: See: python-code.d/inheritance/

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Mutiple Inheritance Mechanisms

Multiple Inheritance Structures
In a multiple inheritance structure, a class can inherit
properties from multiple parents.
The downside is that properties and/or operations may be
partially or fully contradictory.

Example
People is a generalization of Children and Customers.
Young customers inherits properties from Customers and
Children.

Note. Python supports use of multiple inheritance. Java explicitly
prevents multiple inheritance – instead, it allows classes to have
multiple interfaces.

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Mutiple Inheritance Mechanisms

Children

People

Young Customers

Customers

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Mutiple Inheritance Mechanisms

Python Syntax:
class People:

People constructor ...
People variables, and methods ...

class Customers (People):

Customers constructor ...
Customers variables, and methods ...

class Children (People):

Children constructor ...
Children variables, and methods ...

class YoungCustomers(Customers, Children):

YoungCustomer constructor ...
YoungCustomer variables, and methods ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Composition of

Object Models

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Composition of Object Models

Definition
Composition is known as is a part of or is a relationship.

The member object is a part of the containing class and the
member object cannot survive or exist outside the enclosing or
containing class or doesn’t have a meaning after the lifetime of the
enclosing object.

Is it Aggregation or Composition?
Ask the question: if the part moves, can one deduce that the
whole moves with it in normal circumstances?

Example: A car is composition of wheels and an engine. If you
drive the car to work, hopefully the wheels go too!

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Composition of Object Models

Notation for Aggregation and Composition

Item

List

Point

Rectangle

AggregationComposition

Recall: Aggregation is all about grouping of things ...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 7. Modeling Line Segments

Model Composition

LineSegment Point21

Creating a line segment object with:
segmentA = LineSegment(1, 2, 3, 4);

should give a layout of memory:
Point

x = 1

y = 2

x = 3

y = 4

segmentA LineSegment

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 7. Modeling Line Segments

Part I: Line Segment Object Model
1 # ==
2 # LineSegment .py: Line segments are defined by end points (x1 , y1) and
3 # (x2 , y2). Compute length and angle of the line segment in radians .
4 #
5 # Written by: Mark Austin October , 2022
6 # ==
7
8 import math
9

10 from Point import Point
11
12 class LineSegment :
13 __length = 0
14 __angle = 0
15
16 def __init__ (self , x1 , y1 , x2 , y2):
17 self. __pt1 = Point (x1 ,y1) # <-- Object composition ...
18 self. __pt2 = Point (x2 ,y2) # <-- Object composition ...
19 self. __length = self. __pt1 . distance (self. __pt2)
20 self. __angle = self. getAngle ()
21
22 # Compute angle (radians) for coordinates in four quadrants
23
24 def getAngle (self):
25 dX = self. __pt2 . get_xCoord () - self. __pt1 . get_xCoord ();
26 dY = self. __pt2 . get_yCoord () - self. __pt1 . get_yCoord ();

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 7. Modeling Line Segments

Part I: Line Segment Object Model (Continued) ...
27
28 if dY > 0.0 and dX == 0.0:
29 angle = math.pi /2.0
30 if dY >= 0.0 and dX > 0.0:
31 angle = math.atan(dY/dX)
32 if dY >= 0.0 and dX < 0.0:
33 angle = math.pi + math.atan(dY/dX)
34 if dY < 0.0 and dX < 0.0:
35 angle = math.pi + math.atan(dY/dX)
36 if dY < 0.0 and dX >= 0.0:
37 angle = 2* math.pi + math.atan(dY/dX)
38
39 return angle
40
41 # String represention of line segment ...
42
43 def __str__ (self):
44 x1 = self. __pt1 . get_xCoord ();
45 y1 = self. __pt1 . get_yCoord ();
46 x2 = self. __pt2 . get_xCoord ();
47 y2 = self. __pt2 . get_yCoord ();
48 return " --- LineSegment : (x1 ,y1) = (%5.2f, %5.2f), (x2 ,y2) = (%5.2f, %5.2f),
49 angle = %.2f, length = %.2f" % (x1 , y1 , x2 , y2 , self.__angle , self. __length)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 7. Modeling Line Segments

Part II: Line Segment Test Program
1 # ===
2 # TestLineSegment .py: Exercise line segment class ...
3 # ===
4
5 from LineSegment import LineSegment
6
7 # main method ...
8
9 def main ():

10 print (" --- Enter TestLineSegment .main () ... ");
11 print (" --- =============================== ... ");
12
13 print (" --- Part 1: Create test line segment ... ");
14
15 segmentA = LineSegment (1.0 , 2.0 , 3.0 , 4.0)
16 print (segmentA)
17
18 print (" --- Part 2: Sequence of line segments ... ");
19
20 a = LineSegment (0.0 , 0.0 , 3.0 , 0.0)
21 print (a)
22 b = LineSegment (0.0 , 0.0 , 3.0 , 3.0)
23 print (b)
24 c = LineSegment (0.0 , 0.0 , 0.0 , 3.0)
25 print (c)
26 d = LineSegment (0.0 , 0.0 , -3.0, 3.0)
27 print (d)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 7. Modeling Line Segments

Part II: Line Segment Test Program (Continued) ...
28 e = LineSegment (0.0 , 0.0 , -3.0, 0.0)
29 print (e)
30
31 print (" --- =============================== ... ");
32 print (" --- Finished TestLineSegment .main () ... ");
33
34 # call the main method ...
35
36 main ()

Part III: Abbreviated Program Output:
--- Part 1: Create test line segment ...
--- LineSegment: (x1,y1) = (1.00, 2.00), (x2,y2) = (3.00, 4.00), angle = 0.79, length = 2.83
--- Part 2: Sequence of line segments ...
--- LineSegment: (x1,y1) = (0.00, 0.00), (x2,y2) = (3.00, 0.00), angle = 0.00, length = 3.00
--- LineSegment: (x1,y1) = (0.00, 0.00), (x2,y2) = (3.00, 3.00), angle = 0.79, length = 4.24
--- LineSegment: (x1,y1) = (0.00, 0.00), (x2,y2) = (0.00, 3.00), angle = 1.57, length = 3.00
--- LineSegment: (x1,y1) = (0.00, 0.00), (x2,y2) = (-3.00, 3.00), angle = 2.36, length = 4.24
--- LineSegment: (x1,y1) = (0.00, 0.00), (x2,y2) = (-3.00, 0.00), angle = 3.14, length = 3.00

Source Code: See: python-code.d/classes/

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Working with

Groups of Objects

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Pathway From Objects to Groups of Objects

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Memory Layout: Arrays, Lists, Queues, Trees, and Graphs

tail

Arrays Linked List

QueuesHash Map

Trees Graphs

head

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 8: Create List of Objects

List of Student Objects ...
....

Output:
....

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Example 9: Create Dictionary of Objects

Dictionary of Student Objects:
....

Output:
....

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Case Study

(GeoModeling the World’s Cities)

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Case Study: GeoModeling the World’s Cities

Parameters of City Data Model
...
...
...
...

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Case Study: GeoModeling the World’s Cities

Abbreviated Header for City Data File

Loading CSV Data into Pandas

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Case Study: GeoModeling the World’s Cities

City Object Model

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Case Study: GeoModeling the World’s Cities

Collection of City Object Models

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Case Study: Visualize Cities in GeoPandas

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Case Study: Visualize Cities in GeoPandas

Filter Collection of City Objects

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Case Study: Visualize Filtered Collection of Cities

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Case Study: GeoModeling the World’s Cities

Haversine Formula

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

Case Study: Modeling the World’s Cities

Compute Distance between Baltimore and NYC

Working with Objects and Classes Data Hiding and Encapsulation Relationships Among Classes Inheritance Mechanisms Composition of Object Models Working with Groups of Objects Case Study: GeoModeling the World’s Cities

References

....

....

	Working with Objects and Classes
	Data Hiding and Encapsulation
	Relationships Among Classes
	Inheritance Mechanisms
	Composition of Object Models
	Working with Groups of Objects
	Pathway from Objects to Groups of Objects

	Case Study: GeoModeling the World's Cities

