Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu

Neural Networks I

Mark A. Austin

austin@umd.edu

ENCE 688P, Spring Semester 2022 University of Maryland

May 27, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu

Overview

1 Quick Review

- 2 Introduction to Neural Networks
- 3 The Perceptron (1943-1958)
- Training a Single Perceptron Model
- **5** Metrics of Evaluation
- 6 Single-Layer Perceptron Examples
 - Example 1: Using Python + NumPy
 - Example 2: Using Deeplearning4J
- Appendix A: Chart of Neural Network Architectures

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu
000				

Quick Review

A Brief History

- 1943: First neural networks invented (McCulloch and Pitts)
- 1958-1969: Perceptrons (Rosenblatt, Minsky and Papert).

э

- 1980s-1990s: CNN, Back Propagation.
- 1990s-2010s: SVMs, decision trees and random forests.
- 2010s: Deep Neural Networks and deep learning.

Machine Learning Capabilities (1980-1990)

Expressive Power of a Neural Network

$$y = \begin{cases} 1 & \text{if } \sum_{i=1}^d w_i x_i \ge T \\ 0 & \text{else} \end{cases}$$

Neural Network with Single Hidden Layer

Approximation of Functions / Boolean Logic

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu
	•000000			

Introduction to

Neural Networks

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Quick Review Introduction to Neural Networks The Perceptron (1943-1958) 000000

Training a Single Perceptron Model Metrics of Evalu

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Purpose and Grand Vision (Aggarwal, 2018)

Purpose

Neural networks are a development to simulate the human nervous system for machine learning tasks by teaching the computational units in the model similar to human neurons.

Grand Vision

Create AI by building machines whose architecture simulates computations in the human nervous system.

Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu
	000000			

Why Neural Networks?

Reasons to use Neural Networks:

• Neural networks are universal function approximators, no matter how complex:

• Neural network architectures are highly scalable and flexible.

Caveat:

• Very large neural networks may be close to impossible to train and generalize correctly.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basic Neural Network Architecture

Neural Network with One Hidden Layer:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Basic Neural Network Architecture

Training Procedure: Back Propogation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Modeling Expectations

Capabilities of a Perceptron Model: (From Lippman, 1987)

Modeling Expectations

Neural Networks with Hidden Layers: (From Lippman, 1987)

Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu
		•000000000000000		

The Perceptron

Building Block of Machine Learning

A Little History / Biological Inspiration

Neural networks originally began as computational models of the brain (i.e., models of cognition).

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

- Early models were based on association relationships.
- More recent models of brain are connectionist neurons connect to neurons.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu
		00000000000000000000		

Connectionist Models

Present-day neural network models are connectionist machines.

That is:

- Network of processing elements.
- Knowledge is stored in the connections between the elements.
- We need a model for these computational units.

Mathematical Model of a Single Neuron

Modelling the Brain. Basic units are neurons:

- Signals come in through the dendrites into Soma.
- A signal exits via the axon to other neuron (only one axon per neuron).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Neurons do not undergo cell division.

Mathematical Model of a Single Neuron

McCulloch and Pitts Model for a Single Neuron (1943):

First artificial neural network:

- Assumes boolean input (i.e., $x \in [0, 1]$).
- A neuron fires when its activation is 1, otherwise its activation is 0 (i.e, y ∈ [0, 1]).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mathematical Model of a Single Neuron

Mathematical Model:

- All incoming connections have the same weight.
- Function g() aggregates the inputs, i.e.,

$$g(x_1, x_2, \cdots, x_n) = g(x) = \sum_{i=1}^n x_i$$
 (1)

Function f() takes a decision based on this aggregation. y =
 0 if any input x_i is inhibitory. Otherwise:

$$y = f(g(x)) = 1 \text{ if } g(x) \ge \theta.$$
$$= 0 \text{ if } g(x) < \theta.$$

• θ is called the threshold parameter.

Mathematical Model of a Single Neuron

Behavior of a Simple Neuron Unit:

Criticisms:

• Claimed their machine could emulate a Turing machine.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Did not provide a learning mechanism.

Mathematical Model of a Single Neuron

Simplified Modeling of Boolean Gates:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Mathematical Model of a Single Neuron

Hebbian Learning (Donald Hebb, 1949)

When an axon of cell A excites cell B and repeatedly or presistently takes part in firing it, some growth processes or metabolic change takes place in one or both cells so that A's efficiency is increased.

Observation: In other words, neurons that fire together wire together!

Mathematical Model of a Single Neuron

Principles of Hebbian Learning

- Neurons that fire together wire together!
- If neuron x_i repeatedly triggers neuron y, the synaptic knob connecting x_i to y gets larger.
- Mathematically, we can write:

$$w_i = w_i + \eta x_i y \tag{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Here, *w_i* is the weight of the i-th neuron's input to output neuron *y*.
- This simple formula is actually the basis of many learning algorithms in machine learning.

Mathematical Model of a Single Perceptron

Perceptron Model (Rosenblatt, 1958)

The simplest form of a neural network consists of a single neuron with adjustable synaptic weights and bias.

A nonlinear neuron consists of a linear combiner followed by a hard limiter.

Mathematical Model of a Single Perceptron

Perceptron Model (Rosenblatt, 1958):

• Learning algorithm:

$$w(x) = w(x) + \eta (d(x) - y(x)) x.$$
 (3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Here:

- η is the learning rate,
- d(x) and y(x) are the desired and actual outputs in response to x.
- Update weights whenever the perceptron output is wrong.
- Proved convergence.
- Solution for OR and AND Boolean Gates.

Mathematical Model of a Single Perceptron

Perceptron Model for OR and AND Boolean Gates

Individual elements are weak – no solution for XOR problem. Networked elements are required.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Perceptron Model: Forward Propagation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Here:

- Inputs x_1 , x_2 , x_3 , \cdots x_n are real valued.
- Weights w_1 , w_2 , w_3 , \cdots w_n are real valued.
- The output y can also be real valued.

The Perceptron Model: Forward Propagation

Step 1: Linear combiner:

$$z = g(x) = \sum_{i=1}^{n} w_i x_i + \text{bias.}$$
(4)

Step 2: Step activation:

$$y = f(z) = \begin{cases} 0, & z < \theta, \\ 1, & z \ge \theta. \end{cases}$$
(5)

Here, θ is the threshold parameter.

Composition of steps 1 and 2:

$$y = f(g(x)) \tag{6}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Perceptron Model as a Linear Classifier

Perceptron operating on real-valued vectors is a linear classifier:

Addition of bias values expands modeling capability. No bias value \rightarrow decision boundary constrained to pass through the origin.

Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu
			●0000000	

Training a Single

Perceptron Model

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Network Architecture: Perceptron model with two input streams, weights and a bias, and step activation.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Input Data: $(x_{11}, x_{21}), (x_{12}, x_{22}), \dots (x_{1n}, x_{2n}).$ Target Data: target $(x_1), \dots$ target (x_n) .

Training Objective

Find weight and bias (w_1, w_2, b) values to minimize difference between predictions and target values.

Quadratic Loss Function

Define a loss function L,

$$L(y, target(x)) = \frac{1}{2} \sum_{i=1}^{n} (y_i - target(x_i))^2$$
(7)

Here, y_i is the network prediction for input x_i and $target(x_i)$ is the target value for learning.

Numerical Strategy: Use gradient descent algorithm to compute sequence of weight approximations, i.e.,

$$w_{n+1} = w_n - \eta \nabla L. \tag{8}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Here, w = matrix of network weights and $\eta = \text{learning rate}$.

Chain Rule: Network predictions *y* are a composition of the linear combiner + activation function.

Mathematically, L is related to x, w and b as follows:

$$L = L(f(g(x, w, b))) \to \frac{dL}{dw} = \frac{\partial L}{\partial f} \cdot \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial w}.$$
 (9)

Two problems with Step Activation:

- Can change weights without affecting L,
- Function is not continously differentiable.

Hence, replace step activation with sigmoid function:

$$y = f(z) = \begin{cases} 0, & z < 0, \\ 1, & z \ge 0. \end{cases} \rightarrow y = \sigma(z) = \left[\frac{1}{1 + e^{-z}}\right].$$
 (10)

Derivative of sigmoid is easy:

$$\frac{dy}{dz} = \frac{d}{dz}\sigma(z) = \sigma(z)\left[1 - \sigma(z)\right].$$
(11)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Back Propagation in Feed Forward Models

Minimize L. Here, L = L(y), where $y = \sigma(z)$ and z = g(x,w,b).

Use chain rule to find derivative of *L* with respect to *w*:

$$\frac{dL}{dw} = \frac{\partial L}{\partial y} \cdot \frac{dy}{dz} \cdot \frac{\partial z}{\partial w}.$$
 (12)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

First term,

$$\frac{dL}{dy} = \frac{\partial}{\partial y} \left[\sum_{i=1}^{n} (y_i - target(x_i))^2 \right] = \sum_{i=1}^{n} (y_i - target(x_i)). \quad (13)$$

Back Propagation in Feed Forward Models

Second term,

$$\frac{dy}{dz} = \frac{d}{dz}\sigma(z) = \sigma(z)\left[1 - \sigma(z)\right].$$
(14)

Third term,

$$\frac{\partial z}{\partial w} = \frac{\partial}{\partial w} \left[\sum_{i=1}^{n} w_i \cdot x_i + b \right].$$
(15)

Collecting terms,

$$\nabla L = \begin{bmatrix} \frac{\partial L}{\partial w_1} & \frac{\partial L}{\partial w_2} & \frac{\partial L}{\partial b} \end{bmatrix}^T.$$
 (16)

Update Weights: Plug equation 16 into equation 8. Repeat.

Iterations of Learning in Feed Forward Models

Stochastic Gradient Descent

Strategies of neural network learning are iterative.

$$w_{n+1} = w_n - \eta \bigtriangledown_w \operatorname{Loss}(x, y, w). \tag{17}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

They employ training datasets to update the model.

Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu
				00000

Metrics of Evaluation

▲□▶▲□▶★≣▶★≣▶ = ● のへで

Metrics of Evaluation

Confusion Matrix

A simple metric to understand performance of a model in terms of predictions and their relationship to the actual state of a system.

Four Cases to Consider:

- True negative: The system state is negative; the model predicts negative.
- False positive: The system state is negative, but the model predicts positive.
- False negative: The system state is positive, but the model prediction is negative.
- True positive: The system state is positive and the model prediction is positive.

Metrics of Evaluation

Training Objective: We want:

True negative and true positive numbers to be as high as possible,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• False positive and false negative to be as low possible.

Metrics of Evaluation

Accuracy:

$$Accuracy = \frac{Number of correct predictions}{Total number of predictions}$$
(18)

Precision:

$$Precision = \frac{True \ Positive}{True \ Positive + \ False \ Positive}$$
(19)

Recall:

$$\mathsf{Recall} = \frac{\mathsf{True} \; \mathsf{Positive}}{\mathsf{True} \; \mathsf{Positive} + \mathsf{False} \; \mathsf{Negative}}$$

F1 Score:

$$F1 = 2 \frac{\text{Precision} * \text{Recall}}{\text{Precision} + \text{Recall}}$$
(21)

(20)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Metrics of Evaluation

Simple Example

Insert venn diagram ...

Assessment:

Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu
				000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Metrics of Evaluation

Confusion Matrix

Insert description and simple example ...

Simple Matrix

Insert simple example ...

 Quick Review
 Introduction to Neural Networks
 The Perceptron (1943-1958)
 Training a Single Perceptron Model
 Metrics of Evaluation

Single-Layer

Perceptron Examples

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Modeling Boolean Gates

Problem Description:

XOR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example 1: Modeling an OR Boolean Gate

Python + NumPy Code: Step-by-step solution (pg 1).

```
1
                                              _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2
    # TestNeural-BooleanORGate.py: Perceptron model for boolean OR gate:
3
    #
4
    # Reference: Shukla, et al., Neural Networks from Scratch with
5
    # Puthon Code and Math in Detail. Towards AI. 2020
6
7
    # Modified by: Mark Austin
                                                              October. 2020
8
                                                     ------
9
10
    import math
11
    import matplotlib
12
    import matplotlib.pyplot as plt
13
    import numpy as np
14
15
    # Define Sigmoid function:
16
17
    def sigmoid(x):
18
       return 1/(1+np.exp(-x))
19
20
    # Define derivative of Sigmoid function:
21
22
    def sigmoid_der(x):
23
       return sigmoid(x)*(1-sigmoid(x))
24
25
    # main method ...
```

Example 1: Modeling an OR Boolean Gate

Python + NumPy Code: Step-by-step solution (pg 2) ...

```
27
   def main():
28
       print("--- Enter TestNeuralNetwork01.main() ... ");
29
       30
31
       input_features = np.array( [[0,0],[0,1],[1,0],[1,1]] )
32
33
       print (input features.shape)
34
       print (input features)
35
36
       # Define target output:
37
38
       target_output = np.array([[0,1,1,1]])
39
40
       # Reshaping target output into vector:
41
42
       target_output = target_output.reshape(4,1)
43
       print (target output)
44
45
       weights = np.array([[1.0], [2.0]])
       print(weights.shape)
46
47
       print (weights)
48
49
       bias = 0.3 # Bias weight:
50
       lr = 0.05 # Learning Rate:
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Example 1: Modeling an OR Boolean Gate

Python + NumPy Code: Step-by-step solution (pg 3) ...

```
52
        # Main loop for training network ...
53
54
        for epoch in range(20000):
55
56
            # feedforward input, feedforward output, back propogation ...
57
58
            inputs = input features
59
           in o = np.dot(inputs, weights) + bias
           out_o = sigmoid(in_o)
60
61
62
            # Calculate error in computed output ...
63
64
            error = out_o - target_output
65
66
            # Calculate derivative.
67
68
            derror douto = error
69
            douto dino = sigmoid der(out o)
70
71
            # Multiplying individual derivatives:
72
73
            deriv = derror_douto * douto_dino
74
75
            # Finding the transpose of input_features:
76
77
            inputs = input_features.T
78
            deriv final = np.dot(inputs.deriv)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example 1: Modeling an OR Boolean Gate

```
Python + NumPy Code: Step-by-step solution (pg 4) ...
```

```
80
             # Update the weights values:
81
82
            weights -= lr * deriv_final
83
            for i in deriv:
84
                bias -= lr * i #Check the final values for weight and biasprint (weights)
85
86
         # Print summary of results ...
87
88
         print("--- Weights:");
89
90
         print (weights)
91
92
         print("--- Bias: %f ... \n" %(bias))
93
94
         print("--- Use trained network to predict values ... ");
95
96
         print("--- Verify input [1,0] --> 1 ... ");
97
98
         single_point = np.array([1,0]) #1st step:
99
         result1 = np.dot(single point, weights) + bias #2nd step:
         result2 = sigmoid(result1) #Print final result
100
101
102
         print("--- Result 1: %f .... " %(result1))
103
         print("--- Result 2: %f ... " %(result2))
104
105
         print("--- Verify input [0,1] --> 1 ... ");
```

Example 1: Modeling an OR Boolean Gate

Python + NumPy Code: Step-by-step solution (pg 5) ...

```
107
         single point = np.arrav([0,1]) #1st step:
108
         result1 = np.dot(single_point, weights) + bias #2nd step:
109
         result2 = sigmoid(result1) #Print final result
110
         print("--- Result 1: %f ... " %(result1))
111
112
         print("--- Result 2: %f ... " %(result2))
113
114
         print("--- Verify input [1,1] --> 1 ... ");
115
116
         single_point = np.array([1,1]) #1st step:
         result1 = np.dot(single point, weights) + bias #2nd step:
117
118
         result2 = sigmoid(result1) #Print final result
119
120
         print("--- Single input point [1,1] ...")
         print("--- Result 1: %f ... " %(result1))
121
122
         print("--- Result 2: %f ... " %(result2))
123
124
         print("--- Verify input [0,0] --> 0 ... "):
125
126
         single point = np.arrav([0,0]) #1st step:
         result1 = np.dot(single point, weights) + bias #2nd step:
127
128
         result2 = sigmoid(result1) #Print final result
129
130
         print("--- Single input point [0,0] ...")
131
         print("--- Result 1: %f .... " %(result1))
132
         print("--- Result 2: %f ... " %(result2))
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example 1: Modeling an OR Boolean Gate

Python + NumPy Code: Step-by-step solution (pg 6) ...

Python + NumPy Code: Abbreviated Results ...

```
--- Summary of weights and biases ...
--- Weights:
```

```
[ [8.46406006]
[8.46563981] ]
```

```
--- Bias: -3.886041 ...
```

Example 1: Modeling an OR Boolean Gate

Python + NumPy Code: Abbreviated Results ...

--- Use trained network to predict values ...

```
---- Verify input [1,0] --> 1 ...
--- Result 1: 4.578019, result 2: 0.989829 ...
```

```
---- Verify input [0,1] --> 1 ...

--- Result 1: 4.579599, result 2: 0.989845 ...

---

--- Verify input [1,1] --> 1 ...

--- Result 1: 13.043659, result 2: 0.999998 ...

---

--- Verify input [0,0] --> 0 ...

--- Result 1: -3.886041, result 2: 0.020114 ...
```

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Example 2. Modeling an OR Boolean Gate

DL4J: Create training dataset:

DL4J: Dataset values:

```
        Matrix of input values
        Vector of output values

        [
        0, 0],
        [
        0,

        [
        1.0000, 0],
        1.0000,
        1.0000,

        [
        0, 1.0000],
        1.0000,
        1.0000,

        [
        1.0000, 1.0000]]
        1.0000
        1.0000
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Example 2. Modeling an OR Boolean Gate

DL4J: Create Network Configuration:

```
23
      // Create neural network configuration builder ...
24
25
         MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
26
              .updater(new Sgd(0.1))
27
              .seed(seed)
28
              .biasInit(0)
29
              .miniBatch(false)
30
              .list()
31
              .laver(new OutputLaver.Builder( LossFunctions.LossFunction.MSE )
32
                 .nIn(2)
33
                 .nOut(1)
34
                 .activation(Activation.SIGMOID)
35
                 .weightInit(new UniformDistribution(0, 1))
36
                 .build())
37
              .build():
38
39
      // Create multilayer network ...
40
41
         MultiLaverNetwork net = new MultiLaverNetwork(conf);
42
         net.init():
43
         net.setListeners(new ScoreIterationListener(1000));
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ(で)

Example 2. Modeling an OR Boolean Gate

DL4J: Summary of Network Model (4 nodes on hidden layer)

LayerName (LayerType)	nIn,nOut	TotalParams	ParamsShape
layer0 (OutputLayer)	2,1	3	W:{2,1}, b:{1,1}
Total Parameters: 3	Trainable	Parameters:	3

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

DL4J: Train the network for 10,000 epochs:

```
52 for( int i=0; i <= 10000; i++ ) {
53     net.fit(ds);
54 }</pre>
```

Example 2. Modeling an OR Boolean Gate

DL4J: Trained weights and bias:

--- Layer: layer0 ... --- Weights: [6.9568, 6.9568] ... --- Bias: -3.2378 ...

Decision boundary:

$$f(x_1, x_2) = 6.9568 (x_1 + x_2) - 3.2378 = 0.0.$$
 (22)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

DL4J: Trained model predictions:

[0.0378,

0.9763,

0.9763,

1.0000]

Example 2. Modeling an OR Boolean Gate

DL4J: Evaluation Metrics:

# of classe	es: 2									
Accuracy:	1.0000									
Precision:	1.0000									
Recall:	1.0000									
F1 Score:	1.0000									
Precision,	recall & F1:	reported	for	positive	class	(class	1	-	"1")	0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DL4J: Confusion Matrix:

0 1 -----1 0 | 0 = 0 0 3 | 1 = 1

Quick Review	Introduction to Neural Networks	The Perceptron (1943-1958)	Training a Single Perceptron Model	Metrics of Evalu

References

- Aggarwal C.C., Neural Networks and Deep Learning, Springer, 2018.
- Bhiksha R., Introduction to Neural Networks, Lisbon Machine Learning School, June, 2018.
- Lippmann R.P., An Introduction to Computing with Neural Nets, IEEE ASSP Magazine, April 1987.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Quick Review
 Introduction to Neural Networks
 The Perceptron (1943-1958)
 Training a Single Perceptron Model
 Metrics of Evaluation

Appendix A

Chart of Neural Network Architectures

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Neural Network Architectures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Neural Network Architectures

SQC.