## Introduction to Machine Learning

### Mark A. Austin

University of Maryland

austin@umd.edu ENCE 688P, Spring Semester 2022

March 1, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## Overview



- 2 Artificial Intelligence and Machine Learning
- 3 Machine Learning Capabilities
- 4 Taxonomy of Machine Learning Problems
- 5 Types of Machine Learning Systems
- 6 Urban Applications
- Recent Research at PEER and UMD

# **Quick Review**

# Man and Machine (Traditional View)

| Man                                                                                                                                                                                                                                                   | Machine                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Good at formulating solutions to problems.</li> <li>Can work with incomplete data and information.</li> <li>Creative.</li> <li>Reasons logically, but very slow.</li> <li>Performance is static.</li> <li>Humans break the rules.</li> </ul> | <ul> <li>Manipulates Os and 1s.</li> <li>Very specific abilities.</li> <li>Requires precise<br/>decriptions of problem<br/>solving procedures.</li> <li>Dumb, but very fast.</li> <li>Performance doubles<br/>every 18-24 months.</li> <li>Machines will follow the<br/>rules.</li> </ul> |
|                                                                                                                                                                                                                                                       | (日) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三                                                                                                                                                                                                                                            |

## Importance of Sensor Networks

Pathway from sensing and data collection to ... action ... improved performance.



Chain of dependency relationships:

- 1. improved performance <-- actions
- 2. actions <-- ability to identify events.
- 3. identify events <-- data processing
- 4. data processing <-- types and quality of data
- 5. types and quality of data <-- sensor design and placement.

## Pathway to System Efficiency

We need computational models that:

- Improve situational awareness to understand what is actually happening in a building or city?
- Connect sensor measurements to short- and long-term urban needs (e.g., decisions on a bus stop; longer term urban planning).
- Capture the spatial, temporal, and intensity aspects of environmental phenomena (e.g., fires, flooding) and their impact on natural (e.g., air quality) and man-made systems (e.g., transportation networks, food chains).
- Look ahead and forecast future states of the system?

# Artificial Intelligence and Machine Learning

**Opportunity:** Can use AI/ML to solve problems in completely new ways.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Artificial Intelligence (AI) and Machine Learning (ML)

Technical Implementation (2020, Google, Siemens, IBM)

 AI and ML will be deeply embedded in new software and algorithms.

Artificial Intelligence:

 Knowledge representation and reasoning with ontologies and rules. Semantic graphs. Executable event-based processing.

Machine Learning:

- Modern neural networks. Input-to-output prediction.
- Data mining.
- Identify objects, events, and anomalies.
- Learn structure and sequence. Remember stuff.

# Man and Machine (AI-ML View)

| Man                                                                    | AI-ML Machine                                                                |  |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| <ul> <li>Good at formulating<br/>solutions to problems.</li> </ul>     | <ul> <li>Manipulates Os and 1s.</li> <li>Can work with incomplete</li> </ul> |  |  |
| <ul> <li>Can work with incomplete<br/>data and information.</li> </ul> | <ul><li>data and information.</li><li>Creative.</li></ul>                    |  |  |
| • Creative.                                                            | • Fast logical reasoning.                                                    |  |  |
| <ul> <li>Reasons logically, but very<br/>slow. Forgetful.</li> </ul>   | • Performance doubles<br>every 18-24 months.                                 |  |  |
| <ul> <li>Performance is static.</li> </ul>                             | • Data mining can discover                                                   |  |  |
| <ul> <li>Humans make the rules,<br/>then they break them.</li> </ul>   | the rules.                                                                   |  |  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Traditional Programming vs AI-ML Workflow



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Traditional Programming vs AI-ML Workflow



・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

## Sensor Networks and AI-ML Enabled Decision Making

### Dependencies Among Systems in Built Environment:



Pathway to Enhanced Situational Awareness/Decision Making:

- Gather and process sensed data.
- Mine data to understand relationships.
- Integrate predictions into decision making framework.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Sensor Networks and AI-ML Enabled Decision Making

Pathway from sensing and data collection to ... action ... improved performance, now enabled by AI and ML capabilities:



## Software Support in Python and Java

Software Support in Python:

- Pandas (for tabular data analysis).
- TensorFlow (open source library for machine learning).
- Keras (neural network library).
- Jupyter Notebook (for web-based authoring of documents).
- Anaconda (packages to perform data science in Python/R).

Software Support in Java:

- Apache Jena (for knowledge representation and reasoning).
- Weka (for data mining).
- Deep Learning for Java (DL4J) (for machine learning).

Note: Jupyter  $\longrightarrow$  Julia, Python and R.

| Quick Review | Artificial Intelligence and Machine Learning | Machine Learning Capabilities | Taxonomy of Machine Learning Problems |
|--------------|----------------------------------------------|-------------------------------|---------------------------------------|
|              |                                              | ••••••                        |                                       |

# **Machine Learning**

# **Capabilities**

э

# A Brief History



- 1943: First neural networks invented (McCulloch and Pitts)
- 1958-1969: Perceptrons (Rosenblatt, Minsky and Papert). ۰
- 1980s-1990s: CNN, Back Propagation.
- 1990s-2010s: SVMs, decision trees and random forests. ۲
- 2010s: Deep Neural Networks and deep learning. ヘロン 不通と 不良とう アイ

0000000

## Machine Learning Capabilities (1980-1990)

#### **Expressive Power of a Neural Network**



$$y = \begin{cases} 1 & \text{if } \sum_{i=1}^d w_i x_i \geq T \\ 0 & \text{else} \end{cases}$$

### **Neural Network with Single Hidden Layer**



#### **Approximation of Functions / Boolean Logic**





▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Machine Learning Capabilities (1997-2014)

Recurrent Neural Networks (RNN): Learn sequences in data streams (text, speech)





reset gate

#### Long Short-Term Memory (1997) Gated Recurrent Units (2014)



tanh





sigmoid



pointwise

multiplication





vector concatenation Hidden state "h" serves two purposes:

- Make an output prediction.
- Represent features in the previous steps ....

Key Features of LSTM:

- Standard RNN suffers from vanishing gradients for modeling of long-term dependencies.
- LSTM gives cells the ability to remember values for long periods of time.
- Gates regulate the flow of information in / out of the cell, and what should be remembered or discarded.

Applications:

- Time series prediction.
- Time-series anomaly detection.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Machine Learning Capabilities (1997-2014)

#### Learning Streams of Text

- Download complete works of Shakespeare (5.4 • million characters)
- Train machine to remember text. .
- Write new Shakespeare!



I am thing forent innonion, madam! I thank I do speak you? ABESSITCHO, But his bosines, giving to know: foward to the distyesail.' The to you well know yes, my lovi, SECOND CMONBOR. He needs, for the reforeds are;

### Time Series Anomaly Detection



### **Time Series Prediction**



イロト イヨト イヨト э

# Machine Learning Capabilities (2014-present)

### Traditional Approach to Graph Representation



.

|     | • A                   | В                                              | С                                                                                                                                                                           | D                                                                                                                                                                                                                                       | E                                                                                                                                                                                                                                                                                                   |
|-----|-----------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - A | 0                     | 0                                              | 0                                                                                                                                                                           | 1                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                   |
| в   | 1                     | 0                                              | 1                                                                                                                                                                           | 0                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                   |
| С   | 0                     | 1                                              | 0                                                                                                                                                                           | 0                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                   |
| D   | 0                     | 0                                              | 1                                                                                                                                                                           | 0                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                   |
| Е   | 0                     | 0                                              | 0                                                                                                                                                                           | 0                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                   |
|     | A<br>B<br>C<br>D<br>E | A<br>A<br>B<br>1<br>C<br>0<br>D<br>0<br>E<br>0 | A         B           A         0         0           B         1         0           C         0         1           D         0         0           E         0         0 | A         B         C           A         0         0         0           B         1         0         1           C         0         1         0           D         0         0         1           E         0         0         0 | A         B         C         D           A         0         0         0         1           B         1         0         1         0           C         0         1         0         0           D         0         0         1         0           E         0         0         0         0 |

### **Graph Embedding Techniques**

#### **Graph Analysis**

- Connectivity / reachability analysis
- Cycle detection
- Traversal problems
- Shortest path problems
- Traceability problems (MBSE)
- Matching problems
- Topological sort problems

### **Graph Analytics**

- Node Classification
- Node Clustering
- Anomaly Prediction
- Attribute Prediction
- Link Prediction .
- . Recommendation
- Etc ....



- Goal is to preserve local linkage structure (not global structure). ٠
- Each dimension corresponds to a community in the network. .

Captures semantics in domain application

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Machine Learning Capabilities (2014-present)



Goal: Design encoder so that similarity in embedding space is closely approximates similarity in original network.

Graph Embedding Vector Design: node2vec, DeepWalk, ...

Node2vec: Combine two strategies:

BFS: Breadth First Search provides a local view of graph neighborhood.

DFS: Depth First Search provides a alobal view of the neighborhood.

Encoder is just a simple embedding vector lookup.



 $N_{BFS}(u) = \{s_1, s_2, s_3\}$  $N_{DFS}(u) = \{s_4, s_5, s_6\}$ 

Local microscopic view Global macroscopic view

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Machine Learning Capabilities (2014-present)

### **Graph Auto-encoder Link Prediction**

Link prediction procedures can be used in new types of system validation / verification.



### **Deep Graph Auto-encoder Design**

Requirements traceability needs arbitrarily large levels of reachability – first order neighbors, second-order neighbors, etc.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Taxonomy of Machine Learning Problems

# **Taxonomy of**

# Machine Learning Problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Classification of Machine Learning Problems

## Tree of Machine Learning and Deep Learning Capabilities



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## **Classification of Machine Learning Problems**

### **Regression versus Classification**



### Binary and Multi-Class Classification

Task of separating elements of a set into two (or more) groups on the basis of a classification rule (e.g., shape, color, etc).



イロト 不得 トイヨト イヨト -

## Curse of Dimensionality

Machine learning problems are inherently statistical and involve high-dimensional data. Increases in the problem dimensionality, decrease the number of data points available for classification in each dimension.



## **Dimensionality Reduction**

Strategies of dimensionality reduction involve transformation of data to new (lower) dimension in such a way that some of the dimensions can be discarded without a loss of information.

## **Example:** Projection of Swiss Roll data in 3D to 2D ...



▲ 伺 ▶ → 三 ▶

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Classification of Machine Learning Problems

### Autoencoders

Autoencoder neural networks use unsupervised machine learning algorithms to: (1) find compressed representations of the input data (encoder), and (2) reconstruct the original data from the compressed data (decoder).

## **Applications:**

- Dimensionality reduction.
- Image processing (compression and denoising).
- Feature extraction; anomaly detection.
- Image generation.
- Sequence-to-sequence translation.
- Recommendation systems.

## **Classification of Machine Learning Problems**

### AutoEncoder (Encoder-Decoder-Reconstruction)



### Encoder

The encoder learns how to reduce the input dimensions and compress the input data into an encoded representation.

### Decoder

The decoder learns how to reconstruct the input data from the encoded representation and be as close to the input data as possible.

### Latent Space

Latent space is simply a representation of compressed data in which similar points are closer together in space. This formalism is useful for learning data features and finding similar representations of data for analysis.

## Classification of Machine Learning Problems

## ImageNet and Deep Learning (2009-present)



### Indexed Database of 14.2 million Images

- Project initiated by Fei Fei Li in 2006
- Image annotation process crowd sourced via Amazon's Mechanical Turk. Categories derived from WordNet.
- Well organized  $\rightarrow$  supervised machine learning. ロト (日) (日) (日) (日) (日) (0)

# Classification of Machine Learning Problems

## ImageNet and Deep Learning Capabilities:

- Identify objects in an image.
- 27 high-level categories; 21,800 sub-categories.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## ImageNet and Deep Learning

## Capabilities (2018):

Identify relationship among multiple objects in a image.

## **Example.** Dog riding skateboard



## ImageNet and Deep Learning

### Captions generated by a neural network:



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Machine Learning at Scale

Object-recognition module:

- 24 million nodes.
- 140 million parameters.
- 15 billion connections.

Source: Fei Fei Li. TEDTalk. YouTube 2015.
### **Classification of Machine Learning Problems**

#### Variational AutoEncoders (Generative Models)



### Classification of Machine Learning Problems

Standard Autoencoders vs. Variational Autoencoders:

- A standard autoencoder outputs a single value for each encoding dimension.
- Variational autoencoders provide a probability distribution for each latent attribute.

**Example:** Single value representations for latent attributes:



## **Classification of Machine Learning Problems**

### **Discrete Value and Probability Distribution:** Representations for smile latent attribute:



(日) (四) (日) (日) (日)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Classification of Machine Learning Problems

### Image Reconstruction: sampled from latent distributions ...



Source: Jordan J., Variational Autoencoders, Data Science, March 2018.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Types of Machine Learning

# **Types of**

# **Machine Learning Systems**

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Machine Learning Systems

Types of Machine Learning Systems:

- Supervised machine learning.
- Unsupervised machine learning.
- Semi-supervised machine learning.
- Reinforcement machine learning.

## Supervised Machine Learning

#### Supervised Machine Learning

Learning algorithms are trained with labeled data and adjust the model parameters to minimize the discrepancy between the computed output and desired output.

### Data(x,y):

• x is data, y is the label.

### Goal:

• Learn function to map  $x \rightarrow y$ .

**Common Algorithms:** Regression, classification, naive bayes, object detection, neural networks, random forests, convolution neural networks.

# Supervised Machine Learning

### Supervised Machine Learning Process and Testing



### **Challenges:**

• Data preparation and pre-processing; avoid unlikely and incomplete data.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Identifying the right features to train the machine on.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Supervised Machine Learning

### Advantages

- Can predict output based on previous experiences.
- Can have an exact idea about the classes of objects.
- Very useful in real-world applications such as fraud detection.

### Disadvantages

- Not suitable for solution of complex tasks.
- Domain of expertise is very narrow cannot predict correct output if test data is different from training dataset.
- Training requires prior knowledge of the classes of objects.
- Manual labeling of a large data set can be very time consuming.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Unsupervised Machine Learning

#### Unsupervised Machine Learning

Learning algorithms examine the structure of unlabeled data, and divide it into groups having the closest features.

### Data(x):

• x is data, no labels.

### Goal:

• Learn hidden or underlying structure (or patterns in) of the data.

**Common Algorithms:** K-means clustering, feature or dimensionality reduction.

# Unsupervised Machine Learning

### Unsupervised Machine Learning Process



### **Abilities and Challenges**

- No supervision needed.
- Unsupervised learning is closer to human cognitive function it deduces patterns from a wide variety of application and learns over time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Unsupervised Machine Learning

### Advantages

- Ability for a machine to tackle problems that humans might find insurmountable
- Ideal for exploring raw and unknown data training data does not need to be labelled.

### Disadvantages

- Lower accuracy of results because the input data is now known and not labeled by people in advance.
- User needs to spend time interpreting and labeling classes/groups which follow classification.

## Summary: Supervised Learning vs Unsupervised Learning

#### How Supervised Machine Learning Works



#### How Unsupervised Machine Learning Works



< ロ > < 同 > < 回 > < 回 >

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Semi-Supervised Learning

### Semi-Supervised Learning

Semi-supervised learning is an approach to machine learning where algorithms use large amounts of unlabeled data to augment small amounts of labeled data to improve predictive accuracy.

### Semi-Supervised Learning in Humans

Concept learning in Children:

- Let x = animal, y = concept (e.g., cat).
- Parent points to animal and says: cat!
- Children subsequently observe animals by themselves and incrementally refine understanding.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Semi-Supervised Learning

#### Unlabeled and Labeled Data



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Semi-Supervised Learning

### Algorithms

- Self-training, generative models, co-training.
- Graph-based algorithms.
- Semi-supervised support vector machines.

### Applications

- Speech recognition and analysis.
- Spam detection and filtering.
- Video surveilance.
- 2D and 2D structure prediction.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

# Semi-Supervised Learning

### Advantages

 Provides the benefits of both unsupervised and supervised learning while avoiding the challenge of finding large amounts of labeled data.

### Disadvantages

 Cannot provide significant benefits over supervised learning unless one is absolutely sure that an assumption holds on the relationship between labels and the unlabeled data distribution.

Mathematically, we need:

$$p(x,y) = p(y)p(x|y), \qquad (1)$$

where p(x|y) is an identifiable mixture model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Reinforcement Learning

### Reinforcement Learning

Reinforcement learning algorithms use trial-and-error procedures to determine which action can provide the greatest reward.

**Data:** state-action pairs.

**Goal:** Maximize future rewards over many time steps.

**Examples:** Taking actions to enhance survival/performance in gaming, robotics, optimization of operations for industrial machinery.



# Reinforcement Learning

### Using Reinforcement to Improve Memory Retention

#### Typical Forgetting Curve for Newly Learned Information



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Reinforcement Learning

### **Reinforcement Learning Process**

In technical terms, reinforcement learning is a process in which a software agent makes observations and takes actions within an environment, and in return, it receives rewards.



The main objective is to maximize long-term rewards.

# Reinforcement Learning

### **Definitions:**

- **Environment:** Physical world in which the agent is operating.
- State: Current situation of the agent.
- Reward: Feedback from the environment.
- Policy: Method of map agent's state to actions.
- Value: Future reward that an agent would receive by taking an action in a particular state.

### Note:

 These conditions may not always be present in real-world applications.

More Details: See Technical Tutorial on RL by Pieter Abbeel and John Schulman at UC Berkeley.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Reinforcement Learning

**Simple Example:** Mouse Searches Maze to find Cheese



## observation

# Reinforcement Learning

### Classic and Deep Reinforcement Learning



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Reinforcement Learning

### Advantages

- Reinforcement learning can be used to solve very complex problems that cannot be solved by conventional techniques.
- Errors can be corrected during the learning process.
- Learning process is very similar to humans, but it can often outperform humans ...

### Disadvantages

- Not suitable for solving simple problems.
- Reinforcement learning requires lots of data and computation.
- Assumes incorrectly that the World follows a Markovian model, described in terms of sequences of possible events in which the probability of each event depends only on the current state.

# **Urban Applications**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# **Opportunities for Machine Learning**

### Machine Learning Opportunities:

- Predicting system response and performance.
- Interpreting data and formulating models to predict component and subsystem-level properties.
- Information retrieval from images and text.
- Recognizing patterns in streams of sensed data.

### Economic Considerations:

- Urban infrastructure is permanent/semi-permanent and very expensive to build and maintain.
- Prioritize improvements to efficiency by identifying and removing bottlenecks in performance.
- Use AI-ML for design of actions that enhance behavior/system performance.

## Small Scale: Traffic Intersection at UMD

**Goal.** How to traverse a traffic intersection safely and without causing an accident?



**Required Capability.** Observe, evaluate, reason, take actions.

**Challenges.** Multiple types of data, event-driven behavior, dynamic, time critical. Too much traffic congestion.

| Quick Review | Artificial Intelligence and Machine Learning | Machine Learning Capabilities | Taxonomy of Machine Learning Problems |
|--------------|----------------------------------------------|-------------------------------|---------------------------------------|
|              |                                              |                               |                                       |

# Self-Driving Cars

**Goal.** Improve performance by removing bottlenecks  $\rightarrow$  no human driver; no traffic lights.



# Google Self-Driving Car

#### Essentially: A network of sensors and computers on wheels.



**Today:** Modern automobiles  $\rightarrow$  100 million lines of code. **Tomorrow:** Self-driving automobiles  $\rightarrow$  300 million lines of code.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Navigating a Busy Traffic Intersection

### **Step-by-Step Procedure:**



- Identify various kinds of objects (e.g., vehicles, crosswalk).
- Predict what objects will do next.
- Conduct safety assessment.
- Take action.

# Google DeepMind (2018-2020)

#### Teach Self-Driving Cars to Navigate a City without a Map



Test Cities: London, Paris, New York.

# **Research at PEER**

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

# ML Research at PEER

### PEER Hub ImageNet (2018): Classification of Structural Engineering images:



Fig 1b Object level Samples

Fig 1c Structure Level Samples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Source: https://apps.peer.berkeley.edu/phichallenge/detection-tasks/

# ML Research at PEER

**Future Work:** Create pathway from image classification to decision making:



# **Preliminary Research at**

# UMD

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Large Scale: Management of City Operations



**Required Capability.** Modeling and Control of Urban Processes.

**Challenges.** Distributed system behavior/control. Decision making covers a wide range of temporal and spatial scales.
## Large Scale: Management of City Operations

Case Study A (2019): Mine publically available data to understand Energy Consumption in 2,500 Buildings in Chicago.



## Large Scale: Management of City Operations

**Case Study B (2020):** Can we teach a machine to understand the structure and behavior of water supply networks?



Reference: Coelho M., et al., Teaching Machines to Understand Urban Networks, ICONS 2020.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

| Quick Review | Artificial Intelligence and Machine Learning | Machine Learning Capabilities | Taxonomy of Machine Learning Problems |
|--------------|----------------------------------------------|-------------------------------|---------------------------------------|
|              |                                              |                               |                                       |

## References

- Austin M.A., Delgoshaei P., Coelho M. and Heidarinejad M., Architecting Smart City Digital Twins: Combined Semantic Model and Machine Learning Approach, Journal of Management in Engineering, ASCE, Volume 36, Issue 4, July, 2020.
- Coelho M., and Austin M.A., Teaching Machines to Understand Urban Networks, The Fifteenth International Conference on Systems (ICONS 2020), Lisbon, Portugal, February 23-27, 2020, pp. 37-42.
- Bhiksha R., Introduction to Neural Networks, Lisbon Machine Learning School, June, 2018.
- Lu T., Fundamental Limitations of Semi-Supervised Learning, MS Thesis in Mathematics in Computer Science, University of Waterloo, Canada, 2009.
- Van Engelen J.E., and Hoos H.H., A Survey on Semi-Supervised Learning, Machine Learning, Vol. 109, 2020, pp. 373-440.