Machine Learning Appendices (DRAFT)

Mark A. Austin

austin@umd.edu
ENCE 688P, Spring Semester 2022
University of Maryland

June 6, 2022

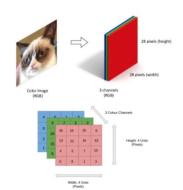
Overview

Appendix A: Working with Tensors

Appendix A

Working with Tensors

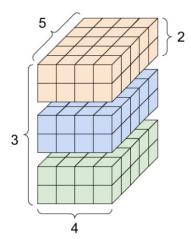
Definition


Definition

In machine learning, a tensor is a generalization of scalars, vectors, and matrices to n-dimensional arrays.

Vectors, matrices, tensors.

vector matrix tensor $\mathbf{v} \in \mathbb{R}^{64} \qquad \mathbf{X} \in \mathbb{R}^{8\times8} \qquad \mathbf{X} \in \mathbb{R}^{4\times4\times4}$


Images are three-dimensional tensors.

Definition

A rank-4 tensor shape:

Creating Tensors in TensorFlow

TensorFlow supports two models of execution:

- Eager execution: Operations are evaluated immediately.
- Graph execution: A computational graph is constructed for later evaluation.

Example: Create tensor matrices, then multiply:

Tensor Operations

Mathematical Operations. Many machine learning algorithms can be expressed as sequences of element-wise tensor operations and tensor products.

Tensor Operations

Element-wise Tensor Operations

Tensor Operations

Tensor Products

Tensor Graphs

Tensor Graphs

TensorBoard

TensorBoard. ...

TensorBoard

TensorBoard. ...