Engineering Software Development

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688P, Fall Semester 2020

February 5, 2021

Overview

© Quick Review

9 Problem Solving with Computers
Part 1
© Abstractions for Modeling System Behavior

@ Interpreted and Compiled Languages

© Implementation (Writing the Code)

@ Program Development with Python and Java

Part 1

Quick Review

Quick Review
ce00

Pathway to Improved Programmer Productivity

Pathway Forward

Major increases in designer productivity have nearly always been
accompanied by new methods for solving problems at higher levels
of abstraction.

Programmer Productivity
1000

1960 - Machine Instructions
1985 - Macro Assemblers
1970 - High-Level Languages
1875 - Database Managers

100
1976 - Regressian Testing
1980 - Oniine Development
1985 - Prototyping
1986 - 46L
10

1980 - Subsecond Timesharing
1992 - Small-scale Reuse

3 1935 - 00
2000 - (Large-scals Reuse)

Ratio of Source Lines to Machine Instructions

1960 1965 19700 1975 1978 1930 1935 1985 1990 1962 18995 2000
Year
Ref. Bernstein 1997

© 2003-2005 by Digital Aggregates Corp. Al rights reserved
L J

Quick Review
coeo

Evolution of Computer Languages

Computer Languages. Formal description — precise grammar —
for how a problem can be solved.

Evolution. It takes about a decade for significant advances in
computing to occur:

Capability | 1970s 1980s 1990s

Users Specialists Individuals Groups

Usage Numerical Desktop com- | E-mail, web,
computations puting file transfer.

Interaction | Type at key- | Screen and | audio/voice.
board mouse

Languages | Fortran, C MATLAB HTML, Java

Quick Review
ocooe

Popular Computer Languages

Tend to be designed for a specific set of purposes:

FORTRAN (1950s — today). Stands for formula translation.
C (early 1970s — today). New operating systems.

C++ (early 1970s — today). Object-oriented version of C.
MATLAB (mid 1980s — today). Stands for matrix laboratory.
Python (early 1990s — today). A great scripting language.
HTML (1990s — today). Layout of web-page content.

Java (1994 — today). Object-Oriented language for
network-based computing.

XML (late 1990s — today). Description of data on the Web.

Problem Solving with Computers

Problem Solving

with Computers

Problem Solving with Computers
0®0000000

Problem Solving with Computers

Develop Model of System Context:

@ What is the context within which the software will operate?

Operations Concept:
@ What is the required system functionality?
@ What are the system inputs and outputs?

@ What will the system do in response to external stimuli?

Requirements:

@ What requirements are needed to ensure that the system will
operate as planned?

@ How will the software be written, tested, maintained?

Problem Solving with Computers
00®000000

Strategies for Handling Complexity

Productivity Concerns

System designers and software developers need to find ways of
being more productive, just to keep the duration and economics of
design development in check.

Gaps in Capability

System

. Jimit lexi
Complexity Upper limit for complexity

of systems that can be designed.

Design
Productivity

Validation
Productivity

Time

Problem Solving with Computers
000®00000

Strategies for Handling Complexity

Simplify models of funtionality by decomposing high-level functions
into networks of lower-level functionality:

=
5}
e 8=
- A 5]
P — =
PR . — =]
T — Function o
- [g
e - Inputs Outputs -%
- , =
e ; =
- /)
K4 172}
2z 8
7 g L
— Funcl e o0 o0
; s| £
Outputs ,* 4
Inputs P y 4 3
— Func2 v g 5
; 2| 2
, on
| / £
Func3 ; g
/ o
/ S
, 2y
=

Problem Solving with Computers
0000®0000

Strategies for Handling Complexity

Create High-Level Description of Solution:

Increasing System Complexity: Software programmers need to find ways to solve
problems at high levels of abstraction.

r R

Programmer Productivit .
1000 9 el High—Level Language

1960 - Machine Instructions

1990 - Subsecond Timesharing
1992 - Small-scale Reuse

& 1995 00
2000 - (Large-scale Reuse)

°
£ 1965 - Macro Assemblers

g 1470 - High-Level Languages R

B 1975 - Database Managers Comp]lﬁ:r
2 1m0

E - Regression Testing '

= 1380 - Online Development

® 1885 - Prototyping -

g 1a89 . 4oL Low=Level Executable
3

3 1 Code

3

&

s

2

z

&

N A
1960 1965 1970 1975 1978 1980 1985 1988 1990 1982 1995 2000
Year
Ref: Bernstein 1997
© 2003-2005 by Digital Aggregates Corp. Al rights reserved

Problem Solving with Computers
00000e000

Separation of Concerns

Design
‘ -7 TTe-s -
P -~
-7 Ss
. ’ \ . . \
Behavior » “Structure \ Communication !
.
\]
Function ’ / Hierarhical Decompositionj Protocols '
O O @ ® D > ED 1 —— syntax, semantics ...
1 1
Ordering of functions Topology] Interface '

o ool GO
Objects I
2]

Geometry

D —» Position (x,y), Size

Problem Solving with Computers
000000e00

Separation of Concerns

Models of System Structure:
@ Specify how a system (including software) will solve a problem.

@ Includes development of functional hierarchies and network
structures.

Models of System Behavior:
@ Specify what the system (including software) will do.

@ Includes top-level functionality, inputs and outputs, order of
function execution.

Models of System Communication:
@ Specification for how subsystems will communicate.

@ Includes specification of interfaces and protocols for
communication.

Problem Solving with Computers
0000000e0

Top-Down and Bottom-Up Design

DECOMPOSITION 1
1 -

- - 1
NEW PROBLEM !

- 1

v ~

1
1

SUBPROBLEMS
b O Q

ONe = Q

INDEPENDENT MODULES COUPLED MODULES

Problem Solving with Computers
00000000e

Top-Down and Bottom-Up Design

Top-Down Development:

@ Can customize a design to provide what is needed and no
more.

@ Start from scratch implies slow time-to-market.

Bottom-up Development:
@ Reuse of components enables fast time-to-market.

@ Reuse of components improves quality because components
will have already been tested.

@ Design may contain many features that are not needed.

This Class:

@ Extensive use of software libraries (e.g., collections).

Modeling

System Behavior

Abstractions for Modeling System Behavior
0®0000

Abstractions for Modeling System Behavior

Program Control — System Behavior:
Behavior models coordinate a set of what we will call steps.

Two questions for each step:
@ When should each step be taken?

@ When are the inputs to each step determined?

Abstractions that allow for the ordering of functions include:
@ Sequence constructs,
@ Branching constructs,
@ Repetition/looping constructs,

@ Concurrency constructs.

Abstractions for Modeling System Behavior
00®000

Abstractions for Modeling System Behavior

Sequencing of Steps in an Algorithm:
Which functions must precede or succeed others?

st el s]

Starting
Point

The textual /pseudocode counterpart is:

Starting Point
Step 1.
Step 2.
Step 3.
Step N.
Finishing Point

Abstractions for Modeling System Behavior
000®00

Abstractions for Modeling System Behavior

Selection Constructs: Capture choices between functions

Outcome is true = Compute Block A —

——— Logical Decision

> Compute Block B =
Outcome is false...

Languages need to support evaluation of relational and logical
expressions.

Question: Is 4 greater than 37
Expression: 4 > 3 ... evaluates to ... true.

Question: Is 4 equal to 37
Expression: 4 == ... evaluates to ... false.

Abstractions for Modeling System Behavior
00000

Abstractions for Modeling System Behavior

Repetition/Looping Constructs:

— > Sequence of steps %

A

Repitition constructs want to know:

@ Which functions can be repeated as a block?

Abstractions for Modeling System Behavior
oooo0e

Abstractions for Modeling System Behavior

Ordering of Functions: Concurrency

Most real-world scenarios involve concurrent activities. The key
challenge is sequencing and coordination of activities to maximize
a system's performance.

Example 1. Running multiple threads of execution on one
processor:

R s I 1 .

)
[
!
[

Process B

Time t

Process B starts.
Process A starts.

Interpreted and
Compiled Languages

Interpreted and Compiled Languages
0®000

Interpreted Programming Languages

Interpreted Programming Languages:

@ High-level statements are read one by one, and translated and
executed on the fly (i.e., as the program is running).

Examples:
e HTML and XML.
o Visual Basic and Javascript.

Scripting languages such as Tcl/Tk and Perl are interpreted.
Python and Java are both interpreted and compiled.

Interpreted and Compiled Languages
00®00

Compiling the Program Source Code

A compiler translates the computer program source code into lower
level (e.g., machine code) instructions.

Program Source Compiler | | gw-level Save | Executable
Code | Machine Code File

\

High-level programming constructs (e.g., evaluation of logical
expressions, loops, and functions) are translated into equivalent
low-level constructs that a machine can work with.

Examples: C and C++.

Interpreted and Compiled Languages
000®0

Benefits of Compiled and Interpreted Code

Benefits of Compiled Code:
@ Compiled programs generally run faster than interpreted ones.

@ This is because an interpreter must analyze each statement in
the program each time it is executed and then perform the
desired action.

Benefits of Interpreted Code:
@ Interpreted programs can modify themselves by adding or
changing functions at runtime.
@ Cycles of application development are usually faster than with
compiled code because you don't have to recompile your
application each time you want to test a small section.

Interpreted and Compiled Languages
ooooe

Compiled and Interpreted

Modern Interpreter Systems

Transform source code into a lower-level intermediate format.
Interpreter then executes commands.

Compiled Code

Program Source Compiler Low-level
Code Machine Code

Y

Compiled and Interpreted Code

Program Source Compiler | Intermediate Interpreter Read and execute
Code | Code commands

Y

Examples: MATLAB, Java and Python.

	Quick Review
	Problem Solving with Computers
	Abstractions for Modeling System Behavior
	Interpreted and Compiled Languages
	Implementation (Writing the Code)
	Program Development with Python and Java

