
Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Engineering Software Development

Mark A. Austin

University of Maryland

austin@umd.edu

ENCE 688P, Fall Semester 2020

February 5, 2021

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Overview

1 Quick Review

2 Problem Solving with Computers

3 Abstractions for Modeling System Behavior

4 Interpreted and Compiled Languages

5 Implementation (Writing the Code)

6 Program Development with Python and Java

Part 1

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Quick Review

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Pathway to Improved Programmer Productivity

Pathway Forward

Major increases in designer productivity have nearly always been
accompanied by new methods for solving problems at higher levels
of abstraction.

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Evolution of Computer Languages

Computer Languages. Formal description – precise grammar –
for how a problem can be solved.

Evolution. It takes about a decade for significant advances in
computing to occur:

Capability 1970s 1980s 1990s
Users Specialists Individuals Groups
Usage Numerical

computations
Desktop com-
puting

E-mail, web,
file transfer.

Interaction Type at key-
board

Screen and
mouse

audio/voice.

Languages Fortran, C MATLAB HTML, Java

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Popular Computer Languages

Tend to be designed for a specific set of purposes:

FORTRAN (1950s – today). Stands for formula translation.

C (early 1970s – today). New operating systems.

C++ (early 1970s – today). Object-oriented version of C.

MATLAB (mid 1980s – today). Stands for matrix laboratory.

Python (early 1990s – today). A great scripting language.

HTML (1990s – today). Layout of web-page content.

Java (1994 – today). Object-Oriented language for
network-based computing.

XML (late 1990s – today). Description of data on the Web.

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Problem Solving

with Computers

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Problem Solving with Computers

Develop Model of System Context:

What is the context within which the software will operate?

Operations Concept:

What is the required system functionality?

What are the system inputs and outputs?

What will the system do in response to external stimuli?

Requirements:

What requirements are needed to ensure that the system will
operate as planned?

How will the software be written, tested, maintained?

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Strategies for Handling Complexity

Productivity Concerns

System designers and software developers need to find ways of
being more productive, just to keep the duration and economics of
design development in check.

of systems that can be designed.

System

Complexity

Time

Validation
Productivity

Design
Productivity

Gaps in Capability
Upper limit for complexity

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Strategies for Handling Complexity

Simplify models of funtionality by decomposing high-level functions
into networks of lower-level functionality:

In
cr

ea
si

n
g
 f

o
cu

s
o

n
 g

o
al

s

In
cr

ea
si

n
g
 f

o
cu

s
o

n
 i

m
p

le
m

en
ta

ti
o
n

Function

Func1

Func3

Func2
Inputs

Outputs

OutputsInputs

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Strategies for Handling Complexity

Create High-Level Description of Solution:

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Separation of Concerns

Position (x,y), Size

Structure Communication

Function

Ordering of functions

Hierarhical Decomposition

Topology

Objects

Protocols

Interface

−− syntax, semantics

A B C

Design

Geometry

Behavior

CA

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Separation of Concerns

Models of System Structure:

Specify how a system (including software) will solve a problem.

Includes development of functional hierarchies and network
structures.

Models of System Behavior:

Specify what the system (including software) will do.

Includes top-level functionality, inputs and outputs, order of
function execution.

Models of System Communication:

Specification for how subsystems will communicate.

Includes specification of interfaces and protocols for
communication.

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Top-Down and Bottom-Up Design

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Top-Down and Bottom-Up Design

Top-Down Development:

Can customize a design to provide what is needed and no
more.

Start from scratch implies slow time-to-market.

Bottom-up Development:

Reuse of components enables fast time-to-market.

Reuse of components improves quality because components
will have already been tested.

Design may contain many features that are not needed.

This Class:

Extensive use of software libraries (e.g., collections).

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Modeling

System Behavior

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Abstractions for Modeling System Behavior

Program Control ! System Behavior:

Behavior models coordinate a set of what we will call steps.

Two questions for each step:

When should each step be taken?

When are the inputs to each step determined?

Abstractions that allow for the ordering of functions include:

Sequence constructs,

Branching constructs,

Repetition/looping constructs,

Concurrency constructs.

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Abstractions for Modeling System Behavior

Sequencing of Steps in an Algorithm:
Which functions must precede or succeed others?

Point
Starting Step NStep 2Step 1 Finishing

Point

The textual/pseudocode counterpart is:

Starting Point

Step 1.

Step 2.

Step 3.

......

Step N.

Finishing Point

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Abstractions for Modeling System Behavior

Selection Constructs: Capture choices between functions

Compute Block B

Outcome is true

Outcome is false...

Logical Decision

Compute Block A

Languages need to support evaluation of relational and logical
expressions.

Question: Is 4 greater than 3?

Expression: 4 > 3 ... evaluates to ... true.

Question: Is 4 equal to 3?

Expression: 4 == 3 ... evaluates to ... false.

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Abstractions for Modeling System Behavior

Repetition/Looping Constructs:

Step M Step NSequence of steps

Repitition constructs want to know:

Which functions can be repeated as a block?

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Abstractions for Modeling System Behavior

Ordering of Functions: Concurrency

Most real-world scenarios involve concurrent activities. The key
challenge is sequencing and coordination of activities to maximize
a system’s performance.

Example 1. Running multiple threads of execution on one
processor:

Process B

Time t

Process A starts.
Process B starts.

Process A

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Interpreted and
Compiled Languages

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Interpreted Programming Languages

Interpreted Programming Languages:

High-level statements are read one by one, and translated and
executed on the fly (i.e., as the program is running).

Examples:

HTML and XML.

Visual Basic and Javascript.

Scripting languages such as Tcl/Tk and Perl are interpreted.
Python and Java are both interpreted and compiled.

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Compiling the Program Source Code

A compiler translates the computer program source code into lower
level (e.g., machine code) instructions.

Low-levelProgram Source
Code

Executable
File

Compiler Save

Machine Code

High-level programming constructs (e.g., evaluation of logical
expressions, loops, and functions) are translated into equivalent
low-level constructs that a machine can work with.

Examples: C and C++.

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Benefits of Compiled and Interpreted Code

Benefits of Compiled Code:

Compiled programs generally run faster than interpreted ones.

This is because an interpreter must analyze each statement in
the program each time it is executed and then perform the
desired action.

Benefits of Interpreted Code:

Interpreted programs can modify themselves by adding or
changing functions at runtime.

Cycles of application development are usually faster than with
compiled code because you don’t have to recompile your
application each time you want to test a small section.

Quick Review Problem Solving with Computers Abstractions for Modeling System Behavior Interpreted and Compiled Languages Implementation (Writing the Code) Program Development with Python and Java

Compiled and Interpreted

Modern Interpreter Systems

Transform source code into a lower-level intermediate format.
Interpreter then executes commands.

Machine Code
Program Source
Code

Compiler

CompilerProgram Source
Code

Intermediate
Code

Interpreter

commands
Read and execute

Compiled Code

Compiled and Interpreted Code

Low-level

Examples: MATLAB, Java and Python.

	Quick Review
	Problem Solving with Computers
	Abstractions for Modeling System Behavior
	Interpreted and Compiled Languages
	Implementation (Writing the Code)
	Program Development with Python and Java

