Neural Networks II

Mark A. Austin

austin@umd.edu

ENCE 688P, Spring Semester 2021 University of Maryland

March 24, 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Overview

Quick Review

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Mathematical Model of a Single Perceptron

Perceptron Model (Rosenblatt, 1958)

The simplest form of a neural network consists of a single neuron with adjustable synaptic weights and bias.

A nonlinear neuron consists of a linear combiner followed by a hard limiter.

Mathematical Model of a Single Perceptron

Perceptron Model for OR and AND Boolean Gates

No solution for XOR Problem.

Individual elements are weak. Networked elements are required.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Perceptron Model as a Linear Classifier

Perceptron operating on real-valued vectors is a linear classifier:

Addition of bias values expands modeling capability. No bias value \rightarrow decision boundary constrained to pass through the origin.

Perceptron Model as a Linear Classifier

Points to Note:

- Back propogation involves calculating gradients for every single trainable parameter with respect to the loss function.
- Nonlinear decision boundaries require networks of perceptrons.

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

(日) (四) (日) (日) (日)

Perceptron Model as a Linear Classifier

General Classification Capabilities (Lippmann, 1987)

Multilayer

Neural Networks

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Multilayer Network Architecture

Network Architecture with 3 Hidden Layers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Multilayer Network Architecture

Assumptions

- We assume that inputs feed forward no feedback to the inputs, either directly or indirectly.
- Assume the network architecture (see below) is capable of representing the needed function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Network Architecture Design

- How many inputs and outputs?
- How many layers?
- How many neurons per layer?
- Will individual neurons have biases?
- Layout of connectivity between neurons?
- Selection of training algorithms.

Multilayer Network Architecture (Deep Structures)

Network Depth

In any directed network of computational elements, with input (source) and output (sink) nodes, depth is the longest path from the source to the sink.

Example. Network depth =4.

Deep Network: depth > 2.

Multilayer Network Capabilities

Key Points (Source: CMU course notes on Deep Learning)

• Multi-layer perceptron models are universal Boolean functions, universal classifiers, and universal function approximators, over any number of inputs and any number of outputs.

Computational Advantage of Deep Network Structures

- Any truth table can be expressed by a MLP with only one hidden layer. But hidden layer may require 2^{N-1} perceptrons – exponential growth.
- Can model same problem with 3(N-1) perceptrons, arranged into 2log₂(N) layers. This is linear in N.
- Networks with fewer than the minimum required number of neurons cannot model the function.

Multilayer Network Training

Training Procedure: Learning the weights and biases to compute a target function (i.e., match the input-output relation of training instances drawn from the target function).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Activation Functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Activation Functions

Activation Function

Activations introduce nonlinearities into the neural network.

Common Activation Functions

Activation Functions

Sigmoid Activation Function

To estimate network parameters, we need activation functions that are continuous, with non-zero derivatives.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Activation Functions

Pathway to Differentiable Activation

Replace step activation with sigmoid function:

$$y = f(z) = \begin{cases} 0, & z < 0, \\ 1, & z \ge 0. \end{cases} \to y = \sigma(z) = \left[\frac{1}{1 + e^{-z}}\right].$$
 (1)

Derivative of sigmoid is easy:

$$\frac{dy}{dz} = \frac{d}{dz}\sigma(z) = \sigma(z)\left[1 - \sigma(z)\right].$$
(2)

Can interpret output as P(y = 1|x).

Loss Functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

Loss Function

The loss of a neural network measures how well a prediction model does in terms of being able to predict the expected value (or outcome).

Procedure for Learning

- Convert the neural network training problem into an optimization problem.
- Define a loss function and then optimize the parameter values to minumize its value.

• The loss function is the beginning of back propogation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Popular Loss Functions

Regression Loss Functions

- Mean squared error loss.
- Mean squared logarithmic error loss.
- Mean absolute error loss.

Binary Classification Loss Functions

- Binary cross-entropy.
- Hinge loss.
- Squared hinge loss.

Multi-Class Classification Loss Functions

- Multi-class cross entropy loss.
- Kullback-Leibler divergence loss.

Mean Squared Error Loss

Mean Squared Loss Function

Meaned squared error (MSE) is the average of the square of the difference between actual and predicted values, summed over all data points.

- This loss function is the heart of least squares analysis.
- Mathematically:

$$L(y, \hat{y}) = \frac{1}{N} \sum_{i=1}^{N} (y - \hat{y})^2$$
(3)

Here, y is the actual value, \hat{y} is the predicted value.

• Loss can be sensitive to outliers (i.e., unusually large errors).

Mean Squared Error Loss

Example. Least Squares Analysis.

Let
$$\hat{y}(x) = ax + b$$
.

Least squares analysis involves finding coefficients *a* and *b* that minimize $L(y, \hat{y})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cross-Entropy Loss

Cross Entropy Loss

A cross entropy loss function can be used with models that output a probability between 0 and 1.

Example. Animal Classification

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

Cross-Entropy Loss

Example. Animal Classification

- The desired output for class dog is T = [1, 0, 0, 0].
- The NN model output is S = [0.775, 0.116, 0.039, 0.070].

The categorical cross-entropy is computed as follows:

$$L_{ce} = -\sum_{i=1}^{4} T_i \log_2(S_i)$$

= -[1 \log_2(0.775) + 0 \log_2(0.116) \dots] (4)
= -\log_2(0.775)
= 0.3677

References

- Lippmann R.P., An Introduction to Computing with Neural Nets, IEEE ASSP Magazine, April 1987.
- Bhiksha R., Introduction to Neural Networks, Lisbon Machine Learning School, June, 2018.
- Sun J., Fundamental Belief: Universal Approximation Theorems, Computer Science and Engineering, University of Minnesota, Twin Cities, 2020.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●