Neural Networks |

Mark A. Austin

austin@umd.edu

ENCE 688P, Spring Semester 2021
University of Maryland

March 24, 2021

Overview

© Quick Review
9 Introduction to Neural Networks Part 01

© The Perceptron (1943-1958)

@ Training a Single Perceptron Model
© Metrics of Evaluation

@ Single-Layer Perceptron Examples

Mark Austin

Mark Austin

Mark Austin
Part 01

Quick Review

Quick Review
©0®000

A Brief History

First NN Symbolic Al New NNsi/Algorithms
1% AT Winter 2"AI Winter Machine Learning
Birth of Al
2
1974 198741993 .
' 1980
1450 1970 1990 2010 2030
Perceptron ’
First Computer Now
(ENIAC) Expert System

Turing Test
Deep Learning, Data Science

1943: First neural networks invented (McCulloch and Pitts)
1958-1969: Perceptrons (Rosenblatt, Minsky and Papert).
1980s-1990s: CNN, Back Propagation.

1990s-2010s: SVMs, decision trees and random forests.
2010s: Deep Neural Networks and deep learning.

Quick Review
0000

Machine Learning Capabilities (1980-1990)

Expressive Power of a Neural Network Neural Network with Single Hidden Layer

Weights
"

" output layer
. {l if S w21 input layer
s 0 else hidden layer

Approximation of Functions / Boolean Logic

3 ~)
$se &,
X i & e 4
. &/ AND = a0
5 — N
Vm | <l ~_ A 0\
> e - .

Quick Review
000e0

Machine Learning Capabilities (1997-2014)

Recurrent Neural Networks (RNN): Learn sequences in data streams (text, speech)

@ Hidden state “h” serves two
purposes:

“ * Make an output prediction.
« Represent features in the
previous steps
®

Key Features of LSTM:
Long Short-Term Memory (1997) Gated Recurrent Units (2014)
forget gate cell state reset gate « Standard RNN suffers from
vanishing gradients for modeling of
long-term dependencies.

« LSTM gives cells the ability to
remember values for long periods of
time.

» Gates regulate the flow of
information in / out of the cell, and

input gate output gate update gate what should be remembered or

discarded.
0 9)_. Applications:
sigmoid tanh pointwise pointwise vector « Time series prediction.

multiplication addition concatenation . Time-series anomaly detection

Quick Review
ooooe

Classification of Machine Learning Capabilities

Tree of Machine Learning and Deep Learning Capabilities

Classification
Supervised learning
Regression
ML
Unsupervised learning
DL

Image classification
Machine translation
Stock prediction
Image masking
PCA

Dimension reduction
t-SNE(more for visualization)

K-mean
Clustering GMMs
HMMs
Mutual information
Representation learning Disentanglement
Information bottleneck
GANs

Generative models
VAE

MINE/DIM

VAE

Introduction to

Neural Networks

Introduction to Neural Networks
0@0000

Why Neural Networks?

Reasons to use Neural Networks:

@ Neural networks are universal function approximators, no
matter how complex:

@ Neural network architectures are highly scalable and flexible.

Caveat:

@ Very large neural networks may be close to impossible to train
and generalize correctly.

Introduction to Neural Networks
[e]e] Yolole}

Basic Neural Network Architecture

Neural Network with One Hidden Layer:

Dense Output
layer layer

Xy —»

Network
output

X2 —B

Output nodes

Input nodes Hidden nodes

Introduction to Neural Networks
[ee]eY Tole}

Basic Neural Network Architecture

Training Procedure: Back Propogation

Back Propagation

adjust weights and

Inputs bias values
X1 —
Network
output
X2 —

Output nodes
Input nodes Hidden nodes

Feed Forward —p

Compute Network
Error Term Prediction

}

Target Output (x)

Introduction to Neural Networks

0000e0

Modeling Expectations

Capabilities of a Perceptron Model: (From Lippman, 1987)

*o
. J"DECISION BOUNDARY .

Wo
%= Wy Xt

re 12. A single layer perceptron t',hat: c|assmes an' f
log input vector into two classes denoted A and B. This
ivides - ‘the space spanned by the input .into two
'separated by a hyperplane or a line in two dimen-

Introduction to Neural Networks
oooooe

Modeling Expectations

Neural Networks with Hidden Layers: (From Lippman, 1987)

nits and two inputs. Shading denotes
,regrons for class A. Smaooth closed contours
distributions for classes A and B. Nodes in ell_

The Perceptron (1943-1958)

The Perceptron

Building Block of Machine Learning

The Perceptron (1943-1958)
O®00000000000000

A Little History / Biological Inspiration

Neural networks originally began as computational models of the
brain (i.e., models of cognition).

zo wp

%

axon from a neuron SyIonse
WoZo

impulses carried
toward cell body

cell body

Zw,z, +b

branches

dendmes%(of axon
\\) \/;f o #2?“> axon

nucleus ==\ terminals

S S—
7/% ,/\A\\ impulses carried
away from cell body

cell body’

output axon

activation
function

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

o Early models were based on association relationship.

@ More recent models of brain are connectionist — neurons
connect to neurons.

The Perceptron (1943-1958)

00®@0000000000000

Connectionist Models

Present-day neural network models are connectionist machines.

That is:
@ Network of processing elements.
@ Knowledge is stored in the connections between the elements.

@ We need a model for these computational units.

The Perceptron (1943-1958)
000®000000000000

Mathematical Model of a Single Neuron

Modelling the Brain. Basic units are neurons:

Dendrites

@ Signals come in through the dendrites into Soma.

@ A signal exits via the axon to other neuron (only one axon per
neuron).

@ Neurons do not undergo cell division.

The Perceptron (1943-1958)
0000@00000000000

Mathematical Model of a Single Neuron

McCulloch and Pitts Model for a Single Neuron (1943):

X1 w
X2

X3 S [07 1]

w
xp € [0,1]

First artificial neural network:
@ Assumes boolean input (i.e., x € [0,1]).

@ A neuron fires when its activation is 1, otherwise its activation
is 0 (i.e, y € [0,1]).

The Perceptron (1943-1958)
00000@0000000000

Mathematical Model of a Single Neuron

Mathematical Model:
@ All incoming connections have the same weight.

e Function g() aggregates the inputs, i.e.,

g(X17X27"'7Xn):g(X):ZXi (1)
i=1

e Function f() takes a decision based on this aggregation. y =
0 if any input x; is inhibitory. Otherwise:

y=f(g(x)) =1if g(x) > 6.
=0if g(x) < 6.

@ 0 is called the threshold parameter.

The Perceptron (1943-1958)
000000®000000000

Mathematical Model of a Single Neuron

Behavior of a Simple Neuron Unit:

Y Inputs Weights A Single heuron

Wi

Output

Threshold T

of T Sum

Criticisms:
o Claimed their machine could emulate a Turing machine.

@ Did not provide a learning mechanism.

The Perceptron (1943-1958)
0000000800000000

Mathematical Model of a Single Neuron

Simplified Modeling of Boolean Gates:
y €{0,1} ye{0,1} y€{0,1}

0 3 1
/TN /TN /TN

1 T2 I3] T2 I3] T2 I3
A McCulloch Pitts unit AND function OR function
y €{0,1} y€{0,1} y€{0,1}
ad N]
T T2 x1 X9 x1

x1 AND lzo* NOR function NOT function

The Perceptron (1943-1958)
00000000e0000000

Mathematical Model of a Single Neuron

Hebbian Learning (Donald Hebb, 1949)

When an axon of cell A excites cell B and repeatedly or presistently
takes part in firing it, some growth processes or metabolic change
takes place in one or both cells so that A's efficiency is increased.

Observation: In other words, neurons that fire together wire
together!

The Perceptron (1943-1958)
0000000008000000

Mathematical Model of a Single Neuron

Principles of Hebbian Learning

Neurons that fire together wire together!

If neuron x; repeatedly triggers neuron y, the synaptic knob
connecting x; to y gets larger.

Mathematically, we can write:

w; = w; +nx;y (2)
Here, w; is the weight of the i-th neuron’s input to output
neuron y.

This simple formula is actually the basic of many learning
algorithms in machie learning.

The Perceptron (1943-1958)
0000000000000

Mathematical Model of a Single Perceptron

Perceptron Model (Rosenblatt, 1958)

The simplest form of a neural network consists of a single neuron
with adjustable synaptic weights and bias.

A nonlinear neuron consists of a linear combiner followed by a hard
limiter.

Hard
limiter

Inputs

'l‘I”

Linear
combiner

The Perceptron (1943-1958)
00000000000e0000

Mathematical Model of a Single Perceptron

Perceptron Model (Rosenblatt, 1958):

@ Learning algorithm:

w(x) = w(x) +n(d(x) — y(x)) x. (3)
Here:
@ 7 is the learning rate,

@ d(x) and y(x) are the desired and actual outputs in response
to x.

o Update weights whenever the perceptron output is wrong.
@ Proved convergence.
@ Solution for OR and AND Boolean Gates.

The Perceptron (1943-1958)
000000000000e000

Mathematical Model of a Single Perceptron

Perceptron Model for OR and AND Boolean Gates

X 1

XvyY

Y

No solution for XOR Problem. Individual elements are weak.
Networked elements are required.

The Perceptron (1943-1958)
0000000000000 e00

The Perceptron Model: Forward Propagation

Feed Forward —=————————pp

Inputs
X1 — .
> (X,'W,') + bias Output y
X, —P .
Step
Activation
Input nodes
Here:
@ Inputs x1, x», x3, - -+ X, are real valued.
o Weights wy, ws, ws, --- w, are real valued.

@ The output y can also be real valued.

The Perceptron (1943-1958)
00000000000000e0

The Perceptron Model: Forward Propagation

Step 1: Linear combiner:

z=g(x)= Z w;x; + bias. (4)
i=1

Step 2: Step activation:

y:f<z>={°’ z<0 (5)

1, z>90.

Here, 0 is the threshold parameter.

Composition of steps 1 and 2:

y = f(g(x)) (6)

The Perceptron (1943-1958)
000000000000000e

Perceptron Model as a Linear Classifier

Perceptron operating on real-valued vectors is a linear classifier:

X3

boundary , -

decision /\ ¥

Kediee,

decision
region for C1
WX, + WoX, +b >0

decision @ ®e:
region for C,

WiX; +WoX, +b <=0

. X1

WiX; + WoX +b =0

Addition of bias values expands modeling capability. No bias value
— decision boundary constrained to pass through the origin.

References

@ Lippmann R.P., An Introduction to Computing with Neural
Nets, IEEE ASSP Magazine, April 1987.

@ Bhiksha R., Introduction to Neural Networks, Lisbon Machine
Learning School, June, 2018.

	Quick Review
	Introduction to Neural Networks
	The Perceptron (1943-1958)
	Training a Single Perceptron Model
	Metrics of Evaluation
	Single-Layer Perceptron Examples

