Introduction to Machine Learning

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 688P, Fall Semester 2021

October 16, 2021

Overview

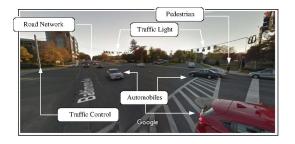
- Quick Review
- 2 Artificial Intelligence and Machine Learning
- Machine Learning Capabilities
- 4 Taxonomy of Machine Learning Problems
- 5 Types of Machine Learning Systems
- O Urban Applications
- Recent Research at PEER and UMD

Part 05

Urban Applications

Opportunities for Machine Learning

Machine Learning Opportunities:

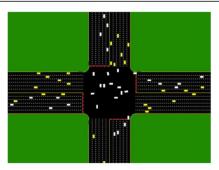

- Predicting system response and performance.
- Interpreting data and formulating models to predict component and subsystem-level properties.
- Information retrieval from images and text.
- Recognizing patterns in streams of sensed data.

Economic Considerations:

- Urban infrastructure is permanent/semi-permanent and very expensive to build and maintain.
- Prioritize improvements to efficiency by identifying and removing bottlenecks in performance.
- Use AI-ML for design of actions that enhance behavior/system performance.

Small Scale: Traffic Intersection at UMD

Goal. How to traverse a traffic intersection safely and without causing an accident?


Required Capability. Observe, evaluate, reason, take actions.

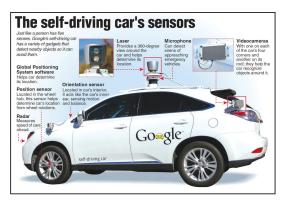
Challenges. Multiple types of data, event-driven behavior, dynamic, time critical. Too much traffic congestion.

Self-Driving Cars

Goal. Improve performance by removing bottlenecks \rightarrow no human driver; no traffic lights.

Remark: 95% of the requirements are for the system software.

Source: ISR visitor from GM Research.


Remark: Tesla will produce self-driving cars by 2016.

Source: Elon Musk.

Stop signs and traffic lights are replaced by mechanisms for vehicle-to-vehicle communication (Adapted from http:citylab.com).

Google Self-Driving Car

Essentially: A network of sensors and computers on wheels.

Today: Modern automobiles \rightarrow 100 million lines of code.

Tomorrow: Self-driving automobiles \rightarrow 300 million lines of code.

Navigating a Busy Traffic Intersection

Step-by-Step Procedure:

- Identify various kinds of objects (e.g., vehicles, crosswalk).
- Predict what objects will do next.
- Conduct safety assessment.
- Take action.

Google DeepMind (2018-2020)

Teach Self-Driving Cars to Navigate a City without a Map

Test Cities: London, Paris, New York.

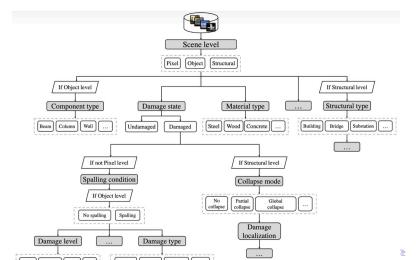
Research at PEER

ML Research at PEER

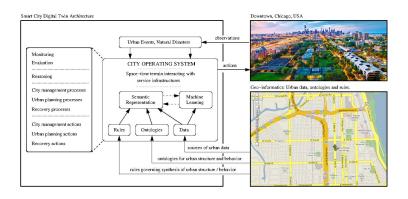
PEER Hub ImageNet (2018): Classification of Structural Engineering images:

Fig 1b Object level Samples

Fig 1c Structure Level Samples


Source:

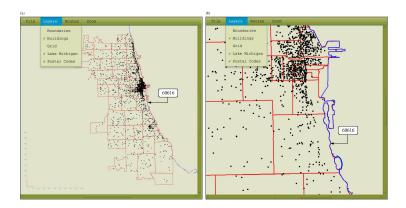
https://apps.peer.berkeley.edu/phichallenge/detection-tasks/


ML Research at PEER

Future Work: Create pathway from image classification to decision making:

Research at UMD

Large Scale: Management of City Operations


Required Capability. Modeling and Control of Urban Processes.

Challenges. Distributed system behavior/control. Decision making covers a wide range of temporal and spatial scales.

Large Scale: Management of City Operations

Case Study A (2019): Mine publically available data to understand Energy Consumption in 2,500 Buildings in Chicago.

Large Scale: Management of City Operations

Case Study B (2020): Can we teach a machine to understand the structure and behavior of water supply networks?

Reference: Coelho M., et al., Teaching Machines to Understand Urban Networks, ICONS 2020.

References

- Austin M.A., Delgoshaei P., Coelho M. and Heidarinejad M., Architecting Smart City Digital Twins: Combined Semantic Model and Machine Learning Approach, Journal of Management in Engineering, ASCE, Volume 36, Issue 4, July, 2020.
- Coelho M., and Austin M.A., Teaching Machines to Understand Urban Networks, The Fifteenth International Conference on Systems (ICONS 2020), Lisbon, Portugal, February 23-27, 2020, pp. 37-42.
- Bhiksha R., Introduction to Neural Networks, Lisbon Machine Learning School, June, 2018.
- Lu T., Fundamental Limitations of Semi-Supervised Learning, MS
 Thesis in Mathematics in Computer Science, University of Waterloo,
 Canada, 2009.
- Van Engelen J.E., and Hoos H.H., A Survey on Semi-Supervised Learning, Machine Learning, Vol. 109, 2020, pp. 373-440.