Introduction to Machine Learning

Mark A. Austin

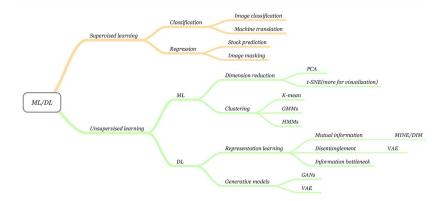
University of Maryland

austin@umd.edu ENCE 688P, Fall Semester 2021

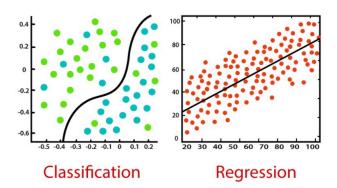
October 16, 2021

Overview

- Quick Review
- 2 Artificial Intelligence and Machine Learning
- Machine Learning Capabilities
- 4 Taxonomy of Machine Learning Problems
- 5 Types of Machine Learning Systems
- **6** Urban Applications
- Recent Research at PEER and UMD

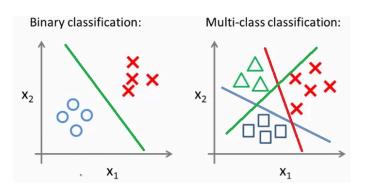

Part 03

Taxonomy of Machine Learning Problems

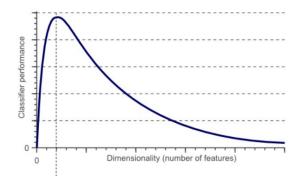

Taxonomy of

Machine Learning Problems

Tree of Machine Learning and Deep Learning Capabilities



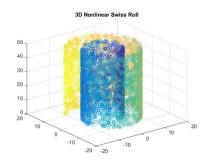
Regression versus Classification

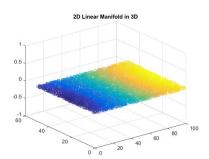

Binary and Multi-Class Classification

Task of separating elements of a set into two (or more) groups on the basis of a classification rule (e.g., shape, color, etc).

Curse of Dimensionality

Machine learning problems are inherently statistical and involve high-dimensional data. Increases in the problem dimensionality, decrease the number of data points available for classification in each dimension.



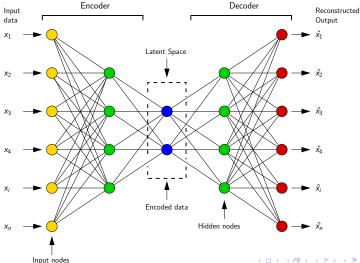


Dimensionality Reduction

Strategies of dimensionality reduction involve transformation of data to new (lower) dimension in such a way that some of the dimensions can be discarded without a loss of information.

Example: Projection of Swiss Roll data in 3D to 2D ...

Autoencoders


Autoencoder neural networks use unsupervised machine learning algorithms to: (1) find compressed representations of the input data (encoder), and (2) reconstruct the original data from the compressed data (decoder).

Applications:

- Dimensionality reduction.
- Image processing (compression and denoising).
- Feature extraction; anomaly detection.
- Image generation.
- Sequence-to-sequence translation.
- Recommendation systems.

AutoEncoder (Encoder-Decoder-Reconstruction)

Encoder

The encoder learns how to reduce the input dimensions and compress the input data into an encoded representation.

Decoder

The decoder learns how to reconstruct the input data from the encoded representation and be as close to the input data as possible.

Latent Space

Latent space is simply a representation of compressed data in which similar points are closer together in space. This formalism is useful for learning data features and finding similar representations of data for analysis.

ImageNet and Deep Learning (2009-present)

Indexed Database of 14.2 million Images

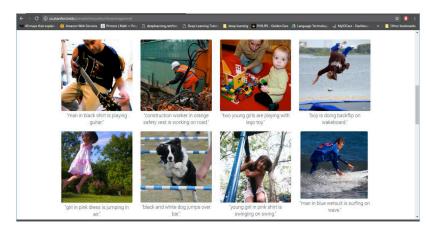
- Project initiated by Fei Fei Li in 2006
- Image annotation process crowd sourced via Amazon's Mechanical Turk. Categories derived from WordNet.
- Well organized → supervised machine learning.

ImageNet and Deep Learning Capabilities:

- Identify objects in an image.
- 27 high-level categories; 21,800 sub-categories.

ImageNet and Deep Learning

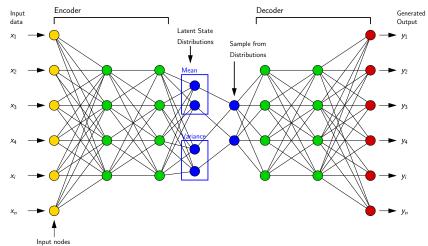
Capabilities (2018):


• Identify relationship among multiple objects in a image.

Example. Dog riding skateboard

ImageNet and Deep Learning

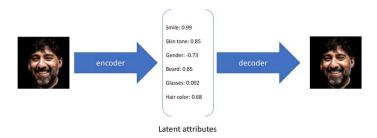
Captions generated by a neural network:


Machine Learning at Scale

Object-recognition module:

- 24 million nodes.
- 140 million parameters.
- 15 billion connections.

Source: Fei Fei Li, TEDTalk, YouTube 2015.


Variational AutoEncoders (Generative Models)

Standard Autoencoders vs. Variational Autoencoders:

- A standard autoencoder outputs a single value for each encoding dimension.
- Variational autoencoders provide a probability distribution for each latent attribute.

Example: Single value representations for latent attributes:

Discrete Value and Probability Distribution: Representations for smile latent attribute:

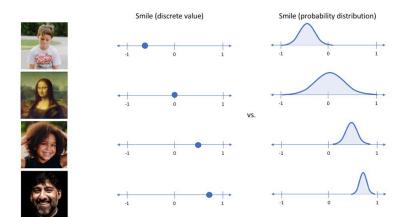
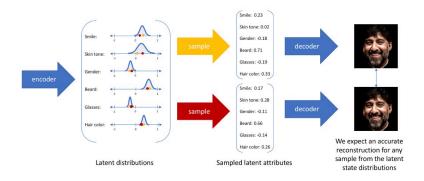



Image Reconstruction: sampled from latent distributions ...

Source: Jordan J., Variational Autoencoders, Data Science, March 2018.

References

- Austin M.A., Delgoshaei P., Coelho M. and Heidarinejad M., Architecting Smart City Digital Twins: Combined Semantic Model and Machine Learning Approach, Journal of Management in Engineering, ASCE, Volume 36, Issue 4, July, 2020.
- Coelho M., and Austin M.A., Teaching Machines to Understand Urban Networks, The Fifteenth International Conference on Systems (ICONS 2020), Lisbon, Portugal, February 23-27, 2020, pp. 37-42.
- Bhiksha R., Introduction to Neural Networks, Lisbon Machine Learning School, June, 2018.
- Lu T., Fundamental Limitations of Semi-Supervised Learning, MS
 Thesis in Mathematics in Computer Science, University of Waterloo,
 Canada, 2009.
- Van Engelen J.E., and Hoos H.H., A Survey on Semi-Supervised Learning, Machine Learning, Vol. 109, 2020, pp. 373-440.