
Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Java Tutorial: Working with Objects and Classes

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688P, Fall Semester 2020

October 10, 2020

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Overview

1 Working with Objects

2 Encapsulation and Data Hiding

3 Relationships Among Classes

4 Association Relationships

5 Inheritance Mechanisms

6 Composition of Object Models

7 Applications

Part 2

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Working with Objects and Classes

From Collections of Objects to Classes:

Generation of Objects from Class Specifications:

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

1. Use: Class A uses Class B (method call).

Call Method

CLASS A CLASS B

Class A uses Class B if a method in A calls a method in an object of
type B.

Example

double dAngle = Math.sin (Math.PI / 3.0);

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

2. Containment (Has a): Class A contains a reference to Class
B.

CLASS BCLASS A

Clearly, containment is a special case of use (i.e., see Item 1.).

Example

public class LineSegment {

private Point start, end;

.......

}

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Relationships Among Classes

3. Inheritance (Is a): In everyday life, we think of inheritance as
something that is received from a predecessor or past generation.
Here, Class B inherits the data and methods (extends) from Class
A.

CLASS A CLASS B

Extends

Examples of Java Code

public class ColoredCircle extends Circle { }

public class GraphicalView extends JFrame { }

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Association Relationships

Definition

As association is a discrete and/or logical relationship between
classes. Associations are the glue that tie the elements of a system
together.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Binary Association Relationships

Binary associations express static bidirectional relationships
between two classes.

B

A

Class A Class B
association name

multiplicity indicators

role of class A role of class B

B
inside

contained
within

surrounds

Example
A

Meta-Model Engineering Viewpoint

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Binary Association Relationships

Meta-Model for Links and Association Relationships. Links
and associations establish relationships among entities within the
problem world or the solution world.

1..*
Link

Association Class

Object

Instance−of Instance−of

Relationship

Relationship

*

1 1..*

1..*

*

*

*

Points to note:

Associations are descriptions of links with a common
implementation.

Links are instances of an association relationship.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Association Relationships

Multiplicity Constraints. Indicate the number of objects
participating in an instance of an association.

B

Numerically specified

Many (one or more)

Many (zero or more)

Optional (zero or one)

Exactly one to one

MultiplicityRelationship

1

0..1

m..n

1..*

*

A

A

A

A

A B

B

B

B

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Association Relationships

Example 1. Object A links to Object B

Object B

Internal data reference
or pointer

link

Object A

Example 2. A bank and a suite of ATMs

1...*
Bank ATM

Has 1

A bank has one or more ATMs.

Each ATM is associated with one (and only one) bank.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Association Class Relationships

From Binary Relations to Association Classes

Relationship is

A B A

C

B

Binary Association Association Class

relation

upgraded to a class

Association classes are used when:

The association itself has attributes or operations that need to
be represented in the class model.

It makes sense for the “one association occurrence, one
association class instance” constraint to exist.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Association Class Relationships

Two examples:

has

Window 2Window 1

Relative Position

Horizontal spacing;
Vertical spacing;
Distance apart;

Window Wall

Containment

Boolean isInside
Boolean isOutside
Boolean isTouching
Boolean isInplane;

nearby

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Inheritance Structures

Inheritance structures allow you to capture common characteristics
in one model artifact and permit other artifacts to inherit and
possibly specialize them. Class hierarchies are explicitly designed
for customization through extension.

In this approach to development:

Forces us to identify and separate the common elements of a
system from those aspects that are di↵erent/distinct.

Commonalities are captured in a super-class and inherited and
specialized by the sub-classes.

Inherited features may be overridden with extra features
designed to deal with exceptions.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Base and Derived Classes

Goal: Avoid duplication and redundancy of data in a problem
specification.

In
cr
ea
si
ng

sp
ec
ia
liz
at
io
n

Derived Class

Base Class

public constants ...
public methods ...

public constants ...
public methods ...

Interface to the base class

Interface to the derived class

extends

In
cr
ea
si
ng

ab
st
ra
ct
io
n

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Base and Derived Classes

Points to note:

A class in the upper hierarchy is called a superclass (or base,
parent class).

A class in the lower hierarchy is called a subclass (or derived,
child, extended class).

The classes in the lower hierarchy inherit all the variables
(static attributes) and methods (dynamic behaviors) from the
higher-level classes.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Example 2. Hierarchy of Temperature Sensors

Temperature Thermometer

Consider a class hierarchy for attributes and functions in a
family of temperature sensors.

The super-class represents a generic temperature sensor.

Super-class attributes: measured temperature, sensor weight,
mean-time-to-failure (MTTF).

Methods are provided to test the sensor.

Water Temperature Thermometer

A water temperature thermomenter is a generic temperature
sensor + a field to store the depth at which the temperature
was recorded.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Test Sensor ()

Temp Sensor

Temperature
Status :

 −− property : MTBF
−− weight

Air Temp Sensor

Depth

Water Temp Sensor

Read Temperature
Read Sensor : Status()
Reset Sensor ()

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Multiple Inheritance Structures

In a multiple inheritance structure, a class can inherit
properties from multiple parents.

The downside is that properties and/or operations may be
partially or fully contradictory.

Example

People is a generalization of Children and Customers.

Young customers inherits properties from Customers and
Children.

Note. Unlike C++ and Python, Java explicitly prevents multiple
inheritance. Java classes can, however, have multiple interfaces.

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Inheritance Mechanisms

Children

People

Young Customers

Customers

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 3. Extending Circle to Colored Circle

1 /*

2 * ===

3 * ColoredCircle (): Implementation of the ColoredCircle class where

4 * data and circle properties can only be accessed

5 * through an interface.

6 *

7 * Written By: Mark Austin April 2019

8 * ===

9 */

10
11 package objects;

12
13 import java.awt.Color;

14
15 public class ColoredCircle extends Circle {

16 private Color color;

17
18 // Constructor methods

19
20 public ColoredCircle () {

21 super ();

22 this.color = Color.blue;

23 }

24
25 public ColoredCircle(double dX , double dY , double dRadius , Color color) {

26 super ();

27
28 this.dX = dX;

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 3. Extending Circle to Colored Circle

28 this.dX = dX;

29 this.dY = dY;

30 this.dRadius = dRadius;

31 this.color = color;

32 }

33
34 // Set and retrieve colors

35
36 public void setColor(Color color) {

37 this.color = color;

38 }

39
40 public String getColors () {

41 return "Color (r,g,b) = (" + color.getRed () + "," + color.getGreen () + "," + color.getBlue () + ")";

42 }

43
44 // ===

45 // Exercise methods in class ColoredCircle ()......

46 // ===

47
48 public static void main(String [] args) {

49
50 System.out.println("Exercise methods in class ColoredCircle");

51 System.out.println("=======================================");

52
53 // Create , initialize , and print circle "cA" ...

54
55 ColoredCircle cA = new ColoredCircle(1.0, 2.0, 3.0, Color.blue);

Working with Objects Encapsulation and Data Hiding Relationships Among Classes Association Relationships Inheritance Mechanisms Composition of Object Models Applications

Example 3. Extending Circle to Colored Circle

Example 3. Extending Circle to create Colored Circle

Two public methods are defined for this class:

setColor. This method takes a color as its argument and
assigns this value to the color of the circle.

ColoredCircle. This method has the same name as the
class itself; it is a constructor method.

The method call super() invokes the constructor method of the
superclass [i.e., the method Circle()].

	Working with Objects
	Encapsulation and Data Hiding
	Relationships Among Classes
	Association Relationships
	Inheritance Mechanisms
	Composition of Object Models
	Applications

