
Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

The Java Language

Mark A. Austin

University of Maryland

austin@umd.edu
ENCE 688P, Fall Semester 2020

September 28, 2020

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Overview

1 Quick Review

2 Basic Stu↵
Primitive Data Types, IEEE 754 Floating Point Standard
Three types of Java Variable
Arithmetic Operations
Control Statements

3 Packages and Import Statements

4 Methods
Polymorphism and Class Methods

5 Working with Arrays
One- and Multi-dimensional Arrays; Ragged Arrays

Part 1

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Quick Review

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Popular Computer Languages

Tend to be designed for a specific set of purposes:

FORTRAN (1950s – today). Stands for formula translation.

C (early 1970s – today). New operating systems.

C++ (early 1970s – today). Object-oriented version of C.

MATLAB (mid 1980s – today). Stands for matrix laboratory.

Python (early 1990s – today). A great scripting language.

HTML (1990s – today). Layout of web-page content.

Java (1994 – today). Object-Oriented language for
network-based computing.

XML (late 1990s – today). Description of data on the Web.

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Basic Stu↵

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Primitive Data Types (Boolean, char, Integers)

Type Contains Default Size Range and Precision
==
boolean True or false false 1 bit

char Unicode \u0000 16 bits \u0000 / \uFFFF

byte Signed integer 0 8 bits -128/127

short Signed integer 0 16 bits -32768/32767

int Signed integer 0 32 bits -2147483648/2147483647

long Signed integer 0 64 bits -9223372036854775808 /
9223372036854775807

==

Note. A 32 bit integer has 232 ⇡ 4.3 billion permutatons ! a
working range [�2.147, 2.147] billion.

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Primitive Data Types (Floating-Point)

Definition. Floating point variables and constants represent values
outside of the integer range (e.g., 3.4, -45.33 and 2.714) and
can be very large or small in magnitude, (e.g., 3.0e-25, 4.5e+05,
and 2.34567890098e+19).

IEEE 754 Floating-Point Standard. Specifies that a floating
point number take the form:

X = � ·m · 2E . (1)

Here:

� represents the sign of the number.

m is the mantissa (interpreted as a fraction 0 < m < 1).

E is the exponent.

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

IEEE 754 Floating-Point Standard

Ensures floating point implementions and arithmetic are consistent
across various types of computers (e.g., PC and Mac).

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Largest and Smallest Floating-Point Numbers

==
Default

Type Contains Value Size Range and Precision
==

float IEEE 754 0.0 32 bits +- 13.40282347E+38 /
floating point +- 11.40239846E-45

Floating point numbers are represented to approximately
6 to 7 decimal places of accuracy.

double IEEE 754 0.0 64 bits +- 11.79769313486231570E+308 /
floating point +- 14.94065645841246544E-324

Double precision numbers are represented to approximately
15 to 16 decimal places of accuracy.

==

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Working with Double Precision Numbers

Simple Example. Here is the floating point representation for
0.15625

Note. Keep in mind that floating-point numbers are stored in a
binary format – this can lead to surprises.

For example, when the decimal fraction 1/10 (0.10 in base 10) is
converted to binary, the result is an expansion of infinte length.

Bottom line: You cannot store 0.10 precisely in a computer.

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

IEEE 754 Floating Point Standard

Support for Run-Time Errors

This standard includes:

Positive and negative sign-magnitude numbers,

Positive and negative zeros,

Positive and negative infinites, and

Special Not-a-Number (usually abbreviated NaN).

NaN value is used to represent the result of certain operations such
as dividing zero by zero.

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Java Variables

Definition

A variable is simply a block of memory whose value can be
accessed with a name or identifier. It contains either the contents
of a primitive data type or a reference to an object. The object
may be an instance of a class, an interface, or an array.

Four Attributes of a Variable:

A type (e.g., int, double, float),

A storage address (or location) in computer memory,

A name, and

A value.

All four parts must be known before a variable may be used in a
program.

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Java Variables

Variable Declarations

Variables must be declared before they can be used, e.g.,

int iA = 10;
float fA = 0.0;
double 8dA = 0.0; <--- illegal! Cannot begin a

variable name with a digit.

What happens at compile and run time?

When a compiler encounters a variable declaration, ..

It will enter the variable name and type into a symbol table
(so it knows how to use the variable throughout the program).

It generate the necessary code for the storage of the variable
at run-time.

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Three Types of Java Variable

Local Variables

These are variables whose scope is limited to a block of code.

Local variables are defined within the current block of code
and have meaning for the time that the code block is active.

An Example

Source code Output
== ================
for (int i = 0; i <= 2; i = i + 1) Loop 1: i = 0

System.out.println("Loop 1: i = " + i); Loop 1: i = 1
Loop 1: i = 2

for (int i = 0; i <= 2; i = i + 1) Loop 2: i = 0
System.out.println("Loop 2: i = " + i); Loop 2: i = 1

Loop 2: i = 2

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Three Types of Java Variable

Instance Variables

These variables hold data for an instance of a class.

Instance variables have meaning from the time they are
created until there are no more references to that instance.

An Example

Definition of a class Using the class
================================ ===========================
public class Complex { Complex cA = new Complex();

double dReal, dImaginary; cA.dReal = 1.0;
....

} Complex cB = new Complex();
cB.dReal = 1.0;

================================ ===========================

cA.dReal and cB.dReal occupy di↵erent blocks of memory.

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Three Types of Java Variable

Class Variables

These variables hold data that can be shared among all
instances of a class.

Class variables have meaning from the time that the class is
loaded until there are no more references to the class.

An Example

Definition of a class Accessing the variable
=================================== ==========================
public class Matrix { int i = Matrix.iNoColumns;

public static int iNoColumns = 6.
}
=================================== ==========================

The variable is static – no need to create an object first.

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Java Variable Modifiers

Variable Modifiers

==
Modifier Interpretation in Java
==

public The variable can be accessed by any class.

private The variable can be accessed only by methods
within the same class.

protected The variable can also be accessed by subclasses
of the class.

static The variable is a class variable.
==

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Constants

Setting up Constants
In Java constants are defined with variable modifier final indicating
the value of the variable will not change.

An Example

Definition of a class Access
====================================== =====================
public class Math { double dPi = Math.PI;

public static final double PI = 3.14..;
.....

}
====================================== =====================

The variable PI is both static and final. This makes PI a class
variable whose assigned value cannot be changed.

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Arithmetic Operations

Standard Arithmetic Operations on Integers and Floats

+ - * /

Modulo Operator
The modulo operator % applies only to integers, and returns the
remainder after integer division. More precisely, if a and b are
integers then a % b = k*b + r.

Integer Division
Truncates what we think of as the fractional components of all
intermediate and final arithmetic expressions, e.g.,

iValue = 5 + 18/4; ===> 5 + 4 <=== Step 1 of evaluation
===> 9 <=== Step 2 of evaluation

Probably not what we want!

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Evaluation of Arithmetic Expressions

Hierarchy of Operators

Operator Precedence Order of Evaluation
() [] -> . 1 left to right
! ++ -- + - 2 right to left
* / % 3 left to right
+ - 4 left to right
<< >> 5 left to right
< > � 6 left to right
== != 7 left to right
& 8 left to right
^ 9 left to right
| 10 left to right

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Evaluation of Arithmetic Expressions

Hierarchy of Operators

Operator Precedence Order of Evaluation
&& 11 left to right
k 12 left to right
? : 13 right to left
= += *= /= &= 14 right to left
^ = | = <<= >>=
, 15 left to right

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Dealing with Run-Time Errors

Dealing with Run-Time Errors

Source code
===
double dA = 0.0;
System.out.printf("Divide by zero: (1/0.0) = %8.3f\n", 1.0/dA);
System.out.printf("Divide by zero: (-1/0.0) = %8.3f\n", -1.0/dA);
System.out.printf(" Not a number: (0.0/0.0) = %8.3f\n", dA/dA);

Output
===
Divide by zero: (1/0.0) = Infinity
Divide by zero: (-1/0.0) = -Infinity

Not a number: (0.0/0.0) = NaN
===

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Dealing with Run-Time Errors

Print Variables containing Error Conditions
1 double dB = 1.0/dA;

2 System.out.printf("dB = 1.0/dA = %8.3f\n", dB);

3 double dC = dA/dA;

4 System.out.printf("dC = dA/dA = %8.3f\n", dC);

Output

===
dB = 1.0/dA = Infinity
dC = dA/dA = NaN
===

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Dealing with Run-Time Errors

Evaluate a Function over a Range of Values
1 System.out.println("Evaluate y(x) for range of x values");

2 System.out.println("===================================");

3

4 for (double dX = 1.0; dX <= 5.0; dX = dX + 0.5) {

5 double dY = 1.0 + 1.0/(dX - 2.0) - 1.0/(dX - 3.0) + (dX -4.0)/(dX -4.0);

6 System.out.printf(" dX = %4.1f y(dX) = %8.3f\n", dX , dY);

7 }

Output

Evaluate y(x) for range of x values
===================================
dX = 1.0 y(dX) = 1.500
dX = 1.5 y(dX) = 0.667
dX = 2.0 y(dX) = Infinity
dX = 2.5 y(dX) = 6.000
dX = 3.0 y(dX) = -Infinity
dX = 3.5 y(dX) = 0.667
dX = 4.0 y(dX) = NaN
dX = 4.5 y(dX) = 1.733
dX = 5.0 y(dX) = 1.833

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Dealing with Run-Time Errors

Test for Error Conditions

Source code
==
if(dB == Double.POSITIVE_INFINITY)

System.out.println("*** dB is equal to +Infinity");

if(dB == Double.NEGATIVE_INFINITY)
System.out.println("*** dB is equal to -Infinity");

if(dB == Double.NaN)
System.out.println("*** dB is Not a Number");

Output
==
*** dB is equal to +Infinity
*** dB is equal to -Infinity
*** dB is Not a Number
==

Quick Review Basic Stu↵ Packages and Import Statements Methods Working with Arrays

Control Statements

Control Structures

Allow a computer program to take a course of action that depends
on the data, logic and calculations currently being considered.

Machinery:

Relational and logical operands;

Selection constructs (e.g., if statements, switch statements).

Looping contructs (e.g., for loops, while loops).

Common Error. Writing ...

if (fA = 0.0)

instead of

if (fA == 0.0)

	Quick Review
	Basic Stuff
	Primitive Data Types, IEEE 754 Floating Point Standard
	Three types of Java Variable
	Arithmetic Operations
	Control Statements

	Packages and Import Statements
	Methods
	Polymorphism and Class Methods

	Working with Arrays
	One- and Multi-dimensional Arrays; Ragged Arrays

