‘An Introduction
‘with Neural Nets

Abstract

Artificial neural net models have been studied for many
years in the hope of achieVing human:-like performance in the
fields of speech and image recognition. These models are
composed of many nonlinear computational elements oper-
ating in parallel and arranged in patterns reminiscent of bio-
logical neural nets. Computational elements: or nodes are
connected via weights that are typically adapted durmg use to
improve performance. There has been a recent resurgence.in
the field of artificial neural nets caused by new net topologies
and algorithms, analog VLSI implementation techniques, and

the belief that massive parallelism is essential for'high per-

formance speech and image recognition. This paper provides
an introduction- to the field of artificial neural nets by re-
viewing six important neural net models that can be used for
pattern classification. These nets are-highly parallel building
blocks that illustrate neural- net components and design prin-

ciples.and can be used to construct more complex systems. In-

addition to describing these nets, a major emphasis is placed
on exploring how some existing classification and clustering
algorithms can be performed using simple neuron-like com-
‘ponents. Single-layer nets can implement algorithms required
by -Gaussian .maximum-likelihood classifiers and optimum
minimum-error classifiers for binary patterns corrupted by
noise. More. generally, the decision regions required by any

classification algorithm can be generated in a straught- ,

forward manner by-three-layer feed-forward néts.

INTRODUCTION

Artificial neural net models or simply “neural nets” go
by many names such as connectionist models, parallel
distributed processing models, and. neuromorphic sys-
tems. Whatever the name, all these .models attempt to
achieve ‘good performance via dense interconnection of

simple computational elements. In this respect, artificial
neural net structure’ is based on our present under-‘

standing of biological nervous systems. Neural net models
have greatest potential in areas such as speech and'image
recognition where many hypotheses are pursued in paral-
lel, high computation rates are required, and the current
best systems are far from equaling-human performance
Instead of performing a program of instructions sequen-
tially-as in a von Neumann computer, neural net models
explore many competing hypotheses simultaneously
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using massively parallel nets composed of many computa-
tional elements connected by links with variable weights.

Computatlonal elements or nodes used in neural net
models are nonlinear, -are: typically analog, and- may be
slow compared to modern digital circuitry: The simplest

‘node sums. N welghted inputs ‘and passes the result
‘through a nonlinearity as shown in Fig. 1. The node is

characterized by an internal threshold or offset 8 and by
the type of nonlinearity. Figure 1 illustrates three common
types of nonlinearities; hard limiters, threshold logic ele-
ments, and sigmoidal nonlinearities. More complex nodes
may 'include temporal integration or other types of time
dependencies and more complex mathematlcal opera-
tions than summation.

Neural net models are specified by the net: topology,
node characteristics, and training or learning rules. These
rules specify an initial set of weights and indicate how
weights should'be adapted‘durlng use to improve perfor-
mance. Both design procedures and training rules are the
topic of much current research, .

The potential benefits of neural nets extend beyond the
high computation rates provided by massive paralielism.
Neural nets typically provide a greater degree of robust-
ness or fault tolerance than von Neumann sequential com-
puters because there are many more processing nodes,
each with primarily local connectlons Damage to a few
nodes or links thus need not impair overall performance
significantly. Most neural net algorithms also adapt con-
nection weights in time to improve performance based on
current results. Adaptation or learning is a:major focus of
neural net research. The ability to adapt-and continue
learning is essential in areas such as speech recognition
where training data is limited and new talkers;, new words,

“new dialects, new phrases, and new environmerits are

continuously encountered. Adaptation also provides a de-

_gree of robustness by compensating for minor variabilities
in characteristics of processing elements. Traditional sta-

tistical techniques are not adaptive but typically process all

~training data simultaneously before being used with new

data. Neural net classifiers are also non-'pa‘ramet,ric and
make weaker assumptions concerning the shapes of under-
lying distributions than traditional statistical classifiers.

They may thus prove to be more robust when distributions

are generated by nonlinear processes and are strongly
non-Gaussian. Designing artificial neural nets to solve
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problems-and studying real blologlcal nets may also
change the way we think about problems and lead to new
‘insights and algorithmic improvements.

‘Work on artificial neural net models has a long history.
Development of detailed mathematical models began
more than 40 years ago with the work of McCulloch and
Pitts [30], Hebb [17], Rosenblatt [39], Widrow [47] and
others [38]. More recent work by Hopfield [18,19,20],
Rumelhart and McClelland [40], Sejnowski [43], Feldman

[9], Grossberg [15], and others has led to anew resurgence

- of the field. This new interest is due to the development
of new net topologies and algorithms [18,19,20,41,9],
new analog VLS| implementation techniques. [31], and
some intriguing demonstrations [43, 20] as'well as by a
growing fascination with the functioning of the human
brain. Recent interest is also driven by the realization that
human-like performance in the areas of speech and image
recognition will require enormous amounts of processing.
Neural nets provide one technique for obtaining the re-
quired processing capacity using large numbers.of simple
processing elements operating in parallel.

This paper provides an introduction to the field of
neural nets by reviewing six important neural net models
that can be used for pattern classification. These massively
parallel nets are important building blocks which can be

. used to construct more complex systems. The main pur-
pose of this review is to describe the purpose and design
of each net in detail, to relate each net to existing pattern
classification and clustering algorithms that are normally
implemented on sequential von Neumann computers,
and to illustrate design principles used to obtain parallel-
ism using neural-like processing elements.

Neural net and traditional classifiers

Block diagrams of traditional and neural net classifiers
are presented in Fig. 2. Both types of classifiers.determine
which of M classes is most representative of an unknown
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igure 1. Computatlonal element or node WhICh forms a
eughted sum of N inputs and pssses the result through a
nlinearity. Three repr‘esentatnve nonhnear‘ltles are shown

’

static input’ pattern containing ‘N input elements. In a
speech-recognizer. the inputs might be the output en-
velope values from a filter bank spectral analyzer sampled
at one time instant and the classes might represent differ-
ent vowels. In an image classifier the inputs might be the
gray scale level of each pixel for a picture and the classes
might represent different objects:

The traditional classifier in the top of Fig. 2 contains two
stages. The first computes matching scores for each class
and the second selects the class with the maximum score.
Inputs to the first stage are symbols representing values of
the N input elements. These symbols dre entered sequen-
tially and decoded from the external symbolic form into -
an internal representation useful for performing arith-
metic and symbolic operations. An algorithm computes a
matching score for each of the M classes which indicates
how closely the input matches the exemplar pattern for
each class. This exemplar pattern is that pattern which is
most representative of each class. In many situations a "
probabilistic model is used to model the generation of
input patterns from exemplars and the matching score
represents. the likelihood or probability that the input
pattern was generated from each of the M possible exem-
plars. In those cases, strong assumptions are typically
made concerning underlying distributions of the input
elements. Parameters of distributions can then be esti-
mated using a training data as shown in Fig. 2. Multi-
variate Gaussian dlstrlbutlons are often used leading to
relatively simple algorithms for computing matching
scores [7]. Matching scores are coded into symbolic repre-
sentations and passed sequentially to the second stage of

. PARAMETERS ESTIMATED
FROM TRAINING DATA

C OUTPUT
INPUT svg%ol.
SYMBOLS ° MOST LIKELY
CLASS

A) TRADITIONAL CLASSIFIER

OUTPUT FOR
ONLY ONE
CLASS IS HIGH

- INTERMEDIATE
SCORES

ADAPT WEIGHTS
R GIVEN BOTH OUTPUTS
’ . AND CORREC'Y FI.ASS \\-1— /
B) NEURAL NET CMSSIFIER i
¢ F|gure 2. 'Block dtagrams of tradltlonal (A] and neural
" net (B) classifiers. Inputs and outputs of the traditional
‘classifier are passed serially and internal computations :
-are performed sequentially. In addition, parameters are.
typically estimated from training data and then held con-
- stant. Inputs and outputs to the neural net classifier are.
in parallel ‘and internal computations are performed in:
parallel. Internal parameters or weights are typically:
‘adapted or trained during use using the output values and" |

"_{—_ilabels specufymg the correct class
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the classifier. Here they are decoded and the class with the
maximum score is selected. A symbol representing that
class is then sent out to complete the classification task.

An adaptive neural net classifier is. shown at the bottom
of Fig. 2. Here input-values are fed.in parallel to the first
stage via N input connections. Each connection carries an

analog value which may take on two levels for binary in-

puts or may vary.over a large range for continuous valued
inputs. The first stage computes matching scores and out-

puts these scores-in parallel to the next stage over M
analog output lines. Here the maximum of these values is
selected and enhanced. The second stage has one output -
“the classifiers can be used as a content-addressable or
“associative memory, where the class- exemplar is desired

for each of the M classes. After classification is.complete,
only that output corresponding to the most likely class will
be-on strongly or “high”; other outputs will be “low”.
Note that in this design, outputs exist for every class and
that this. multiplicity. of outputs must be preserved .in
further processing stages as long as the classes are con-
sidered distinct. In the simplest classification system these
output:lines might go directly to lights with labels that
specify class identities. In. more complicated cases they
‘may go to further stages of processing where inputs from
other modalities or temporal dependencies are taken into
consideration. If the correct class-is ‘p_r'o'vided, then this
information and the classifier outputs can be fed back to
the first stage of the classifier to.adapt weights using a
learning: algorithm as shown in Fig. 2. Adaptation will
‘make a correct response more likely for succeeding input
patterns. that are similar to the current pattern.
Theparallel inputs reqwred by neural net classifiers sug-
gest.that real-time hardware |mplementat|ons should in-
clude specnal purpose pre- processors. One strategy for
designirig such processors..is to build. physiologically-
based pre-processors modeled after human sensory sys-
tems. A, pre-processor for image classification modeled
after thé'retina and designed using analog VLS| circuitry is
described in: [31]. Pre-processor filter banks for speech
recognition that are crude analogs of the cochlea have also
been ‘constructed [34 '29].  More -recent physiologically-

S CONTINUOUS-VALUED INPUT
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based pre-processor algorithms for speech .recognition
attempt to* provide information similar to that available
on the auditory nerve [11, 44, 27, 5]. Many of these algo-
rithms include filter bank spectral analysis, automatic gain

~control, and:processing which uses timing or synchrony

information in addition to information from smoothed fil-
ter output envelopes.

Classifiers in Fig. 2 can perform three different tasks.
First, as described above, they can identify which class
best represents an input pattern, where it is assumed that

-inputs have been corrupted by noise or some other pro-

cess. This is a classical decision theory problem. Second,

and the input pattern is used to determine which exemplar
to produce. A content-addressable memory is useful
when only part of an input pattern is available and the
complete pattern is required, as in bibliographic retrieval

'of journal references from partial information. This: nor-

mally requires: the addition- of a third stage in Fig. 2:to
regenerate the exemplar for the most likely class. An addi-

tional stage is' unnecessary for some neural nets such as

the Hopfield net which are: designed specifically as

content-addressable memories. A third task these classi-
* fiers can perform is to vector quantize [28] or cluster

[16, 7] the N inputs into M clusters. Vector quantizers are
used in image and speech transmission systems to reduce
the number of bits. necessary to transmit analog data. In
speech and image recognition applications they are used
to.compress the amount of data that must be processed
without losing important information. In either applica-

_tion the number of clusters can be pre-specified or may be

allowed to grow up to a limit determined by the number
ber of nodes available in the first stage.




A TAXONOMY OF NEURAL NETS

A taxonomy of six important neural nets that can be
used for classification of static patterns is presented in
Fig. 3. This taxonomy is first divided between nets with

binary'and continuous valued inputs. Below this, nets are

divided between those trained with and without super-
vision. Nets trained with supervision such as the Hopfield
net [18] and perceptrons. [39] are used as associative
memories or as classifiers. These nets are provided with
side information or'labels that specify the correct class for
new input patterns during training. Most traditional statis-
tical classifiers, such as Gaussian. classifiers [7], are trained
with' supervision using labeled training data. Nets trained
without supervision, such as the Kohonen'’s feature-map
forming nets [22], are used as vector quantizers or to form
clusters. No information concerning the correct class is
provided to these nets during training. The classical K-
means [7] and leader [16] clustering algorithms are trained

without supervision. A further difference between nets,

not indicated in Fig. 3, is whether adaptive training is sup-
ported. Although all the nets shown can be trained adap-

tively, the Hopfield net and the Hamming net are generally.

used with fixed weights.

'The algorithms listed at the bottom of Fig. 3 are those
classical algorithms which are most similar to-or perform
the same function as the corresponding neural net. In
some cases a net implemenits a classical algorithm exactly.

For example, the Hamming net {25] is a neural net |mple- s

mentation of the optimum classifier for binary patterns
corrupted by random noise [10]. It can also be shown that
the. perceptron structure performs those calculations

required by a Gaussian classifier [7]"when weights and .
thresholds are selected appropriately. In other cases the

neural net algorithms are different from the classical algo-
rithms. For example,.perceptrons trained with the percep-
tron convergence procedure [39] behave differently than
Gaussian- classifiers. Also, Kohonen's net [22] does not
perform the iterative K-means training algorithm. Instead,
each new pattern is presented only once and weights are
modified after each presentation. The Kohonen net does,

however, form a pre-specified number of clusters as in the ..
K-means algorithm;, where the K refers to. the number of .

clusters formed,

THE HOPFIELD NET

" The Hopfield net and two other néts in Fig. 3 are nor-
mally used with binary inputs. These nets-are most appro-
priate when exact binary representations are possible as
with black and white images where input elements ‘are
pixel values, or with ASCII text where input valués couid

“represent bits in the 8-bit ASCII representation of each -

character. These nets are less appropriate when input
values -are actually continuous, because a fundamental

representation problem must be addressed to convert the

analog quantities to binary values.
Hopfield- rekindled interest in neural nets by his exten-
sive work on different versions -of the Hopfield net

[18,19,20]. This net can be used as an associative
memoty or to solve optimization problems. One version .
of the original .net [18] which can be used as a content
addressable memory is described in this paper. This net,
shown in Fig. 4, has N nodes containing hard limiting
nonlinearities and binary inputs and outputs taking.on the
values +1 and =1. The output of each node is fed back to -
all other nodes via weights denoted ‘t;. The operation of:
this net is described in Box 1, First, weights are set using
the given recipe from exemplar patterns for all ‘classes.
Then an unknown ‘pattern is imposed on the net at
time zero by forcing the output of the net to match the
unknown pattern. Following this initialization, the net
iterates in discrete time steps using the given formula. The

‘net is considered to have converged when outputs -

no longer change on successive iterations. The pattern
specified by the node outputs after convergence is ‘the

" net output.

Hopfield [18] and others [4] have proven that this. net
converges when the weights are symmetric (t; = t;) and

gure B, " An example of the behavior of a Hopfield net
en used asa content—addressable memory. A 120 node
et was ‘tra ed using the elght exemplars shown in (Al,

“The patt or the digit “3" was corrupted by randomly
versing each bit with a probability of .25, and then ap-
ed to the net at time zero. Outputs at time zero and-

i .
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node outputs are updated asynchronously using the equa-
tionsin-Box:1. Hopfleld [19] also.demonstrated that the net
converges when graded nonlinearities similar to the sig-
moid nonlinearity in Fig. 1 are used. When the Hopfield
- netis used as an associative memory, the net output. after
convergence is ‘used- directly-as the complete restored

memory. When the Hopfield net is used as a classifier,

the output after convergence must be compared to the
M exemplars to determine if.it matches an exemplar ex-
actly. If it does, the output is that class whose exemplar
matched: the output pattern. If it does not then a “no
~match” result occurs.

The behavior of the Hopfield net is illustrated‘in Fig. 5..

A Hopfield net with 120 nodes and thus 14,400 weights was
trained to recall the eight exemplar patterns shown at the
top of Fig. 5. These digit-like black and white: patterns
contain 120 pixels each and were hand crafted to. provide
good performance..- Input elements to the net take on the
value +1 for black pixels and —1 for white plxels In the
example presented, the pattern for the digit “3” was cor-
rupted by’ randomly reversing each bit mdependently
from +1 to =1 and vice versa with a probability of 0.25.
This pattern was: then applied to the net. at time zero.

8 IEEE: ASSP. MAGAZINE - APRIL 1987

Patterns produced at the output of the net on iterations:
zero to seven are presented at the bottom of Fig. 5. The
corrupted input pattern'is present unaltered at iteration
zero. 'As the net iterates the output becomes more and

‘more like the correct exemplar pattern until at iteration six

the net has converged to the pattern for the digit three.
The Hopfield net has two major limitations when used
as a content addressable memory. First, the:numbeér-of
patterns that can be stored and accurately recalled: is
severely limited. If too many patterns are stored, the net
may converge to a novel spurious pattern different from
all exemplar patterns. Such a spurious pattern ‘will -pro-
duce a “no match” output when the net is used as a clas-
sifier..Hopfield [18] showed that this occurs infrequently
when exemplar patterns are generated randomly and the
number of classes (M) is less than .15 times the number of

‘input elements or nodes in the net (N). The number of

classes is thus typically kept well below .15N. For example,
a Hopfield net for only 10 classes might require more than
70 nodes and more than roughly 5,000 connection

weights. A second limitation of the Hopfield net is that an

exemplar pattern will be unstable if it shares many bits in
common with another exemplar pattern. Here an exem-
plar is considered unstable if it is applied at time zero.and
the net converges to some other exemplar. This problem
can be eliminated and performance can be improved by a
number of orthogonalization procedures [14,46].

THE HAMMING NET
The Hopfield net is: often tested on-problems where

inputs are generated by selecting an-exemplar and revers-
ing bit values.randomly-and independently with a given

probability [18, 12, 46]. This is a classic problem in commu-
nications theory that occurs when binary fixed-length sig-
nals-are sent through a memoryless binary symmetrlc
channel. The optimum minimum ertor classifier in this
case calculates the Hamming distance to the exemplar
for each class and selects that class with the minimum
Hamming distance [10]. The'Hamming distance is the

number of bits in the input which do not match the cor-

responding exemplar bits. A net which will be called a
Hamming net implements this: algonthm using‘neural net
components and is shown in Fig. 6.

The operation of the Hamming net is desctibed in Box 2.
Weights and thresholds are first set in the lower subnet;
such that the matching scores generated by the outputs of
the middle nodes of Fig. 6 are equal to N minus the Ham-
ming distances to the exemplar patterns. These matching
scores will range from 0 to the number of elementsin the
input (N) and are highest for those nodes correspondmg

to classes with. exemplars that best match the input.
Thresholds and weights in the MAXNET subnet are fixed.

All thresholds are set to zero and weights from each node
to itself are 1. Weights between nodes are inhibitory with
a value of —e where e < 1/M.

After weights and thresholds have been set, a binary"
pattern with N elements is presented at the bottom of the
Hamming net. It must be presented long -enough to allow



the matching score outputs of ‘the lower subnet to settle
and initialize the output values of the MAXNET. The input
is then removed and the MAXNET iterates until the output
of only one node is positive. Classification is then cor-
plete and the selected class is that correspondmg to the
node with a positive output.

-The behawor of the Hamming netis lllustrated in Flg 7.

OUTPUT (Valld After MAXNET Convorges)
Ym-2 YM1

MAXNET
PICKS
MAXIMUM

CALCULATE
MATCHING
- SCORES.

- wit the maxrm im output All nodes use threshold Ioglc

The four plots in this figure show the outputs of nodes in
a MAXNET with 100 nodes on iterations 0, 3,6, and 9. These
simulations were obtained using randomly selected exem-
plar patterns with 1000 elements each. The exemplar for
_ class 50 was presented at time zero and then removed. The
matching score at time zero is maximum (1000) for node 50
and has'a random value near 500 for other nodes. After
only 3 iterations, the outputs of all nodes except node 50
have been greatly reduced and after.9 iterations only the
output for node 50 is non-zero. Simulations with different
probabilities of reversing bits on input patterns and with
different numbers of classes and elements in the input
patterns have demonstrated that the MAXNET typically.
converges in less than 10 iterations in this application [25].
In addition, it can be proven that the MAXNET will always
converge and find the node with the maximum value
when £ < 1/M[25].

~The Hamming net has a-number of obwous advantages
over the Hopfield net. It implements the optimum mini-
mum error classifier ‘when bit errors are random. and
independent, and thus the performance of. the Hopfield
net must either be worse than or equivalent to that of .
“the- Hamming net in such situations. Compatisons be--
tween the two nets on problems such as character recog-
~ nition, recognition of random patterns, and bibliographic
retrieval ‘have demonstrated this difference in per-
formance [25]. The Hamming net also requires many .

fewer ‘connections than the Hopfield net. For example,

with 100 inputs and 10 classes the Hamming net requires
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_Figure 7.. Node outputs for a Hamming net with 1,000
| binary inputs and 100 output nodes or classes. Output
- values of all 100 nodes are presented at time zero and
_after 3, B, and 9 iterations. The input was the exemplar.
“pattern corresponding to output node 50.

only 1,100 connections while the Hopfield net requires -
almost 10,000. Furthermore, the difference in number of
connections required increases as the number of inputs
increases, because the number of connections in the Hop-

circles) and hard limiting nodes (filled:
are as shown. ‘ ’

Weights:

§

field net grows as the square of the number of inputs while
the number of connections in the Hamming net grows::
linearly. The Hamming net can also be modified to be a
minimum error classifier when errors-are generated by
reversing input elements from +1to —1 and from =1 to +1
asymmetrically with different probabilities [25] and when'
the values of specific input elements-are unknown [2].
Finally, the Hamming net does not suffer from spurious

~ output patterns which can produce a “no-match” result.

SELECTING OR ENHANCING THE MAXIMUM INPUT

The need to select or enhance the input with a maxi-
mum value occurs frequently in classification problems.
Several different neural nets can peiform this operation.
The MAXNET described. above. uses heavy lateral inhibi-
tion similar to that used in other net designs where a

“maximum was desired [20, 22, 9]. These designs create

a “winner-take-all” type of net whose design mimics the

heavy use of lateral inhibition evident in the biological

neural nets of the human brain [21]. Other techniques to

pick a maximum are also possible [25]. One is illustrated in

Fig. 8. This figure shows a comparator subnet which is
described in'[29]. It uses threshold logic nodes to pick the’
maximum “of two' inputs and then feeds this maximum

value forward. This net is useful when the maximum value

must be passed unaltered to the output. Comparator sub-

nets can be layered into.roughly logz(M) layers to pick the

maximum of M inputs. A net that uses: these subnets to

pick the maximum of 8 inputs is presented in Fig. 9. -

Yo Y1

‘Figure 9. A feed-forward net that determines which of
eight inputs is maximum using a binary tree and compara-
tor subnets. from Fig.. 8. After an input vector is applied;
only that output corresponding to the maximum input el
ment will be high. Internal thresholds on threshold-logi
nodes (open circles) and on hard limiting nodes (filled cir-
cles) are zero except for the cutput nodes. Thresholds in:
the output nodes are 2.5. Weights for the comparator
subnets. are as in Fig. 8 and all other weights are 1.
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In some situations’ a ' maximum is not required and
matching scores mustinstead be compared to a threshold.
This can be done using an array of hard- Ilmltlng riodes’
with internal thresholds set to the desired threshold val-
ues. Outputs of these nodes will be —1 unless the inputs
exceed the threshold values. Alternatively, thresholds
could be set adaptively using a common inhibitory input:
fed to all nodes. This threshold could be ramped up or
down until the output of only one node was positive.

THE CARPENTER/GROSSBERG CLASSIFIER

Carpenter and Grossberg [3], in the development of
their ‘Adaptive Resonance Theory have designed a net

which forms clusters and is trained without supervision.

This net implements. a clustering algorithm that is very
similar to the simple sequential leader clustering algo-
rithm described in [16]. The leader algorithm selects the
first input as the exemplar for the first cluster. The next.
input is compared to the first cluster exemplar. It “follows
the leader” and is clustered with the first if the distance to

the first is less. than a threshold. Otherwnse it is the exem-
plar for-a new cluster. This process.is repeated for all
following, mputs The number of clusters thus grows.with
time and depends on both the threshold and the distance’
metric used to compare inputs to cluster exemplars.

The major components of a Carpenter/Grossberg classi-
fication net with three inputs and two output nodes is
presented in Fig. 10. The structure of this net is similar to

_that of the Hamming net. Matching scores are computed
using feed-forward connections and the maximum value is

enhanced using lateral inhibition among the output
nodes. This net differs from the Hamming net in that feed-
back connections are provided from the output nodes to
the input nodes. Mechanisms are also provided to turn off
that output node with a maximum value, and to compare
exemplars to the input for the threshold test required by
the leader algorithm. This net is completely described us-
ing nonlinear differential equations, includes extensive

‘feedback, and has been shown to be stable [3]. In typlcal

operation, the dlfferentlal equations can be shown to im-
plement the clustering algorithm presented in Box 3.

APRIL /1887
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The algorithm presented in:Box 3 assumes that “fast
learning” is used as in the srmulatrons presented in [3]

“and thus that elements of both rnputs and stored exem-

plars take on only the values 0 and 1. The net is initialized
by effectively setting all exemplars represented by.con-
nection weights to zero. In addition, a matching thresh-
old called vigilance which ranges between 0.0 and 1.0

must be set. This threshold determines how close a new
input pattern must be to a stored exemplar to be consid-
ered similar. A value near one requires a close match and -
smaller values accept a.poorer match. New inputs are
presented sequentially at the bottom of the net as in the
Hamming net. After presentation, the input is compared-

to all stored exemplars in parallel as in the Hamming net
to produce matching scores. The exemplar with the high-

‘st matching score is selected using lateral inhibition. It

is then compared to the input by computing the ratio of

_the dot product of the input and the best matching exem- -

plar (number of 1 bits in common) divided by the number
of 1 bits in the input. If this ratio is greater than the vig-
.ilance threshold, then the input is considered to be similar

to the best matching exemplar and that exemplar is up- :
dated by performing a logical AND operation between its

bits and those in the input. If the ratio is less than the

vrgrlance threshold, then the: input is considered to be -
different from all exemplars and itis added as a new exem- .
plar. Each additional new exemplar requires one node and t

.2N connectrons to compute matchrng scores.

12
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~ The behavior of the Carpenter/Grossberg net is illus-

“trated. in Fig. 11. Here it.is assumed that patterns to be

recognized are. the three patterns of the letters “C”, “E”,
and “F” shown in the left side of this figure. These patterns
have 64 pixels each that take on the value 1 when black and
0 when white. Results are presented when the vigilance
threshold was set to 0.9. This forces separate exemplar
patterns to be created for each letter.

The left side of Fig. 11 shows the input to the net on
successive trials. The right side presents exemplar pat-

‘terns formed after each pattern had been applied. In this

‘example “C” was presented first followed by “E” followed

by “F”, etc. After the net is initialized and a “C” is applied,

internal connection weights are altered to form an internal

_exemplar that is identical to the ”C" After an “E” is then

applied, a new “E” exemplar is added. Behavior is similar
for a new “F” leading to. three stored exemplars. If the
vigilance threshold had been slightly lower, only two. ex-
emplars would have been:present after-the “F”; one for
“F” and one for both “C” and “E” that would have been-
rdentlcal to“C” pattern Now, when a noisy “F” is applied

EXEMPLARS AFTER EACH INPUT

were pplred sequ ntlally ‘starti
ern. Exemplars formed by top



with a missing black pixel in the upper edge it is accepted
as being similar to the “F” exemplar and degrades this

exemplar due to the AND operation performed during -

updating. When another noisy “F” is applied again with
only one black pixel missing, it is considered different

from existing exemplars and a new noisy “F” exemplar is
added. This will occur for further noisy “F” inputs leading

to a growth of noisy “F”-exemplars.

These results illustrate that the Carpenter/Grossberg al-
gorithm can perform well with perfect input patterns but
that even a small amount of noise can cause problems.
With-no noise, the vigilance threshold can be set such that
the two patterns which are most similar are considered
different. In noise, however, this level may be too high
and the number of stored exemplars can rapidly grow until
all available nodes are used up. Modifications are neces-

sary to enhance the performance of this algorithm in

noise. These could include adapting weights more slowly
and changing the vigilance threshold during training and
testing as suggested in [3]. '

SINGLE LAYER PERCEPTRON

Thesingle layer perceptron [39] is the first of three nets
from the taxonomy in' Fig. 3 that can. be used with both
continuous valued and binary inputs. This simple net gen-
erated much interest when initially developed because of
its ability to learn to recognize simple patterns. A percep-
tron that decides whether an input belongs to one of two
classes (denoted A or B) is shown in the top of Fig. 12. The
single node computes a-weighted sum of the. input ele-
ments, subtracts a threshold (§) and passes the result
through a hard limiting nonlinearity such that the output
'y is either +1 or —1. The decision rule is to respond class
‘Aif the output is +1 and class B if the outputis —1. A useful
technique for analyzing the behavior of nets such as the
perceptron is to plot a map of the decision regions created

in the multidimensional space spanned by the input vari- -

ables. These decision reglons specify which input values

~ DECISION BOUNDARY
Wo 8.

7 Wy Wy Xt w1

gure 12. A single layer perceptron that classifies an

input vector into two classes denoted A and B. This
‘the space spanned by the input into two |

na s parated by a hyperplane or a line in two dimen-

wn on the top right.

result in a class A and which result in'a class B response.
The perceptron forms two decision regions separated by

:a hyperplane. These regions are shown in the right side of
" Fig. 12 when there are only two inputs and the hyperplane .

is a line. In this case inputs above the boundary line
lead to class A responses and inputs below the line lead to
class B responses. As can be seen, the equation of the
boundary line depends on the connection weights and the
threshold. ;

‘Connection weights and the th'reshold\in a perceptron

_can be fixed or adapted using a number of different algo-

rithms. The original perceptron convergence procedure
for adjusting: welghts was developed by Rosenblatt [39]. It

_is described in Box 4. First connection weights and the
threshold value are initialized to small random non-zero

values. Then a new input with N continuous valued ele-
ments is applied to the input and the output is computed
as in Fig. 12. Connection weights are adapted only when

an error occurs using the formula in step 4 of Box 4. This
formula includes a gain term (n) that ranges from 0.0 to 1.0
‘and controls the adaptation rate. This gain term must.

be adjusted to satisfy the confllctlng requirements of fast

- adaptation for real changes in the input distributions
and averaging of past mputs to provide stable weight

estimates.

13
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An example of the use of the perceptron convergence:

procedure is presented in Fig. 13. Samples from class A in
this figure are represented by circles and samples from

class B are represented by crosses. Samples from classes

A _and B were presented alternately until. 80 ‘inputs had
been presented. The four lines show the four decision
boundanes after weights had been adjusted following er-

rors.on trials 0, 2,4, and 80..In this. example the classes

were well separated after only four trials and the gain
term.was .07. :

‘Rosenblatt [39] proved that if the mputs presented from
the two classes are separable (that is they fall on opposite
sides of some hyperplane), then the perceptron:con-

vergence procedure converges and-positions the decision-
hyperplane between those two classes. Such a hyperplane" '

is-illustrated in the upper right of Fig. 12. This decision
boundary separates all samples from the A-and. B classes.

One problem with the perceptron convergence proce-
dure.is that decision boundaries may oscillate. continu--

ously when inputs are- not separable and distributions

overlap. A modification to the perceptron convergence
procedure can form the least mean square (LMS) solution.
in this case. This solution minimizes the mean square”

error. between the desired. output of a perceptron-like

net and the actual output The algorithm that forms the .

LMS solution is called the Widrow-Hoff or LMS algorlthm
[47,48,7]. o

The LMS algorithm-is- rdentlcal to the. perceptron con-
vergence procedure described-in Box 4 except the hard

14
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Irmrtrng nonlinearity is- made linear or replaced by a
threshold-logic nonlinearity. Weights are thus corrected
on everytrial by an amount that depends on the difference
between the desired and the actual input. A classifier that

_uses the LMS training algorithm could use desired outputs
of 1for class A and 0 for class B. During operation the input

would then be a55|gned to class A only:if the output was'
above 0.5.

The decision regions formed by perceptrons are similar
to those formed by maximum likelihood Gaussian classi-
fiers which assume inputs are uncorrelated and distribu-
tions for. different classes differ only in: mean values. This

type of Gaussian classifier.and the associated werghted
" Euclidean or straight Euclidean distance metric is often

used in speech recognizers when there is limited training
data and inputs have been orthogonalized by a suitable
transformation [36] Box. 5 demonstrates how the welghtS'
and threshold ina perceptron can be selected such

“that the perceptron structure computes the difference be-

tween log likelihoods required by such a Gaussian clas-
sifier [7]. Perceptron-like structures can also be used to

-perform the linear computations required by a ‘Karhunen
_Loeve transformation [36]. These computations can be
-used to transform a set of N+ K correlated Gaussian in-

puts into a reduced set of N uncorrelated inputs whlch can
be used with the above Gaussian classifier.
Itis straightforward to generalize the derivation of BoX'5

“to demonstrate how a Gaussian classifier for M classes can
-be constructed from M perceptron-like: structures fol-

lowed by a net that picks the maximum. The required net
is.identical in structure to the Hamming Net of Fig.' 6. in
this case, however, inputs are analog and the weights and
node thresholds are calculated from terms 1l and 1l in
likelihood equations similar to those for L4 in Box 5. It is

likewise' straightforward to generalize the Widrow-Hoff.

o Units and. mputs. Shadung denotes
cigion regions for class A. Smooth closed contours

und unp‘ut distributions for classes A a\nd B, Nodes m al
ting nonlinearities. ™~




variant of the perceptron convergence procedure to apply
for M classes. This requires a structure identical to the
Hamming Net and a classification rule that selects the
class corresponding to the node with the maximum out-
put. During ddaptation the desired output values can be
set to 1 for the correct class and 0 for all others.

The perceptron structure can be used to implement
either a Gaussian maximum likelihood classifier or clas-
sifiers which use the perceptron training algorithm or one
of its variants. The choice depends on the application. The
perceptron training algorithm makes no assumptions con-
cerning the shape of underlying distributions but focuses
on errors that occur where distributions overlap. It may
thus be more robust than classical techniques and work

“well when inputs are generated by nonlinear processes

and are heavily skewed and non-Gaussian. The Gaussian
classifier makes strong assumptions concerning under-
lying distributions and is more appropriate when distribu-
tions are known and match the Gaussian assumption. The
adaptation algorithm defined by the perceptron con-
vergence procedure is simple to implement and doesn t
require storing any more information than is present in
the weights and the threshold. The Gaussian classifier can
be made adaptive [24], but éxtra information. must be
stored and the computations required are more complex.
Neither the perceptron convergence procedure nor the
Gaussian classifier is appropriate when classes cannot be
separated by a hyperplane. Two such situations are
presented in the upper section of Fig. 14. The smooth
closed contours labeled A and B in this figure are the input
distributions for the two classes when there are two con-:
tinuous valued inputs .to the different nets. The shaded
areas are the decision regions created by a single-layer
perceptron and other feed-forward nets. Distributions for
the two classes for the exclusive OR problem are disjoint
and cannot be separated by a single straight line. This
problem was used to illustrate the weakness of the per-
ceptron by Minsky and Papert [32]. If the lower left
B cluster is taken to be at the origin of this two dimen-
sional space then the output of the classifier must be
“high” only if one but not both of the inputs is “high”.
One possible decision region for class A which a percep-
tron might create is illustrated by the shaded region in

 the first row of Fig. 14. Input distributions for the second

problem shown in this figure are meshed and also can not

- be separated-by a single straight line. Situations similar to

these may occur when parameters such as formant fre-
quencies are used for speech recognition. :

MULTI-LAYER PERCEPTRON

Multi-layer perceptrons are feed-forward nets with
one or more layers of nodes between the input and out-
put nodes. These additional layers contain hidden units
or nodes that are not directly connected to both the in-
put and output nodes. A three-layer perceptron with two
layers of hidden units is shown in Fig. 15. Multi-layer
perceptrons overcome many of the limitations of single-
layer perceptrons, but were generally not used in the past
because effective training algorithms were not available.
This has recently changed with the development of new
training algorithms [40]. Although it cannot be proven that
these algorlthms converge as with single layer percep-
trons, they have been shown to be. successful for many
problems of interest [40].

The capabilities of multi-layer perceptrons stem from the
nonlinearities used within nodes. If nodes were linear ele-
ments, then a single-layer net with appropriately chosen
weights could exactly duplicate those calculations: per-
formed by any multi-layer net. The capabilities of percep-
trons with one, two, and three layers that use hard-limiting
nonlinearities are illustrated in Fig. 14. The second column
in this figure indicates the types of decision regions that
can be formed with dlfferent nets The next two columns
15
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:present examples: of decision: regions which- could be
formed for the exclusive OR problem and a problem with
“meshed regions. The rightmost-column gives examples of

the most general decision regions that can be formed.

As noted above, a single-layer perceptron forms half-
plane decision regions. A two-layer perceptron can form
-any, possibly -unbounded,’ convex: region ‘in the space
spanned by the inputs.'Such regions:include convex poly-
gons'sometimes called convex hulls, and the unbounded
convex regions shown in the middle row of Fig. 14. Here

the term convex means that any line joining points on the

border of a region goes only. through points within that

region. Convex regions are.formed from.intersections of.

the half-plane regions formed by each node in the first
layer of the multi-layer perceptron. Each:node in the first

layer behaves like a single-layer perceptron and has a "

“high” output only for points on one side of the hyper-
plane formed by its weights and offset. If weights to an
output node from N; first-layer nodes are all 1.0, and the
‘threshold in the output node is Ny — ¢ where 0.<'e <1,
‘then the output node will be “high” only if the outputs of
all first-layer nodes are “high”. This corfesponds to per-
forming a logical AND operation in the output node and
results in a final decision region that is the intersection of
all-the half-plane regions formed in the first layer. Inter-
_sections of such half planes form convex regions as de-
scribed above. These convex regions have at.the most as
“many sides-as there are nodes in the first layer..

This analysis provides some insight into the problem of

selecting the number of nodes to use in a two-layer per- -

‘ceptron. The number of nodes must be large enough to
form a decision region that is as complex as is required by
a given problem. it must not, however, be so-large that

0LLEMT

0k N1

OIS NG

anxd w,, and. w,'; ‘are_the connectio
n the. flrst and second and between th
I
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‘the many weights required can.not be reliably estimated

from the available training data. For example, two nodes
are sufficient to solve the exclusive OR problem as shown
in the second row of Fig. 14. No number of nodes, how-
ever, can separate the meshed class regions:in F|g 14 with
a two-layer percéptron.

A three-layer perceptron can form arbltrarlly complex
decision regions and can separate the meshed classes as

“shown in'the bottom of Fig. 14. It can form regions as
‘complex as those formed using mixture distributions and
‘nearest-neighbor classifiers [7]. This can be proven.by

construction. The proof depends on partitioning the de-
sired: decision region:into. small hypercubes (squares
when there are two inputs). Each hypercube requires

2N nodes.in the first layer (four nodes when there are two

inputs), one for each side of the hypercube, and one node
in the second layer that takes the logical AND of the out-

‘puts from the first-layer nodes. The outputs of second-

layer nodes ‘will be “high” only for inputs within each

hypercube. Hypercubes are assigned to the proper deci-

sion regions by connecting the output of each second-

layer node only to the output node correspondmg to the

decision region that node’s hypercube is in and per-
formmg a logical OR operation in each output node. A
logical- OR operation will be performed if these con-
nection weights from the second hidden layer to the out-_
put layer are one and thresholds in the output nodes are
0.5. This construction procedure can be generalized to use
arbitrarily shaped convex regions instead of small hyper-
cubes and is capable of generating the disconnected and.
non-convex regions shown at the bottom of Fig. 14.

- The above analysis demonstrates that no more than
three layers are required.in perceptron -like feed-forward
nets because a three-layer net can generate arbitrarily
complex decision regions. It also provides some insight

“into the problem of selecting the number of hodes to use.

in three-layer perceptrons. The number of nodes in the
second layer must be greater- than one when decision re-
gions are disconnected or meshed and cannot be formed
from one convex area. The number of second layer nodes.
required-in 'the worst case is equal to the-number of dis-

connected regions in input distributions..The number of

nodes in the first layer must typically be sufficient to pro-
vide three or more edges for each convex-area generated
by every second-layer node. There should thus typically
be more than thrée times as many nodes in the second as in the
first layer. :

The above discussion: centered -primarily. on - multi-
layer perceptrons with one output when hard limiting -
nonlinearities are used. Similar behavior is exhibited by -
multi-layer perceptrons with multiple output nodes when
sigmoidal nonlinearities are used-and the decision rule is
to select the class correspondmg to the output node with
the largest output. The behavior of these nets is more
complex because decision regions are typically bounded
by smooth curves instead of by straight line segments
and analys:s is thus more difficult. These nets, however,

- can be trained with the new back-propagahon training’

algorithm [40].



The back-propagation algorithm descfib'ed in Box 6 is a
generalization of the LMS algorithm. It uses a gradient

search technique to minimize a cost function equal to.

the mean square difference between the desired and the
actual net outputs. The desired output of all nodes is typi-

cally “low” (0 or <0.1) unless that node corresponds to the

class the current input is from in which case itis “high” (1.0
or.>0.9). The net is trained by initially selecting small
random weights and internal thresholds and then pre-
senting all training data repeatedly Weights are adjusted

after every trial using side information specifying the cor-

rect class until weights converge and the cost function is
reduced to an acceptable valte. An essential component
of the algorithm is the iterative method described in
Box 6 that propagates error terms required to adapt
weights back from nodes in the output layer to nodes in
lower layers.

-~ ‘An: example of the behawor of the back propagatlon

algonthm is presented in Fig. 16. This figure shows deci-

sion reglons formed by a two-layer perceptron with two
inputs, eight nodes in the hidden layer, and two output
nodes correspondmg to two classes. Sigmoid nonlin-

"eatities were used as in Box 6, the gain term.n was 0.3, the

momentum term a was 0.7, random samples from classes

A and B were presented on alternate trials, and the desired

outputs were either 1 or 0. Samples from class A were

distributed uniformly over a circle of radius 1 centered at
the origin. Samples from class B were distributed  uni-

formly ‘outside this circle up to a radius of 5. The initial

decision region is a slightly curved hyperplane. This

gradually changes to a circular region that encloses the

circular distribution of class A after 200 trails (100 samples:
from each class). This decision region is near that optimal

region that would be produced by a Maximum Likelihood

classifier.

The back propagat:on algorithm has been tested with a

number of deterministic problems such as the exclusive
OR problem [40], on problems related to speech synthesis

IEEE

17

APRIL 1987 ASSP MAGAZINE



“and recognition, [43, 37, 8] and on problems:related to

visual pattern recognition [40]. It has been found to per-

form well in most cases and to find good solutions to the

‘problems. ‘posed. A demonstration of the power of this
algorithm was provided by Sejnowski [43]. He trained a

two-layer perceptron with 120-hidden units and more than
20,000 weights to form letter to' phoneme transcription
rules. The input to this net was a binary code indicating
“those letters ina sliding window seven letters long that
was moved over a written transcription of spoken text, The
- desired output was a binary code indicating the pho_nemnc
transcription of-the letter at the center of the window:
After 50 times through a dialog containing 1024 words, the
transcription error rate was only 5%. This increased to 22%
for a.continuation of that dialog that was not used durmg
training.
The ‘generally good performance found’ for the back
propagation algorithm is somewhat surprising considering
~that it is a gradient search technique that may find a local
‘minimum in the LMS cost function instead of the desired
global minimum. Suggestions to improve performance

and reduce the occurrence of local minima include allow-:

ing extra hidden units, lowering the gain term used to

adapt weights, ‘and making many training runs starting
with different sets of random weights. When used with -

classification problems, the number of nodes could be
~set using considerations described above. The problem of

18
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local minima-in this case corresponds to ‘clustering two
or more disjoint classregions into one. This can be mini-
mized by using multiple starts with different random:
weights and a fow gain to adapt weights. One difficulty

noted with the backward-propagation algorithm is that in

many cases the humber of presentations of training data
required for convergence has been large (more: than-100.
passes through all the training data). Although a number
of more complex adaptation algorithms have been pro-
posed to ‘speed convergence [35] it seems unlikely that
the complex decision regions formed by multi-layer per-

~ ceptrons can be generated in few trials when class regions

are disconnected. .
‘An interesting theorem that sheds some light on the

“capabilities of multi-layer perceptrons was proven by

Kolmogorovand is descrlbed in [26]. This theorem states -
that any continuous function of N variables can be com--
puted using only linear summations and nonlinear but
continuously increasing ‘functions. of only one variable. -
It effectively states that a three layer perceptron with
N@2N + 1) nodes using continuously increasing non-

“linearities can compute any continuous function of N-

variables. A three-layer perceptron could thus. ‘be used

“to create any continuous likelihood function : reqwred'
“in a classifier. Unfortunately, the theorem does not indi-

cate how weights or nonlinearities in the net should-
be selected or how sensitive the output function'is to
variations in the weights and internal functions..

KOHONEN'S SELF ORGANIZING FEATURE MAPS

‘One ‘important Or‘gan'iiing principle of sensory path-

“ways in the brain is that the placement of neurons is order-

ly and often ‘reflects some physical characteristic of the
external stimulus being sensed [21]. For example, at -each’
level of the auditory pathway, nerve cells and fibers are

~arranged anatomically in relation to the frequency which

elicits the greatest response’in each neuron. This tono-




topic organization in | the auditory pathway extends up to  puts to each output are identical) then the node with the.
the auditory cortex [33,21]. Although much of the low- minimum Euclidean distance can be found by using’
level organization is genetically pre-determined, it is likely the net of Fig. 17 to form the dot product of the input
that some of the organization at higher levels-is created and the weights. The selection required in step 4 then:
during learning by algorithms which promote self- turns into a problem of finding the node with a maximum
organization. Kohonen [22] presents one such algorithm  value. This node can be selected using extensive lateral
which produces what he calls self-organizing feature maps  inhibition as in the MAXNET in the top of Fig. 6. Once this
similar to those thdt occur in the brain. ; node is selected, weights to it and-to other nodes in its
Kohonen’s algorithm creates a vector quantizer by neighborhood are modified to make these nodes more

adjusting weights from common input nodes to M output  responsive to the current input. This process is repeated. -
nodes arranged in a two dimensional grid as shown in  for further inputs. Weights eventually converge and are

- Fig. 17. Output nodes are extensively interconnected with ~ fixed after the gain term in step 5 is reduced to zero.
many local connections. Continuous-valued input vectors
are presented sequentially in time without specifying the
desired output. After enough input vectors have been
presented, weights will specify cluster or vector centers
that sample the input space such that the point density
function of the vector centers tends to approximate the
.probability density function of the input vectors [22]. In

- addition, the weights will be. organized such that topo-
logically close nodes are sensitive to inputs thatare physi-
cally similar. Output nodes will thus be ordered in a

~ natural manner: This may be important in complex sys-
tems with many layers of processing because it can reduce
lengths of inter-layer connections.
The algorithm that forms feature maps requires a neigh-

borhood to be defined around each.node as shown. in
Fig. 18. This neighborhood slowly decreases in size with
time as shown. Kohonen'’s algorithm is described in Box 7.
Weights between input and output nodes are initially set
‘to small random values and an input is presented. The
distance between the input and all nodes is computed as
shown. If the weight vectors are normalized to have con-
stant length (the sum of the squared weights from all in-

An example of the behavior of this algorithm is
feature maps are formed. NE(t) is the set of nodes presented in Fig. 19. The weights for 100 output nodes are
i the ne|ghb0r\h00d of node j at time | plotted in these six subplots when there are two random
od starts large and slowly decreases | independent inputs uniformly distributed over the region.

ghborhoods different times

In this example, 0 < £ < te. enclosed by the boxed areas. Line intersections in these -

plots specify weights for one output node. Weights from
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3 ,welgh" from lnput Xo and%
XIS represents the value of the welght fro

t:he value 0

input x, are specified by the position along the horizontal
axis and weights from input x; are specified by the position
along the vertical axis..Lines connect weight values for
nodes that are topological nearest neighbors. Weights

start at- time zero clustered at the center of the plot.
esting field that is immature and rapidly changmg The six

‘Weights then gradually expand in-an orderly way until
their point density approximates the uniform distribution

of the input.:samples. In this example, the gain term in step.

5 of Box 7 was a Gaussian function of the distance to the
.node selected in step 4 with a width' that decreased in
time.

Kohonen [22] presents many. other examples and proofs
related to this algorithm.
algorithm can be used.in a speech recognizer as a vector
quantizer [23]. Unlike the Carpenter/Grossberg classifier,
this algorithm can perform relatively well in noise because
the number of classes'is fixed, weights“adapt slowly, and
adaptation’ stops- after ‘training. This algorithmis thus a
viable sequential vector quantizer when the number of
clusters desired can be specified before use and the
amount of training data is large relative to the number of
clusters desired. It is similar to the K-means clustering
algorithm in this respect. Results;-however, may depend
on the presentation order of mput data for small amounts
of training data. s

INTRODUCTORY REFERENCES TO NEURAL NET:
LITERATURE

More detailed information concerning the six algorithms

described above and other neural net algorithms can’ be
found in-[3,7,15,18,19,20,22,25,32,39,40]. Descriptions

of many other algorithms including the Boltzmann ma-

20
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. He also demonstrates how the

chine and background historical mformatlon can be found

in a recent book on parallel distributed processing edited
by Rumelhart and- McClelland [41]. Feldman [9] presents a

‘good introduction to the connectionist philosophy that

complements this book. Papers describing recent re-
search efforts are available in the proceedings of the 1986

' Conference on Neural Networks for Computing held:in

Snowbird, Utah [6]. Descriptions of how the Hopfield:

~net can be used to solve a number of different opti-

mization problems including the traveling salesman’

.problem are presented in [20,45]. A dlscussmn of how

content-addressable memories can be lmplemented using
optical techniques is available in [1] and an introduction to

-the field “of. neuroblology is avallable in [21] and other

basic texts.

In addition to the above papers and books there are a
number of neural net conferences being held in 1987.
These include the 1987 Snowbird Meeting on Neural
Networks for'Computing” in Snowbird, Utah, April 15,
the “IEEE First Annual International Conference on

i - Neural Networks” in San Dlego, Callfornla, June 21-24,
and the “IEEE Conference on Neural Information

Processing Systems-—Natural and Synthetic” in Boulder,
Colorado, November 8-12. This last conference is cospon-
sored by the |EEE Acoustics, Speech; and-Signal Processing
Society.. '

CONCLUDING REMARKS ,
The above review provides an mtroductlon to’ an inter-

nets described are common ‘components in ‘many more
complex systems that are under development. Although
there have been no practical applications of neural nets
yet, preliminary results such as those of Sejnowski [43]
have demonstrated the potentlal of the newer learning
algorithms,. The greatest potentlal of neural nets remains
in the high-speed processing that could be provided
through massively parallel VLSI |mplementat|ons Several
groups are currently explormg different VLSI implementa-.
tion strategles [31,13,42]: Demonstrations. that. exrstmg
algorlthms for speech and image recognltlon can be per-
formed using neural nets support the potential applica-

iblllty of ‘any neural-net VLS| hardware that is developed.

The current research effort in neural nets has attracted.
reseatchers trained in engineering, physics, mathematlcs,,_

‘neuroscience, blology, computer_sciences and psy-

chology Current research is aimed at analyzing’ Iearnmg

-and self-orgamzatlon algorithms used in multi- -layer nets,

at developing design principles: and techniques to solve
dynamic range: and. sensitivity problems ‘which become
important for large analog systems, at building complete

- systems for image and speech and recognition and obtain-

ing experience with these: systems, and at determining
which current algorithms can be implemented using

“neuron-like components. Advances in these areas and in

VLS| implementation techniques. could lead to practical
real-time neural-net systems. :
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