
Paris Perdikaris
April 7, 2020

Physics-informed deep learning

CIS522: Deep learning

https://github.com/PredictiveIntelligenceLab/USNCCM15-Short-Course-Recent-Advances-in-
Physics-Informed-Deep-Learning

Motivation and open challenges

Challenges:
• High cost of data acquisition
• Limited and high-dimensional data
• Multiple tasks and data modalities (e.g. images, time-series, scattered measurements, etc.)
• Large parameter spaces
• Incomplete models, imperfect data (e.g., missing data, outliers, complex noise processes)
• Uncertainty quantification
• Robust design/control

Goal: Predictive modeling, analysis and optimization of complex systems

Data Prior knowledge CSEML

Hypothesis:
• Can we bridge knowledge from scientific computing and machine learning to tackle these challenges?

p(✓|D) / p(D|✓)p(✓)
<latexit sha1_base64="VgbQGL+ueBIfLkPR9lh4eDChtBQ=">AAACM3icdVDLSgNBEJz1Gd9Rj14Gg5Bcwq4aH3gJ6sFjBJMI2RBmJxMzZHZ3mOkVwiYf40f4DV71KJ4Ur/6Ds9mIRrSgoajqprvLk4JrsO1na2p6ZnZuPrOwuLS8srqWXd+o6TBSlFVpKEJ17RHNBA9YFTgIdi0VI74nWN3rnSV+/ZYpzcPgCvqSNX1yE/AOpwSM1MqeyLwLXQZk4PoEupSI+HxYcKUKJYTYmN/qIG0sfE0UWtmcXXR2D/YOHZyS49KYHJSwU7RHyKExKq3sq9sOaeSzAKggWjccW0IzJgo4FWy46EaaSUJ75IY1DA2Iz3QzHj05xDtGaeNOqEwFgEfqz4mY+Fr3fc90Jjfr314i/uU1IugcNWMeyAhYQNNFnUhg83+SGG5zxSiIviGEKm5uxbRLFKFgcp3Y4vlDk8nX4/h/UtstOiaoy/1c+XScTgZtoW2URw46RGV0gSqoiii6Qw/oET1Z99aL9Wa9p61T1nhmE03A+vgER96saQ==</latexit><latexit sha1_base64="VgbQGL+ueBIfLkPR9lh4eDChtBQ=">AAACM3icdVDLSgNBEJz1Gd9Rj14Gg5Bcwq4aH3gJ6sFjBJMI2RBmJxMzZHZ3mOkVwiYf40f4DV71KJ4Ur/6Ds9mIRrSgoajqprvLk4JrsO1na2p6ZnZuPrOwuLS8srqWXd+o6TBSlFVpKEJ17RHNBA9YFTgIdi0VI74nWN3rnSV+/ZYpzcPgCvqSNX1yE/AOpwSM1MqeyLwLXQZk4PoEupSI+HxYcKUKJYTYmN/qIG0sfE0UWtmcXXR2D/YOHZyS49KYHJSwU7RHyKExKq3sq9sOaeSzAKggWjccW0IzJgo4FWy46EaaSUJ75IY1DA2Iz3QzHj05xDtGaeNOqEwFgEfqz4mY+Fr3fc90Jjfr314i/uU1IugcNWMeyAhYQNNFnUhg83+SGG5zxSiIviGEKm5uxbRLFKFgcp3Y4vlDk8nX4/h/UtstOiaoy/1c+XScTgZtoW2URw46RGV0gSqoiii6Qw/oET1Z99aL9Wa9p61T1nhmE03A+vgER96saQ==</latexit><latexit sha1_base64="VgbQGL+ueBIfLkPR9lh4eDChtBQ=">AAACM3icdVDLSgNBEJz1Gd9Rj14Gg5Bcwq4aH3gJ6sFjBJMI2RBmJxMzZHZ3mOkVwiYf40f4DV71KJ4Ur/6Ds9mIRrSgoajqprvLk4JrsO1na2p6ZnZuPrOwuLS8srqWXd+o6TBSlFVpKEJ17RHNBA9YFTgIdi0VI74nWN3rnSV+/ZYpzcPgCvqSNX1yE/AOpwSM1MqeyLwLXQZk4PoEupSI+HxYcKUKJYTYmN/qIG0sfE0UWtmcXXR2D/YOHZyS49KYHJSwU7RHyKExKq3sq9sOaeSzAKggWjccW0IzJgo4FWy46EaaSUJ75IY1DA2Iz3QzHj05xDtGaeNOqEwFgEfqz4mY+Fr3fc90Jjfr314i/uU1IugcNWMeyAhYQNNFnUhg83+SGG5zxSiIviGEKm5uxbRLFKFgcp3Y4vlDk8nX4/h/UtstOiaoy/1c+XScTgZtoW2URw46RGV0gSqoiii6Qw/oET1Z99aL9Wa9p61T1nhmE03A+vgER96saQ==</latexit><latexit sha1_base64="VgbQGL+ueBIfLkPR9lh4eDChtBQ=">AAACM3icdVDLSgNBEJz1Gd9Rj14Gg5Bcwq4aH3gJ6sFjBJMI2RBmJxMzZHZ3mOkVwiYf40f4DV71KJ4Ur/6Ds9mIRrSgoajqprvLk4JrsO1na2p6ZnZuPrOwuLS8srqWXd+o6TBSlFVpKEJ17RHNBA9YFTgIdi0VI74nWN3rnSV+/ZYpzcPgCvqSNX1yE/AOpwSM1MqeyLwLXQZk4PoEupSI+HxYcKUKJYTYmN/qIG0sfE0UWtmcXXR2D/YOHZyS49KYHJSwU7RHyKExKq3sq9sOaeSzAKggWjccW0IzJgo4FWy46EaaSUJ75IY1DA2Iz3QzHj05xDtGaeNOqEwFgEfqz4mY+Fr3fc90Jjfr314i/uU1IugcNWMeyAhYQNNFnUhg83+SGG5zxSiIviGEKm5uxbRLFKFgcp3Y4vlDk8nX4/h/UtstOiaoy/1c+XScTgZtoW2URw46RGV0gSqoiii6Qw/oET1Z99aL9Wa9p61T1nhmE03A+vgER96saQ==</latexit>

1

23

4 5 67

1

23

4 5 6

FIGURE 5. Top left: At level `=1 n3 aggregates information from {n4, n5} and
n2 aggregates information {n5, n6}. At `= 2, n1 collects this summary informa-
tion from n3 and n2. Bottom left: This graph is not isomorphic to the top one,
but the activations of n3 and n2 at `= 1 will be identical. Therefore, at `= 2, n1
will get the same inputs from its neighbors, irrespective of whether or not n5 and
n7 are the same node or not. Right: Aggregation at different levels. For keeping
the figure legible only the neighborhood around one node in higher levels is
marked.

Proposition 3. If for any ⇡ 2 Sm, the f 7! R⇡(f) map appearing in Definition 6 is linear, then the

corresponding {R⇡}⇡2Sm matrices form a representation of Sm.

The representation theory of symmetric groups is a rich subject that goes beyond the scope of the
present paper (Sagan, 2001). However, there is one particular representation of Sm that is likely
familiar even to non-algebraists, the so-called defining representation, given by the P⇡ 2 Rn⇥n

permutation matrices

[P⇡]i,j =

⇢
1 if ⇡(j) = i

0 otherwise.
It is easy to verify that P⇡2⇡1 = P⇡2P⇡1 for any ⇡1,⇡2 2 Sm, so {P⇡}⇡2Sm is indeed a representa-
tion of Sm. If the transformation rules of the fi activations in a given comp-net are dictated by this
representation, then each fi must necessarily be a |Pi| dimensional vector, and intuitively each com-
ponent of fi carries information related to one specific atom in the receptive field, or the interaction
of that specific atom with all the others. We call this case first order permutation covariance.

Definition 7. We say that ni is a first order covariant node in a comp-net if under the permutation

of its receptive field Pi by any ⇡ 2 S|Pi|, its activation trasforms as fi 7! P⇡fi.

4.2. SECOND ORDER COVARIANT COMP-NETS

It is easy to verify that given any representation (Rg)g2G of a group G, the matrices (Rg⌦Rg)g2G

also furnish a representation of G. Thus, one step up in the hierarchy from P⇡–covariant comp-nets
are P⇡ ⌦P⇡–covariant comp-nets, where the fi feature vectors are now |Pi|2 dimensional vectors
that transform under permutations of the internal ordering by ⇡ as fi 7! (P⇡⌦P⇡)fi.

If we reshape fi into a matrix Fi 2R|Pi|⇥|Pi|, then the action
Fi 7! P⇡FiP

>
⇡

is equivalent to P⇡⌦P⇡ acting on fi. In the following, we will prefer this more intuitive matrix view,
since it clearly expresses that feature vectors that transform this way express relationships between
the different constituents of the receptive field. Note, in particular, that if we define A#Pi

as the
restriction of the adjacency matrix to Pi (i.e., if Pi = (ep1 , . . . , epm) then [A#Pi

]a,b = Apa,pb), then
A#Pi

transforms exactly as Fi does in the equation above.
8

1. Physics is implicitly
baked in specialized

neural architectures with
strong inductive biases

(e.g. invariance to simple
group symmetries).

2. Physics is explicitly
imposed by constraining

the output of conventional
neural architectures with
weak inductive biases.

L(✓) := 1

Nu

NuX

i=1

[ui � f✓(xi)]
2

| {z }
Data fit

+
1

�
R[f✓(x)]

| {z }
Physics regularization

<latexit sha1_base64="1HGZtmjbtzdRdyLbi+i+HT/d8uc=">AAADuHicbVJbb9MwFE5WLqPcNnjkxWJC2kSpknbAmFQxDSR4QKhM7CI1WXCck9Sa7US+oBXLv4/fsH+D2xVEth3Jysl3jr9z+Zw3jCodRRfhSufW7Tt3V+917z94+Ojx2vqTI1UbSeCQ1KyWJzlWwKiAQ001g5NGAuY5g+P87MM8fvwTpKK1+K5nDaQcV4KWlGDtoWztIuFYTwlm9ovbTPQUNN5CuyOUGFGAzCUmYJPSf2zs7NfMuEQZnjDKqVaZpaPYnS5gNElybo3L6Ksys5dEntBj5x7bSk8HLks0nGv7EWuMSqodenlzlYT59gvs/nV24CbXOLfSv3zj6UxRopCEyjAs6a/FZA5laxtRP1oYuu7ES2cjWNo4Ww9/J0VNDAehCcNKTeKo0anFUlPCwHUTo6DB5AxXMPGuwBxUahcaOPTCIwUqa+mP0GiB/n/DYq7UjOc+cz6XuhqbgzfFJkaXO6mlojEaBLksVBqGdI3mgqKCSiCazbyDiaS+V0Sm2O9Se9lbVXLemsESLAiw9lx4u8ENyJ6n15iN7BsqemiHCtfjWFZUjKK+/+umtoKag5azNqWRzKFuC5pPpOuaqXYmZlXtu53ygd9sNymg9C94sTU7BiEOoHD24NO+s/HrYS/qRTcl7TMDy6woinvR0J93set66eOrQl93jgb9eNgffNve2NtfPoLV4FnwPNgM4uBtsBd8DsbBYUDC9yGEIqw7u50fnapDL1NXwuWdp0HLOvIP9X86QQ==</latexit>

*figures from Kondor, R., Son, H. T., Pan, H., Anderson, B., & Trivedi, S. (2018). Covariant
compositional networks for learning graphs. arXiv preprint arXiv:1801.02144.

DEEPXDE 3

element-wisely, the FNN is recursively defined as follows:

input layer: N 0(x) = x 2 Rdin ,

hidden layers: N `(x) = �(W `N `�1(x) + b`) 2 RN` , for 1 ` L� 1,

output layer: NL(x) = WLNL�1(x) + bL 2 Rdout ;

see also a visualization of a neural network in Figure 1. Commonly used activation
functions include the logistic sigmoid 1/(1+ e�x), the hyperbolic tangent (tanh), and
the rectified linear unit (ReLU, max{x, 0}).

2.2. Physics-informed neural networks for solving PDEs. We consider
the following PDE parameterized by � for the solution u(x) with x = (x1, . . . , xd)
defined on a domain ⌦ ⇢ Rd:

(2.1) f

✓
x;

@u

@x1
, . . . ,

@u

@xd
;

@2u

@x1@x1
, . . . ,

@2u

@x1@xd
; . . . ;�

◆
= 0, x 2 ⌦,

with suitable boundary conditions

B(u,x) = 0 on @⌦,

where B(u,x) could be Dirichlet, Neumann, Robin, or periodic boundary conditions.
For time-dependent problems, we consider time t as a special component of x, and
⌦ contains the temporal domain. The initial condition can be simply treated as a
special type of Dirichlet boundary condition on the spatio-temporal domain.

x

t

�

�

...

�

�

�

...

�

û

NN(x, t;✓)
@
@t

@2

@x2

@û
@t � �@2û

@x2

PDE(�)

I

@
@n

û(x, t)� gD(x, t)

@û
@n (x, t)� gR(u, x, t)

BC & IC

Loss ✓⇤

Tf

Tb

Minimize

Fig. 1. Schematic of a PINN for solving the di↵usion equation @u
@t = � @2u

@x2 with mixed boundary

conditions (BC) u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u
@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. The initial

condition (IC) is treated as a special type of boundary conditions. Tf and Tb denote the two sets of
residual points for the equation and BC/IC.

The algorithm of PINN [19, 30] is shown in Procedure 2.1, and visually in the

schematic of Figure 1 solving a di↵usion equation @u
@t = �@2u

@x2 with mixed boundary
conditions u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u

@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. We
explain each step as follows. In a PINN, we first construct a neural network û(x;✓)
as a surrogate of the solution u(x), which takes the input x and outputs a vector with
the same dimension as u. Here, ✓ = {W `, b`}1`L is the set of all weight matrices
and bias vectors in the neural network û. One advantage of PINNs by choosing neural

Psichogios & Ungar, 1992
Lagaris et. al., 1998
Raissi et. al., 2019

Lu et. al., 2019
Zhu et. al., 2019

Physics of AI: Two schools of thought

Physics-informed Neural Networks

DEEPXDE 3

element-wisely, the FNN is recursively defined as follows:

input layer: N 0(x) = x 2 Rdin ,

hidden layers: N `(x) = �(W `N `�1(x) + b`) 2 RN` , for 1 ` L� 1,

output layer: NL(x) = WLNL�1(x) + bL 2 Rdout ;

see also a visualization of a neural network in Figure 1. Commonly used activation
functions include the logistic sigmoid 1/(1+ e�x), the hyperbolic tangent (tanh), and
the rectified linear unit (ReLU, max{x, 0}).

2.2. Physics-informed neural networks for solving PDEs. We consider
the following PDE parameterized by � for the solution u(x) with x = (x1, . . . , xd)
defined on a domain ⌦ ⇢ Rd:

(2.1) f

✓
x;

@u

@x1
, . . . ,

@u

@xd
;

@2u

@x1@x1
, . . . ,

@2u

@x1@xd
; . . . ;�

◆
= 0, x 2 ⌦,

with suitable boundary conditions

B(u,x) = 0 on @⌦,

where B(u,x) could be Dirichlet, Neumann, Robin, or periodic boundary conditions.
For time-dependent problems, we consider time t as a special component of x, and
⌦ contains the temporal domain. The initial condition can be simply treated as a
special type of Dirichlet boundary condition on the spatio-temporal domain.

x

t

�

�

...

�

�

�

...

�

û

NN(x, t;✓)
@
@t

@2

@x2

@û
@t � �@2û

@x2

PDE(�)

I

@
@n

û(x, t)� gD(x, t)

@û
@n (x, t)� gR(u, x, t)

BC & IC

Loss ✓⇤

Tf

Tb

Minimize

Fig. 1. Schematic of a PINN for solving the di↵usion equation @u
@t = � @2u

@x2 with mixed boundary

conditions (BC) u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u
@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. The initial

condition (IC) is treated as a special type of boundary conditions. Tf and Tb denote the two sets of
residual points for the equation and BC/IC.

The algorithm of PINN [19, 30] is shown in Procedure 2.1, and visually in the

schematic of Figure 1 solving a di↵usion equation @u
@t = �@2u

@x2 with mixed boundary
conditions u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u

@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. We
explain each step as follows. In a PINN, we first construct a neural network û(x;✓)
as a surrogate of the solution u(x), which takes the input x and outputs a vector with
the same dimension as u. Here, ✓ = {W `, b`}1`L is the set of all weight matrices
and bias vectors in the neural network û. One advantage of PINNs by choosing neural

Automatic differentiation

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707.

Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on
neural networks, 9(5), 987-1000.

Psichogios, D. C., & Ungar, L. H. (1992). A hybrid neural network-first principles approach to process modeling. AIChE Journal, 38(10), 1499-1511.

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2019). DeepXDE: A deep learning library for solving differential equations. arXiv preprint arXiv:
1907.04502.

DEEPXDE 3

element-wisely, the FNN is recursively defined as follows:

input layer: N 0(x) = x 2 Rdin ,

hidden layers: N `(x) = �(W `N `�1(x) + b`) 2 RN` , for 1 ` L� 1,

output layer: NL(x) = WLNL�1(x) + bL 2 Rdout ;

see also a visualization of a neural network in Figure 1. Commonly used activation
functions include the logistic sigmoid 1/(1+ e�x), the hyperbolic tangent (tanh), and
the rectified linear unit (ReLU, max{x, 0}).

2.2. Physics-informed neural networks for solving PDEs. We consider
the following PDE parameterized by � for the solution u(x) with x = (x1, . . . , xd)
defined on a domain ⌦ ⇢ Rd:

(2.1) f

✓
x;

@u

@x1
, . . . ,

@u

@xd
;

@2u

@x1@x1
, . . . ,

@2u

@x1@xd
; . . . ;�

◆
= 0, x 2 ⌦,

with suitable boundary conditions

B(u,x) = 0 on @⌦,

where B(u,x) could be Dirichlet, Neumann, Robin, or periodic boundary conditions.
For time-dependent problems, we consider time t as a special component of x, and
⌦ contains the temporal domain. The initial condition can be simply treated as a
special type of Dirichlet boundary condition on the spatio-temporal domain.

x

t

�

�

...

�

�

�

...

�

û

NN(x, t;✓)
@
@t

@2

@x2

@û
@t � �@2û

@x2

PDE(�)

I

@
@n

û(x, t)� gD(x, t)

@û
@n (x, t)� gR(u, x, t)

BC & IC

Loss ✓⇤

Tf

Tb

Minimize

Fig. 1. Schematic of a PINN for solving the di↵usion equation @u
@t = � @2u

@x2 with mixed boundary

conditions (BC) u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u
@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. The initial

condition (IC) is treated as a special type of boundary conditions. Tf and Tb denote the two sets of
residual points for the equation and BC/IC.

The algorithm of PINN [19, 30] is shown in Procedure 2.1, and visually in the

schematic of Figure 1 solving a di↵usion equation @u
@t = �@2u

@x2 with mixed boundary
conditions u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u

@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. We
explain each step as follows. In a PINN, we first construct a neural network û(x;✓)
as a surrogate of the solution u(x), which takes the input x and outputs a vector with
the same dimension as u. Here, ✓ = {W `, b`}1`L is the set of all weight matrices
and bias vectors in the neural network û. One advantage of PINNs by choosing neural

DEEPXDE 3

element-wisely, the FNN is recursively defined as follows:

input layer: N 0(x) = x 2 Rdin ,

hidden layers: N `(x) = �(W `N `�1(x) + b`) 2 RN` , for 1 ` L� 1,

output layer: NL(x) = WLNL�1(x) + bL 2 Rdout ;

see also a visualization of a neural network in Figure 1. Commonly used activation
functions include the logistic sigmoid 1/(1+ e�x), the hyperbolic tangent (tanh), and
the rectified linear unit (ReLU, max{x, 0}).

2.2. Physics-informed neural networks for solving PDEs. We consider
the following PDE parameterized by � for the solution u(x) with x = (x1, . . . , xd)
defined on a domain ⌦ ⇢ Rd:

(2.1) f

✓
x;

@u

@x1
, . . . ,

@u

@xd
;

@2u

@x1@x1
, . . . ,

@2u

@x1@xd
; . . . ;�

◆
= 0, x 2 ⌦,

with suitable boundary conditions

B(u,x) = 0 on @⌦,

where B(u,x) could be Dirichlet, Neumann, Robin, or periodic boundary conditions.
For time-dependent problems, we consider time t as a special component of x, and
⌦ contains the temporal domain. The initial condition can be simply treated as a
special type of Dirichlet boundary condition on the spatio-temporal domain.

x

t

�

�

...

�

�

�

...

�

û

NN(x, t;✓)
@
@t

@2

@x2

@û
@t � �@2û

@x2

PDE(�)

I

@
@n

û(x, t)� gD(x, t)

@û
@n (x, t)� gR(u, x, t)

BC & IC

Loss ✓⇤

Tf

Tb

Minimize

Fig. 1. Schematic of a PINN for solving the di↵usion equation @u
@t = � @2u

@x2 with mixed boundary

conditions (BC) u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u
@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. The initial

condition (IC) is treated as a special type of boundary conditions. Tf and Tb denote the two sets of
residual points for the equation and BC/IC.

The algorithm of PINN [19, 30] is shown in Procedure 2.1, and visually in the

schematic of Figure 1 solving a di↵usion equation @u
@t = �@2u

@x2 with mixed boundary
conditions u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u

@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. We
explain each step as follows. In a PINN, we first construct a neural network û(x;✓)
as a surrogate of the solution u(x), which takes the input x and outputs a vector with
the same dimension as u. Here, ✓ = {W `, b`}1`L is the set of all weight matrices
and bias vectors in the neural network û. One advantage of PINNs by choosing neural

General formulation of PINNs

ut +Nx[u] = 0, x 2 ⌦, t 2 [0, T]

u(x, 0) = h(x), x 2 ⌦

u(x, t) = g(x, t), t 2 [0, T], x 2 @⌦
<latexit sha1_base64="UohXjcXIJLY/cMMVIp1KZsCa4JM=">AAADBHicdVJNb9QwEHXCR8sW6BaOXEasQK1YrRKESi+VKnHhBEXqtpXiKHK83qxV24lsB3UV5drf0CucuSGu/A+O/BOcj8NuW8ayNDNv5j177LQQ3Ngg+OP59+4/eLix+Wiw9fjJ0+3hzrNTk5easinNRa7PU2KY4IpNLbeCnReaEZkKdpZefGjws69MG56rE7ssWCxJpvicU2JdKtnxtnDKMq4q49RsPYDGXuNUVmWdWHgDWBK7oERUn+qkavKXdR11eAyHEIwBuwUdApgrwJ8ly8gYbBtFruIkBozXqHe7+jEEe45k0Yd7HdnlCs1/G23TmK2EXe+q6B1HK4i2nIievGXGTM362yfDUTAJWoPbTtg7I9TbcTL8i2c5LSVTlgpiTBQGhY2rRoQKVg9waVhB6AXJWORcRSQzcdW+Wg2vXGYG81y7rSy02dWOikhjljJ1lc0bmJtYk7wLi0o7P4grrorSMkU7oXkpwObQfAGYcc2oFUvnEKq5OyvQBdGEWvdR1lRS2cwkvDmB287p20kYTMIv70ZH+/10NtEL9BLtohC9R0foIzpGU0Q97V1737zv/pX/w//p/+pKfa/veY7WzP/9D9v16Dw=</latexit><latexit sha1_base64="UohXjcXIJLY/cMMVIp1KZsCa4JM=">AAADBHicdVJNb9QwEHXCR8sW6BaOXEasQK1YrRKESi+VKnHhBEXqtpXiKHK83qxV24lsB3UV5drf0CucuSGu/A+O/BOcj8NuW8ayNDNv5j177LQQ3Ngg+OP59+4/eLix+Wiw9fjJ0+3hzrNTk5easinNRa7PU2KY4IpNLbeCnReaEZkKdpZefGjws69MG56rE7ssWCxJpvicU2JdKtnxtnDKMq4q49RsPYDGXuNUVmWdWHgDWBK7oERUn+qkavKXdR11eAyHEIwBuwUdApgrwJ8ly8gYbBtFruIkBozXqHe7+jEEe45k0Yd7HdnlCs1/G23TmK2EXe+q6B1HK4i2nIievGXGTM362yfDUTAJWoPbTtg7I9TbcTL8i2c5LSVTlgpiTBQGhY2rRoQKVg9waVhB6AXJWORcRSQzcdW+Wg2vXGYG81y7rSy02dWOikhjljJ1lc0bmJtYk7wLi0o7P4grrorSMkU7oXkpwObQfAGYcc2oFUvnEKq5OyvQBdGEWvdR1lRS2cwkvDmB287p20kYTMIv70ZH+/10NtEL9BLtohC9R0foIzpGU0Q97V1737zv/pX/w//p/+pKfa/veY7WzP/9D9v16Dw=</latexit><latexit sha1_base64="UohXjcXIJLY/cMMVIp1KZsCa4JM=">AAADBHicdVJNb9QwEHXCR8sW6BaOXEasQK1YrRKESi+VKnHhBEXqtpXiKHK83qxV24lsB3UV5drf0CucuSGu/A+O/BOcj8NuW8ayNDNv5j177LQQ3Ngg+OP59+4/eLix+Wiw9fjJ0+3hzrNTk5easinNRa7PU2KY4IpNLbeCnReaEZkKdpZefGjws69MG56rE7ssWCxJpvicU2JdKtnxtnDKMq4q49RsPYDGXuNUVmWdWHgDWBK7oERUn+qkavKXdR11eAyHEIwBuwUdApgrwJ8ly8gYbBtFruIkBozXqHe7+jEEe45k0Yd7HdnlCs1/G23TmK2EXe+q6B1HK4i2nIievGXGTM362yfDUTAJWoPbTtg7I9TbcTL8i2c5LSVTlgpiTBQGhY2rRoQKVg9waVhB6AXJWORcRSQzcdW+Wg2vXGYG81y7rSy02dWOikhjljJ1lc0bmJtYk7wLi0o7P4grrorSMkU7oXkpwObQfAGYcc2oFUvnEKq5OyvQBdGEWvdR1lRS2cwkvDmB287p20kYTMIv70ZH+/10NtEL9BLtohC9R0foIzpGU0Q97V1737zv/pX/w//p/+pKfa/veY7WzP/9D9v16Dw=</latexit><latexit sha1_base64="UohXjcXIJLY/cMMVIp1KZsCa4JM=">AAADBHicdVJNb9QwEHXCR8sW6BaOXEasQK1YrRKESi+VKnHhBEXqtpXiKHK83qxV24lsB3UV5drf0CucuSGu/A+O/BOcj8NuW8ayNDNv5j177LQQ3Ngg+OP59+4/eLix+Wiw9fjJ0+3hzrNTk5easinNRa7PU2KY4IpNLbeCnReaEZkKdpZefGjws69MG56rE7ssWCxJpvicU2JdKtnxtnDKMq4q49RsPYDGXuNUVmWdWHgDWBK7oERUn+qkavKXdR11eAyHEIwBuwUdApgrwJ8ly8gYbBtFruIkBozXqHe7+jEEe45k0Yd7HdnlCs1/G23TmK2EXe+q6B1HK4i2nIievGXGTM362yfDUTAJWoPbTtg7I9TbcTL8i2c5LSVTlgpiTBQGhY2rRoQKVg9waVhB6AXJWORcRSQzcdW+Wg2vXGYG81y7rSy02dWOikhjljJ1lc0bmJtYk7wLi0o7P4grrorSMkU7oXkpwObQfAGYcc2oFUvnEKq5OyvQBdGEWvdR1lRS2cwkvDmB287p20kYTMIv70ZH+/10NtEL9BLtohC9R0foIzpGU0Q97V1737zv/pX/w//p/+pKfa/veY7WzP/9D9v16Dw=</latexit>

r✓(x, t) :=
@

@t
f✓(x, t) +Nx[f✓(x, t)]

<latexit sha1_base64="yY03LYg6yHAHT3t1MtH47E/vel8=">AAACcnicbVHRShwxFM2MVldbddQ3fYkuBUVZZqS0RRAWfPGpWHBV2BmWO9mMG0xmhuSOdDvkQ33Tf+gHNLMdpLpeCJyck5N7c5KWUhgMw0fPX1j8sLTcWVn9+GltfSPY3Lo2RaUZH7BCFvo2BcOlyPkABUp+W2oOKpX8Jr0/b/SbB66NKPIrnJY8UXCXi0wwQEeNgt9xqmptR3WME45gD5r9L3tM8ZCentE408DquASNAqR9QRRtNudxliMaK8AJA1n/aC6dCXb43tlkFHTDXjgrOg+iFnRJW5ej4DkeF6xSPEcmwZhhFJaY1M1ETHK7GleGl8Du4Y4PHcxBcZPUs4ws/eyYMc0K7VaOdMb+76hBGTNVqTvZvMC81RryPW1YYfY9qUVeVshz9q9RVrmECtoETsdCc4Zy6gAwLdyslE3AxYruW151SZV1mURvE5gH1ye9KOxFP790+1/bdDpkl+yTAxKRb6RPLsglGRBGnrwlb8MLvD/+jr/nt1H6XuvZJq/KP/4L3xG/1g==</latexit><latexit sha1_base64="yY03LYg6yHAHT3t1MtH47E/vel8=">AAACcnicbVHRShwxFM2MVldbddQ3fYkuBUVZZqS0RRAWfPGpWHBV2BmWO9mMG0xmhuSOdDvkQ33Tf+gHNLMdpLpeCJyck5N7c5KWUhgMw0fPX1j8sLTcWVn9+GltfSPY3Lo2RaUZH7BCFvo2BcOlyPkABUp+W2oOKpX8Jr0/b/SbB66NKPIrnJY8UXCXi0wwQEeNgt9xqmptR3WME45gD5r9L3tM8ZCentE408DquASNAqR9QRRtNudxliMaK8AJA1n/aC6dCXb43tlkFHTDXjgrOg+iFnRJW5ej4DkeF6xSPEcmwZhhFJaY1M1ETHK7GleGl8Du4Y4PHcxBcZPUs4ws/eyYMc0K7VaOdMb+76hBGTNVqTvZvMC81RryPW1YYfY9qUVeVshz9q9RVrmECtoETsdCc4Zy6gAwLdyslE3AxYruW151SZV1mURvE5gH1ye9KOxFP790+1/bdDpkl+yTAxKRb6RPLsglGRBGnrwlb8MLvD/+jr/nt1H6XuvZJq/KP/4L3xG/1g==</latexit><latexit sha1_base64="yY03LYg6yHAHT3t1MtH47E/vel8=">AAACcnicbVHRShwxFM2MVldbddQ3fYkuBUVZZqS0RRAWfPGpWHBV2BmWO9mMG0xmhuSOdDvkQ33Tf+gHNLMdpLpeCJyck5N7c5KWUhgMw0fPX1j8sLTcWVn9+GltfSPY3Lo2RaUZH7BCFvo2BcOlyPkABUp+W2oOKpX8Jr0/b/SbB66NKPIrnJY8UXCXi0wwQEeNgt9xqmptR3WME45gD5r9L3tM8ZCentE408DquASNAqR9QRRtNudxliMaK8AJA1n/aC6dCXb43tlkFHTDXjgrOg+iFnRJW5ej4DkeF6xSPEcmwZhhFJaY1M1ETHK7GleGl8Du4Y4PHcxBcZPUs4ws/eyYMc0K7VaOdMb+76hBGTNVqTvZvMC81RryPW1YYfY9qUVeVshz9q9RVrmECtoETsdCc4Zy6gAwLdyslE3AxYruW151SZV1mURvE5gH1ye9KOxFP790+1/bdDpkl+yTAxKRb6RPLsglGRBGnrwlb8MLvD/+jr/nt1H6XuvZJq/KP/4L3xG/1g==</latexit><latexit sha1_base64="yY03LYg6yHAHT3t1MtH47E/vel8=">AAACcnicbVHRShwxFM2MVldbddQ3fYkuBUVZZqS0RRAWfPGpWHBV2BmWO9mMG0xmhuSOdDvkQ33Tf+gHNLMdpLpeCJyck5N7c5KWUhgMw0fPX1j8sLTcWVn9+GltfSPY3Lo2RaUZH7BCFvo2BcOlyPkABUp+W2oOKpX8Jr0/b/SbB66NKPIrnJY8UXCXi0wwQEeNgt9xqmptR3WME45gD5r9L3tM8ZCentE408DquASNAqR9QRRtNudxliMaK8AJA1n/aC6dCXb43tlkFHTDXjgrOg+iFnRJW5ej4DkeF6xSPEcmwZhhFJaY1M1ETHK7GleGl8Du4Y4PHcxBcZPUs4ws/eyYMc0K7VaOdMb+76hBGTNVqTvZvMC81RryPW1YYfY9qUVeVshz9q9RVrmECtoETsdCc4Zy6gAwLdyslE3AxYruW151SZV1mURvE5gH1ye9KOxFP790+1/bdDpkl+yTAxKRb6RPLsglGRBGnrwlb8MLvD/+jr/nt1H6XuvZJq/KP/4L3xG/1g==</latexit>

We proceed by approximating u(x, t) by a deep neural network f✓(x, t), and
define the residual of the PDE as

<latexit sha1_base64="g3Odr6CDVtYyAkpjPR+5gn1uHt4=">AAACh3icbVFLa9tAEF6pryR9Oe0xl6F2IIXgSjmkOaa0hR5dqOOAZcxqNbIXr3bFPpoYod/Q39djf0TvHSs+5NGBZb6Z+YaZ/SavlXQ+SX5H8aPHT54+29nde/7i5avXvf03F84EK3AsjDL2MucOldQ49tIrvKwt8ipXOMlXnzf1yU+0Thr9w69rnFV8oWUpBfeUmvd+ZdpIXaD2MEGorRGIBeRr4DUF17Iinl7AIMurJrRHG3fdHvv3g44DBWINGoPlipy/MnYFg3LeZH6Jnt/mHwPXBfFLWhSoChadLAL1mbKLR1++AnfzXj8ZJp3BQ5BuQZ9tbTTv/ckKI0JFPxCKOzdNk9rPGm69FArbvSw4rLlY8QVOCWpeoZs1nXAtHFKmgNJYeqRAl73d0fDKuXWVE5OEWLr7tU3yf7Vp8OXZrJG6Dh61uBlUBgXewOYKUEiLwqs1AS6spF1BLLnlwtOt7kzJq5Y0Se8r8BBcnAzTZJh+P+mfn27V2WEH7B07Yin7yM7ZNzZiYybY3+ggGkSH8W78IT6Nz26ocbTtecvuWPzpH/1Vw+k=</latexit><latexit sha1_base64="g3Odr6CDVtYyAkpjPR+5gn1uHt4=">AAACh3icbVFLa9tAEF6pryR9Oe0xl6F2IIXgSjmkOaa0hR5dqOOAZcxqNbIXr3bFPpoYod/Q39djf0TvHSs+5NGBZb6Z+YaZ/SavlXQ+SX5H8aPHT54+29nde/7i5avXvf03F84EK3AsjDL2MucOldQ49tIrvKwt8ipXOMlXnzf1yU+0Thr9w69rnFV8oWUpBfeUmvd+ZdpIXaD2MEGorRGIBeRr4DUF17Iinl7AIMurJrRHG3fdHvv3g44DBWINGoPlipy/MnYFg3LeZH6Jnt/mHwPXBfFLWhSoChadLAL1mbKLR1++AnfzXj8ZJp3BQ5BuQZ9tbTTv/ckKI0JFPxCKOzdNk9rPGm69FArbvSw4rLlY8QVOCWpeoZs1nXAtHFKmgNJYeqRAl73d0fDKuXWVE5OEWLr7tU3yf7Vp8OXZrJG6Dh61uBlUBgXewOYKUEiLwqs1AS6spF1BLLnlwtOt7kzJq5Y0Se8r8BBcnAzTZJh+P+mfn27V2WEH7B07Yin7yM7ZNzZiYybY3+ggGkSH8W78IT6Nz26ocbTtecvuWPzpH/1Vw+k=</latexit><latexit sha1_base64="g3Odr6CDVtYyAkpjPR+5gn1uHt4=">AAACh3icbVFLa9tAEF6pryR9Oe0xl6F2IIXgSjmkOaa0hR5dqOOAZcxqNbIXr3bFPpoYod/Q39djf0TvHSs+5NGBZb6Z+YaZ/SavlXQ+SX5H8aPHT54+29nde/7i5avXvf03F84EK3AsjDL2MucOldQ49tIrvKwt8ipXOMlXnzf1yU+0Thr9w69rnFV8oWUpBfeUmvd+ZdpIXaD2MEGorRGIBeRr4DUF17Iinl7AIMurJrRHG3fdHvv3g44DBWINGoPlipy/MnYFg3LeZH6Jnt/mHwPXBfFLWhSoChadLAL1mbKLR1++AnfzXj8ZJp3BQ5BuQZ9tbTTv/ckKI0JFPxCKOzdNk9rPGm69FArbvSw4rLlY8QVOCWpeoZs1nXAtHFKmgNJYeqRAl73d0fDKuXWVE5OEWLr7tU3yf7Vp8OXZrJG6Dh61uBlUBgXewOYKUEiLwqs1AS6spF1BLLnlwtOt7kzJq5Y0Se8r8BBcnAzTZJh+P+mfn27V2WEH7B07Yin7yM7ZNzZiYybY3+ggGkSH8W78IT6Nz26ocbTtecvuWPzpH/1Vw+k=</latexit><latexit sha1_base64="g3Odr6CDVtYyAkpjPR+5gn1uHt4=">AAACh3icbVFLa9tAEF6pryR9Oe0xl6F2IIXgSjmkOaa0hR5dqOOAZcxqNbIXr3bFPpoYod/Q39djf0TvHSs+5NGBZb6Z+YaZ/SavlXQ+SX5H8aPHT54+29nde/7i5avXvf03F84EK3AsjDL2MucOldQ49tIrvKwt8ipXOMlXnzf1yU+0Thr9w69rnFV8oWUpBfeUmvd+ZdpIXaD2MEGorRGIBeRr4DUF17Iinl7AIMurJrRHG3fdHvv3g44DBWINGoPlipy/MnYFg3LeZH6Jnt/mHwPXBfFLWhSoChadLAL1mbKLR1++AnfzXj8ZJp3BQ5BuQZ9tbTTv/ckKI0JFPxCKOzdNk9rPGm69FArbvSw4rLlY8QVOCWpeoZs1nXAtHFKmgNJYeqRAl73d0fDKuXWVE5OEWLr7tU3yf7Vp8OXZrJG6Dh61uBlUBgXewOYKUEiLwqs1AS6spF1BLLnlwtOt7kzJq5Y0Se8r8BBcnAzTZJh+P+mfn27V2WEH7B07Yin7yM7ZNzZiYybY3+ggGkSH8W78IT6Nz26ocbTtecvuWPzpH/1Vw+k=</latexit>

Physics-informed neural networks (PINNs) aim at inferring a continuous latent
function u(x, t) that arises as the solution to a system of nonlinear partial
di↵erential equations (PDE) of the general form

<latexit sha1_base64="k4K1V+WdTsjhgiTKcGzkuIuAYBU=">AAAC2nicbVFLbxMxEPYur1JeAY5cLFKkRIJotwfgWAmQyqUKEmkrJVE068wmVvxYPDZtFOXCDXHlz3GEX4Kd5kBbRrI872/mm6pRknxR/MryGzdv3b6zc3f33v0HDx+1Hj85JhucwIGwyrrTCgiVNDjw0is8bRyCrhSeVIt3KX7yFR1Jaz77ZYNjDTMjaynAR9ek9WdkrDRTNJ7350uSgl5JU1unccoNBgcqfv7MugXxTv/j0RF1OUjNwfOYh85JM+PAhTVemmADcQU+dauDEQmC740qvQrrTvrO1y99d4/7eSwHJwmJA0UTOVkVNunexnacluRRc1tzY03aDRxvwHkZ55nKOgJHjGTgl7DZJE33/kM3VaR2MzSYZk+bTFrtoldshF9Xyq3SZlvpT1q/R1Mrgo4QQgHRsCwaP14leKFwvTsKhA2IBcxwGFUDGmm82txizV9EzzThxhdp2Hj/rViBJlrqKmZq8HO6GkvO/8WGwddvxytpmhD5FRdAdVCJsHTYSItD4dUyKiCcjLNyMQcHwsfzX0Kp9DpyUl5l4LpyvN8ri175ab998HrLzg57xp6zDivZG3bADlmfDZjIDjOTnWXn+Sj/ln/Pf1yk5tm25im7JPnPvzcg5cE=</latexit><latexit sha1_base64="k4K1V+WdTsjhgiTKcGzkuIuAYBU=">AAAC2nicbVFLbxMxEPYur1JeAY5cLFKkRIJotwfgWAmQyqUKEmkrJVE068wmVvxYPDZtFOXCDXHlz3GEX4Kd5kBbRrI872/mm6pRknxR/MryGzdv3b6zc3f33v0HDx+1Hj85JhucwIGwyrrTCgiVNDjw0is8bRyCrhSeVIt3KX7yFR1Jaz77ZYNjDTMjaynAR9ek9WdkrDRTNJ7350uSgl5JU1unccoNBgcqfv7MugXxTv/j0RF1OUjNwfOYh85JM+PAhTVemmADcQU+dauDEQmC740qvQrrTvrO1y99d4/7eSwHJwmJA0UTOVkVNunexnacluRRc1tzY03aDRxvwHkZ55nKOgJHjGTgl7DZJE33/kM3VaR2MzSYZk+bTFrtoldshF9Xyq3SZlvpT1q/R1Mrgo4QQgHRsCwaP14leKFwvTsKhA2IBcxwGFUDGmm82txizV9EzzThxhdp2Hj/rViBJlrqKmZq8HO6GkvO/8WGwddvxytpmhD5FRdAdVCJsHTYSItD4dUyKiCcjLNyMQcHwsfzX0Kp9DpyUl5l4LpyvN8ri175ab998HrLzg57xp6zDivZG3bADlmfDZjIDjOTnWXn+Sj/ln/Pf1yk5tm25im7JPnPvzcg5cE=</latexit><latexit sha1_base64="k4K1V+WdTsjhgiTKcGzkuIuAYBU=">AAAC2nicbVFLbxMxEPYur1JeAY5cLFKkRIJotwfgWAmQyqUKEmkrJVE068wmVvxYPDZtFOXCDXHlz3GEX4Kd5kBbRrI872/mm6pRknxR/MryGzdv3b6zc3f33v0HDx+1Hj85JhucwIGwyrrTCgiVNDjw0is8bRyCrhSeVIt3KX7yFR1Jaz77ZYNjDTMjaynAR9ek9WdkrDRTNJ7350uSgl5JU1unccoNBgcqfv7MugXxTv/j0RF1OUjNwfOYh85JM+PAhTVemmADcQU+dauDEQmC740qvQrrTvrO1y99d4/7eSwHJwmJA0UTOVkVNunexnacluRRc1tzY03aDRxvwHkZ55nKOgJHjGTgl7DZJE33/kM3VaR2MzSYZk+bTFrtoldshF9Xyq3SZlvpT1q/R1Mrgo4QQgHRsCwaP14leKFwvTsKhA2IBcxwGFUDGmm82txizV9EzzThxhdp2Hj/rViBJlrqKmZq8HO6GkvO/8WGwddvxytpmhD5FRdAdVCJsHTYSItD4dUyKiCcjLNyMQcHwsfzX0Kp9DpyUl5l4LpyvN8ri175ab998HrLzg57xp6zDivZG3bADlmfDZjIDjOTnWXn+Sj/ln/Pf1yk5tm25im7JPnPvzcg5cE=</latexit><latexit sha1_base64="k4K1V+WdTsjhgiTKcGzkuIuAYBU=">AAAC2nicbVFLbxMxEPYur1JeAY5cLFKkRIJotwfgWAmQyqUKEmkrJVE068wmVvxYPDZtFOXCDXHlz3GEX4Kd5kBbRrI872/mm6pRknxR/MryGzdv3b6zc3f33v0HDx+1Hj85JhucwIGwyrrTCgiVNDjw0is8bRyCrhSeVIt3KX7yFR1Jaz77ZYNjDTMjaynAR9ek9WdkrDRTNJ7350uSgl5JU1unccoNBgcqfv7MugXxTv/j0RF1OUjNwfOYh85JM+PAhTVemmADcQU+dauDEQmC740qvQrrTvrO1y99d4/7eSwHJwmJA0UTOVkVNunexnacluRRc1tzY03aDRxvwHkZ55nKOgJHjGTgl7DZJE33/kM3VaR2MzSYZk+bTFrtoldshF9Xyq3SZlvpT1q/R1Mrgo4QQgHRsCwaP14leKFwvTsKhA2IBcxwGFUDGmm82txizV9EzzThxhdp2Hj/rViBJlrqKmZq8HO6GkvO/8WGwddvxytpmhD5FRdAdVCJsHTYSItD4dUyKiCcjLNyMQcHwsfzX0Kp9DpyUl5l4LpyvN8ri175ab998HrLzg57xp6zDivZG3bADlmfDZjIDjOTnWXn+Sj/ln/Pf1yk5tm25im7JPnPvzcg5cE=</latexit>

The corresponding loss function is given by

L(✓) := Lu(✓)| {z }
Data fit

+ Lr(✓)| {z }
PDE residual

+Lu0(✓)| {z }
ICs fit

+Lub(✓)| {z }
BCs fit

<latexit sha1_base64="Zt/H4maZJMObw7Ak7O3ilQRIvyw=">AAADWXichVJdaxQxFM3sqF3Hr6199CW4CBVhmemDSkEotoKCDyt028LOsiaZO7OhmWTIR3EZ5vf5G8Qnf4Cv+mpmO5R+rHohcHLvObnJyaWV4MbG8begF966fWejfze6d//Bw0eDzcdHRjnNYMKUUPqEEgOCS5hYbgWcVBpISQUc09P9tn58BtpwJQ/tsoJZSQrJc86I9an5ZvA5lYrLDKTFhwvATGkNplIy47LAQhmDcydZS8bc4IKfgcR0GaUUCi5rInghmwj7SEtiF4yI+mOzndoFWPJ8903q/NGaasKgvkSY1+6C5DephS8W1wfEEpxzi5vmxV+Feo1wfPAO+1vzzBHxT7Gb13Gz5oAP++a/jb2WrtO+vdBib6V0JQUdpSCzzpz5YBiP4lXgmyDpwBB1MZ4PfqSZYq70X8IEMWaaxJWd1URbzgQ0UeoMVISdkgKmHkpSgpnVq1Fo8DOfyXCutF/+S1fZy4qalMYsS+qZ7ePM9VqbXFebOpu/ntVcVs6CZOeNciewVbidK5xxDcyKpQeEae7vitmCeButn74rXWjZepJcd+AmONoZJfEo+bQz3HvZudNHT9BTtI0S9ArtofdojCaIBV+Dn8Gv4HfvexiE/TA6p/aCTrOFrkS49QcieBnC</latexit><latexit sha1_base64="Zt/H4maZJMObw7Ak7O3ilQRIvyw=">AAADWXichVJdaxQxFM3sqF3Hr6199CW4CBVhmemDSkEotoKCDyt028LOsiaZO7OhmWTIR3EZ5vf5G8Qnf4Cv+mpmO5R+rHohcHLvObnJyaWV4MbG8begF966fWejfze6d//Bw0eDzcdHRjnNYMKUUPqEEgOCS5hYbgWcVBpISQUc09P9tn58BtpwJQ/tsoJZSQrJc86I9an5ZvA5lYrLDKTFhwvATGkNplIy47LAQhmDcydZS8bc4IKfgcR0GaUUCi5rInghmwj7SEtiF4yI+mOzndoFWPJ8903q/NGaasKgvkSY1+6C5DephS8W1wfEEpxzi5vmxV+Feo1wfPAO+1vzzBHxT7Gb13Gz5oAP++a/jb2WrtO+vdBib6V0JQUdpSCzzpz5YBiP4lXgmyDpwBB1MZ4PfqSZYq70X8IEMWaaxJWd1URbzgQ0UeoMVISdkgKmHkpSgpnVq1Fo8DOfyXCutF/+S1fZy4qalMYsS+qZ7ePM9VqbXFebOpu/ntVcVs6CZOeNciewVbidK5xxDcyKpQeEae7vitmCeButn74rXWjZepJcd+AmONoZJfEo+bQz3HvZudNHT9BTtI0S9ArtofdojCaIBV+Dn8Gv4HfvexiE/TA6p/aCTrOFrkS49QcieBnC</latexit><latexit sha1_base64="Zt/H4maZJMObw7Ak7O3ilQRIvyw=">AAADWXichVJdaxQxFM3sqF3Hr6199CW4CBVhmemDSkEotoKCDyt028LOsiaZO7OhmWTIR3EZ5vf5G8Qnf4Cv+mpmO5R+rHohcHLvObnJyaWV4MbG8begF966fWejfze6d//Bw0eDzcdHRjnNYMKUUPqEEgOCS5hYbgWcVBpISQUc09P9tn58BtpwJQ/tsoJZSQrJc86I9an5ZvA5lYrLDKTFhwvATGkNplIy47LAQhmDcydZS8bc4IKfgcR0GaUUCi5rInghmwj7SEtiF4yI+mOzndoFWPJ8903q/NGaasKgvkSY1+6C5DephS8W1wfEEpxzi5vmxV+Feo1wfPAO+1vzzBHxT7Gb13Gz5oAP++a/jb2WrtO+vdBib6V0JQUdpSCzzpz5YBiP4lXgmyDpwBB1MZ4PfqSZYq70X8IEMWaaxJWd1URbzgQ0UeoMVISdkgKmHkpSgpnVq1Fo8DOfyXCutF/+S1fZy4qalMYsS+qZ7ePM9VqbXFebOpu/ntVcVs6CZOeNciewVbidK5xxDcyKpQeEae7vitmCeButn74rXWjZepJcd+AmONoZJfEo+bQz3HvZudNHT9BTtI0S9ArtofdojCaIBV+Dn8Gv4HfvexiE/TA6p/aCTrOFrkS49QcieBnC</latexit><latexit sha1_base64="Zt/H4maZJMObw7Ak7O3ilQRIvyw=">AAADWXichVJdaxQxFM3sqF3Hr6199CW4CBVhmemDSkEotoKCDyt028LOsiaZO7OhmWTIR3EZ5vf5G8Qnf4Cv+mpmO5R+rHohcHLvObnJyaWV4MbG8begF966fWejfze6d//Bw0eDzcdHRjnNYMKUUPqEEgOCS5hYbgWcVBpISQUc09P9tn58BtpwJQ/tsoJZSQrJc86I9an5ZvA5lYrLDKTFhwvATGkNplIy47LAQhmDcydZS8bc4IKfgcR0GaUUCi5rInghmwj7SEtiF4yI+mOzndoFWPJ8903q/NGaasKgvkSY1+6C5DephS8W1wfEEpxzi5vmxV+Feo1wfPAO+1vzzBHxT7Gb13Gz5oAP++a/jb2WrtO+vdBib6V0JQUdpSCzzpz5YBiP4lXgmyDpwBB1MZ4PfqSZYq70X8IEMWaaxJWd1URbzgQ0UeoMVISdkgKmHkpSgpnVq1Fo8DOfyXCutF/+S1fZy4qalMYsS+qZ7ePM9VqbXFebOpu/ntVcVs6CZOeNciewVbidK5xxDcyKpQeEae7vitmCeButn74rXWjZepJcd+AmONoZJfEo+bQz3HvZudNHT9BTtI0S9ArtofdojCaIBV+Dn8Gv4HfvexiE/TA6p/aCTrOFrkS49QcieBnC</latexit>

Training via stochastic gradient descent:

✓n+1 = ✓n � ⌘r✓L(✓n)
<latexit sha1_base64="wymmur7ludfDE4q0FDa/gRgGDF4=">AAACinicbVFNa9wwEJXdr3Sbttv2WCiiS+m2JYu9hyZpKATaQw89pJBNAuvFjOVZr4g8MpIcWMz+ify7Hvsvcqy860CTdEDo6c0bzegpq5S0Lop+B+G9+w8ePtp63Huy/fTZ8/6LlydW10bgRGilzVkGFpUknDjpFJ5VBqHMFJ5m59/a/OkFGis1HbtlhbMSCpJzKcB5Ku1fJqQl5UiOHxuQJKngFxK4dVoswDopeGEgl60gRyv8/qWXZFhIakDJgj6ueolboIO0oU/xin/l3ZH4Dk884AlBpiDd0DwpwS0EqObnanit/NBLkPLr+9L+IBpF6+B3QdyBAeviKO3/SXIt6tLPJhRYO42jys0aMH56hX6+2mIF4hwKnHpIUKKdNWvvVvydZ3I+18Yv/8Y1+29FA6W1yzLzynZyezvXkv/LTWs335s1kqraIYlNo3mtuNO8/QieS4PCqaUHIIxsnfaOGxDOf9eNLlnZehLfduAuOBmP4mgU/xoPDj937myx1+wtG7KY7bJD9oMdsQkT7Cp4E7wPhuF2OA73w4ONNAy6mlfsRoTf/wJcl8ac</latexit><latexit sha1_base64="wymmur7ludfDE4q0FDa/gRgGDF4=">AAACinicbVFNa9wwEJXdr3Sbttv2WCiiS+m2JYu9hyZpKATaQw89pJBNAuvFjOVZr4g8MpIcWMz+ify7Hvsvcqy860CTdEDo6c0bzegpq5S0Lop+B+G9+w8ePtp63Huy/fTZ8/6LlydW10bgRGilzVkGFpUknDjpFJ5VBqHMFJ5m59/a/OkFGis1HbtlhbMSCpJzKcB5Ku1fJqQl5UiOHxuQJKngFxK4dVoswDopeGEgl60gRyv8/qWXZFhIakDJgj6ueolboIO0oU/xin/l3ZH4Dk884AlBpiDd0DwpwS0EqObnanit/NBLkPLr+9L+IBpF6+B3QdyBAeviKO3/SXIt6tLPJhRYO42jys0aMH56hX6+2mIF4hwKnHpIUKKdNWvvVvydZ3I+18Yv/8Y1+29FA6W1yzLzynZyezvXkv/LTWs335s1kqraIYlNo3mtuNO8/QieS4PCqaUHIIxsnfaOGxDOf9eNLlnZehLfduAuOBmP4mgU/xoPDj937myx1+wtG7KY7bJD9oMdsQkT7Cp4E7wPhuF2OA73w4ONNAy6mlfsRoTf/wJcl8ac</latexit><latexit sha1_base64="wymmur7ludfDE4q0FDa/gRgGDF4=">AAACinicbVFNa9wwEJXdr3Sbttv2WCiiS+m2JYu9hyZpKATaQw89pJBNAuvFjOVZr4g8MpIcWMz+ify7Hvsvcqy860CTdEDo6c0bzegpq5S0Lop+B+G9+w8ePtp63Huy/fTZ8/6LlydW10bgRGilzVkGFpUknDjpFJ5VBqHMFJ5m59/a/OkFGis1HbtlhbMSCpJzKcB5Ku1fJqQl5UiOHxuQJKngFxK4dVoswDopeGEgl60gRyv8/qWXZFhIakDJgj6ueolboIO0oU/xin/l3ZH4Dk884AlBpiDd0DwpwS0EqObnanit/NBLkPLr+9L+IBpF6+B3QdyBAeviKO3/SXIt6tLPJhRYO42jys0aMH56hX6+2mIF4hwKnHpIUKKdNWvvVvydZ3I+18Yv/8Y1+29FA6W1yzLzynZyezvXkv/LTWs335s1kqraIYlNo3mtuNO8/QieS4PCqaUHIIxsnfaOGxDOf9eNLlnZehLfduAuOBmP4mgU/xoPDj937myx1+wtG7KY7bJD9oMdsQkT7Cp4E7wPhuF2OA73w4ONNAy6mlfsRoTf/wJcl8ac</latexit><latexit sha1_base64="wymmur7ludfDE4q0FDa/gRgGDF4=">AAACinicbVFNa9wwEJXdr3Sbttv2WCiiS+m2JYu9hyZpKATaQw89pJBNAuvFjOVZr4g8MpIcWMz+ify7Hvsvcqy860CTdEDo6c0bzegpq5S0Lop+B+G9+w8ePtp63Huy/fTZ8/6LlydW10bgRGilzVkGFpUknDjpFJ5VBqHMFJ5m59/a/OkFGis1HbtlhbMSCpJzKcB5Ku1fJqQl5UiOHxuQJKngFxK4dVoswDopeGEgl60gRyv8/qWXZFhIakDJgj6ueolboIO0oU/xin/l3ZH4Dk884AlBpiDd0DwpwS0EqObnanit/NBLkPLr+9L+IBpF6+B3QdyBAeviKO3/SXIt6tLPJhRYO42jys0aMH56hX6+2mIF4hwKnHpIUKKdNWvvVvydZ3I+18Yv/8Y1+29FA6W1yzLzynZyezvXkv/LTWs335s1kqraIYlNo3mtuNO8/QieS4PCqaUHIIxsnfaOGxDOf9eNLlnZehLfduAuOBmP4mgU/xoPDj937myx1+wtG7KY7bJD9oMdsQkT7Cp4E7wPhuF2OA73w4ONNAy6mlfsRoTf/wJcl8ac</latexit>

*all gradients are computed
via automatic differentiation

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707.

the viscosity parameters, Burgers’ equation can lead to shock formation that
is notoriously hard to resolve by classical numerical methods. In one space
dimension, the Burger’s equation along with Dirichlet boundary conditions
reads as

ut + uux � (0.01/⇡)uxx = 0, x 2 [�1, 1], t 2 [0, 1], (3)

u(0, x) = � sin(⇡x),

u(t,�1) = u(t, 1) = 0.

Let us define f(t, x) to be given by

f := ut + uux � (0.01/⇡)uxx,

and proceed by approximating u(t, x) by a deep neural network. To highlight
the simplicity in implementing this idea we have included a Python code
snippet using Tensorflow [16]; currently one of the most popular and well
documented open source libraries for machine learning computations. To
this end, u(t, x) can be simply defined as

def u(t, x):

u = neural_net(tf.concat([t,x],1), weights, biases)

return u

Correspondingly, the physics informed neural network f(t, x) takes the form

def f(t, x):

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0]

u_xx = tf.gradients(u_x, x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

The shared parameters between the neural networks u(t, x) and f(t, x) can
be learned by minimizing the mean squared error loss

MSE = MSEu +MSEf , (4)

5

Example: Burgers’ equation in 1D

the viscosity parameters, Burgers’ equation can lead to shock formation that
is notoriously hard to resolve by classical numerical methods. In one space
dimension, the Burger’s equation along with Dirichlet boundary conditions
reads as

ut + uux � (0.01/⇡)uxx = 0, x 2 [�1, 1], t 2 [0, 1], (3)

u(0, x) = � sin(⇡x),

u(t,�1) = u(t, 1) = 0.

Let us define f(t, x) to be given by

f := ut + uux � (0.01/⇡)uxx,

and proceed by approximating u(t, x) by a deep neural network. To highlight
the simplicity in implementing this idea we have included a Python code
snippet using Tensorflow [16]; currently one of the most popular and well
documented open source libraries for machine learning computations. To
this end, u(t, x) can be simply defined as

def u(t, x):

u = neural_net(tf.concat([t,x],1), weights, biases)

return u

Correspondingly, the physics informed neural network f(t, x) takes the form

def f(t, x):

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0]

u_xx = tf.gradients(u_x, x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

The shared parameters between the neural networks u(t, x) and f(t, x) can
be learned by minimizing the mean squared error loss

MSE = MSEu +MSEf , (4)

5

Physics-informed Neural Networks

the viscosity parameters, Burgers’ equation can lead to shock formation that
is notoriously hard to resolve by classical numerical methods. In one space
dimension, the Burger’s equation along with Dirichlet boundary conditions
reads as

ut + uux � (0.01/⇡)uxx = 0, x 2 [�1, 1], t 2 [0, 1], (3)

u(0, x) = � sin(⇡x),

u(t,�1) = u(t, 1) = 0.

Let us define f(t, x) to be given by

f := ut + uux � (0.01/⇡)uxx,

and proceed by approximating u(t, x) by a deep neural network. To highlight
the simplicity in implementing this idea we have included a Python code
snippet using Tensorflow [16]; currently one of the most popular and well
documented open source libraries for machine learning computations. To
this end, u(t, x) can be simply defined as

def u(t, x):

u = neural_net(tf.concat([t,x],1), weights, biases)

return u

Correspondingly, the physics informed neural network f(t, x) takes the form

def f(t, x):

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0]

u_xx = tf.gradients(u_x, x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

The shared parameters between the neural networks u(t, x) and f(t, x) can
be learned by minimizing the mean squared error loss

MSE = MSEu +MSEf , (4)

5

where

MSEu =
1

Nu

NuX

i=1

|u(tiu, x
i
u) � ui

|
2,

and

MSEf =
1

Nf

NfX

i=1

|f(tif , x
i
f)|

2.

Here, {tiu, x
i
u, u

i
}

Nu
i=1 denote the initial and boundary training data on u(t, x)

and {tif , x
i
f}

Nf

i=1 specify the collocations points for f(t, x). The loss MSEu

corresponds to the initial and boundary data while MSEf enforces the struc-
ture imposed by equation (3) at a finite set of collocation points.

In all benchmarks considered in this work, the total number of training
data Nu is relatively small (a few hundred up to a few thousand points), and
we chose to optimize all loss functions using L-BFGS; a quasi-Newton, full-
batch gradient-based optimization algorithm [17]. For larger data-sets a more
computationally e�cient mini-batch setting can be readily employed using
stochastic gradient descent and its modern variants [18, 19]. Despite the
fact that there is no theoretical guarantee that this procedure converges to
a global minimum, our empirical evidence indicates that, if the given partial
di↵erential equation is well-posed and its solution is unique, our method is
capable of achieving good prediction accuracy given a su�ciently expressive
neural network architecture and a su�cient number of collocation points Nf .
This general observation deeply relates to the resulting optimization land-
scape induced by the mean square error loss of equation 4, and defines an
open question for research that is in sync with recent theoretical develop-
ments in deep learning [20, 21]. Here, we will test the robustness of the
proposed methodology using a series of systematic sensitivity studies that
accompany the numerical results presented in the following.

Figure 1 summarizes our results for the data-driven solution of the Burg-
ers equation. Specifically, given a set of Nu = 100 randomly distributed
initial and boundary data, we learn the latent solution u(t, x) by training all
3021 parameters of a 9-layer deep neural network using the mean squared
error loss of (4). Each hidden layer contained 20 neurons and a hyperbolic
tangent activation function. In general, the neural network should be given
su�cient approximation capacity in order to accommodate the anticipated

6

Physics-informed Neural Networks

0.0 0.2 0.4 0.6 0.8

t

�1.0

�0.5

0.0

0.5

1.0

x

u(t, x)

Data (100 points)

�0.75
�0.50
�0.25
0.00
0.25
0.50
0.75

�1 0 1

x

�1

0

1

u
(
t,

x
)

t = 0.25

�1 0 1

x

�1

0

1

u
(
t,

x
)

t = 0.50

Exact Prediction

�1 0 1

x

�1

0

1

u
(
t,

x
)

t = 0.75

Figure 1: Burgers’ equation: Top: Predicted solution u(t, x) along with the initial and

boundary training data. In addition we are using 10,000 collocation points generated using

a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact

solutions corresponding to the three temporal snapshots depicted by the white vertical

lines in the top panel. The relative L2 error for this case is 6.7 ·10
�4

. Model training took

approximately 60 seconds on a single NVIDIA Titan X GPU card.

ical law through the collocation points Nf , one can obtain a more accurate
and data-e�cient learning algorithm.1 Finally, table 2 shows the resulting
relative L2 for di↵erent number of hidden layers, and di↵erent number of
neurons per layer, while the total number of training and collocation points
is kept fixed to Nu = 100 and Nf = 10, 000, respectively. As expected, we
observe that as the number of layers and neurons is increased (hence the
capacity of the neural network to approximate more complex functions), the

1
Note that the case Nf = 0 corresponds to a standard neural network model, i.e., a

neural network that does not take into account the underlying governing equation.

8

Physics-informed Neural Networks

Physics-informed Neural Networks

First release: 30 January 2020 www.sciencemag.org (Page numbers not final at time of first release) 7

on February 4, 2020

http://science.sciencem
ag.org/

D
ow

nloaded from

Physics-informed neural networks

Raissi, M., Yazdani, A., & Karniadakis, G. E. (2020). Hidden fluid mechanics: Learning velocity and pressure
fields from flow visualizations. Science.

Extensions to CNNs and GCNs

Zhu, Y., Zabaras, N., Koutsourelakis, P. S., & Perdikaris, P. (2019). Physics-constrained deep learning for high-dimensional surrogate modeling
and uncertainty quantification without labeled data. Journal of Computational Physics, 394, 56-81.

However, note that solving nonlinear PDEs with the Newton solver requires
N iterations, thus increasing the computation by N times. For surrogate
modeling, the mapping that the CNN learns from K to u is nonlinear even
when the PDE to solve is linear. We expect it will be easier to learn a
surrogate in the nonlinear case due to the smoother output fields. We leave
further investigation of surrogate modeling and uncertainty quantification for
nonlinear stochastic PDEs for our future work.

4.2. Deterministic Surrogate

The experiments in solving deterministic PDEs lead us to choose CNNs
over FC-NNs for surrogate modeling, with less training time and comparable
accuracy, especially for high-dimensional input. We train both the physics-
constrained surrogates and data-driven surrogates, and compare their accu-
racy and generalizability.

Figure 6: Dense convolutional encoder-decoder network as the deterministic surrogate.

The model’s input is the realization of a random field, the model’s output is the prediction

for each input field including 3 output fields, i.e. pressure and two flux fields. The model

is trained with physics-constrained loss without target data.

Network. Dense convolutional encoder-decoder network [9] is used as the sur-
rogate model, with one input channel x and three output channels [u, ⌧1, ⌧2],
as shown in Fig. 6. The upsampling method in the decoding layers in the cur-
rent implementation is nearest upsampling followed by convolution, di↵erent
from transposed convolution used in the data-driven case. This is essential

22

where N is a general di↵erential operator, u(s) are the field variables of
interest, f(s) is the source field, and K(s) denotes an input property field
defining the system’s constitutive behavior. B is the operator for boundary
conditions defined on the boundary � of the domain S. In particular, we con-
sider the following Darcy flow problem as a motivating example throughout
this paper:

�r · (K(s)ru(s))) = f(s), s 2 S, (2)

with boundary conditions

u(s) = uD(s), s 2 �D,

ru(s) · n = g(s), s 2 �N ,
(3)

where n is the unit normal vector to the Neumann boundary �N , �D is the
Dirichlet boundary.

Of particular interest are PDEs for which the field variables can be com-
puted by appropriate minimization of a field energy functional (potential)
V (u; K), i.e.

arg min
u

V (u; K). (4)

Such potentials are common in many linear and nonlinear problems in physics
and engineering and serve as the basis of the finite element method. For
problems where such potentials cannot be found [46], one can consider V
as the square of the residual norm of the PDE evaluated at di↵erent trial
solutions, e.g.

V (u; K) = R2 (u; K) . (5)

In this paper, we are interested in the solution of parametric PDEs for a
given set of boundary conditions.

Definition 2.1 (Solution of a deterministic PDE system). Given the poten-
tial V (u; K), and the boundary conditions in Eq. (3), compute the solution
u(s) of the PDE for a given input field K(s).

The input field K(s) is often modeled as a random field K(s, !) in
the context of uncertainty quantification, where ! denotes a random event
in the sample space ⌦. In practice, discretized versions of this field are
employed in computations which is denoted as the random vector x, i.e.
x = [K(s1), · · · , K(sns)]. We note that when fine-scale fluctuations of the
input field K are present, the dimension ns of x can become very high. Let
p(x) be the associated density postulated by mathematical considerations or

5

where N is a general di↵erential operator, u(s) are the field variables of
interest, f(s) is the source field, and K(s) denotes an input property field
defining the system’s constitutive behavior. B is the operator for boundary
conditions defined on the boundary � of the domain S. In particular, we con-
sider the following Darcy flow problem as a motivating example throughout
this paper:

�r · (K(s)ru(s))) = f(s), s 2 S, (2)

with boundary conditions

u(s) = uD(s), s 2 �D,

ru(s) · n = g(s), s 2 �N ,
(3)

where n is the unit normal vector to the Neumann boundary �N , �D is the
Dirichlet boundary.

Of particular interest are PDEs for which the field variables can be com-
puted by appropriate minimization of a field energy functional (potential)
V (u; K), i.e.

arg min
u

V (u; K). (4)

Such potentials are common in many linear and nonlinear problems in physics
and engineering and serve as the basis of the finite element method. For
problems where such potentials cannot be found [46], one can consider V
as the square of the residual norm of the PDE evaluated at di↵erent trial
solutions, e.g.

V (u; K) = R2 (u; K) . (5)

In this paper, we are interested in the solution of parametric PDEs for a
given set of boundary conditions.

Definition 2.1 (Solution of a deterministic PDE system). Given the poten-
tial V (u; K), and the boundary conditions in Eq. (3), compute the solution
u(s) of the PDE for a given input field K(s).

The input field K(s) is often modeled as a random field K(s, !) in
the context of uncertainty quantification, where ! denotes a random event
in the sample space ⌦. In practice, discretized versions of this field are
employed in computations which is denoted as the random vector x, i.e.
x = [K(s1), · · · , K(sns)]. We note that when fine-scale fluctuations of the
input field K are present, the dimension ns of x can become very high. Let
p(x) be the associated density postulated by mathematical considerations or

5

Differentiable Physics-informed Graph Networks

Sungyong Seo
1

Yan Liu
1

Abstract

While physics conveys knowledge of nature built
from an interplay between observations and the-
ory, it has been considered less importantly in
deep neural networks. Especially, there are few
works leveraging physics behaviors when the
knowledge is given less explicitly. In this work,
we propose a novel architecture called Differen-
tiable Physics-informed Graph Networks (DPGN)
to incorporate implicit physics knowledge which
is given from domain experts by informing it in
latent space. Using the concept of DPGN, we
demonstrate that climate prediction tasks are sig-
nificantly improved. Besides the experiment re-
sults, we validate the effectiveness of the pro-
posed module and provide further applications of
DPGN, such as inductive learning and multistep
predictions.

1. Introduction

Modeling natural phenomena in the real-world, such as
climate, traffic, molecule, and so on, is extremely chal-
lenging but important. Deep learning has achieved signifi-
cant successes in prediction performance by learning latent
representations from data-rich applications such as speech
recognition (Hinton et al., 2012), text understanding (Wu
et al., 2016), and image recognition (Krizhevsky et al.,
2012). While the accuracy and efficiency of data-driven
deep learning models can be improved with ad-hoc archi-
tectural changes for specific tasks, we are confronted with
many challenging learning scenarios in modeling natural
phenomenon, where a limited number of labeled examples
are available or there is much noise in the data. Furthermore,
there could be constant changes in data distributions (e.g.
dynamic systems). Therefore, there is a pressing need to de-
velop new generation “deeper” and robust learning models
that can address these challenging learning scenarios.

Physics is one of the fundamental pillars describing how the
real-world behaves. It is imperative that physics-informed

1Department of Computer Science, University of Southern
California, Los Angeles, USA. Correspondence to: Sungyong Seo
<sungyons@usc.edu>.

! ! + ∆!

Known
physics

Unknown
physics

Graph
Networks

Physics
Constraint

! ! + ∆!

Modeling

Figure 1. Concept of the proposed DPGN. The behaviors of se-
quential observations (Temperature) are governed by physics rules.
Some of the physics rules are known and we inject them into a
model explicitly. The remained unknown patterns will be extracted
from data.

learning models are powerful solutions to modeling natural
phenomena. Incorporating domain knowledge has several
benefits: first, it helps an optimized solution to be more
stable and to prevent overfitting; second, it provides theoret-
ical guidance with which an effective model is supposed to
follow and thus, helps training with less data; lastly, since a
model is driven by the desired knowledge, it would be more
robust to unseen data, and thus it is easier to be extended to
applications with changing distributions.

In the meanwhile, there exist a series of challenges when we
incorporate physics principles into machine learning mod-
els. First, a model needs to be able to properly handle the
spatial and temporal constraints. Many physics equations
demonstrate how a set of physical quantities behaves over
time and space. For example, the wave equation describes
how a signal is propagated through a medium over time.
Second, the model should capture relations between objects,
such as image patches (Santoro et al., 2017) or rigid bod-
ies (Battaglia et al., 2016; Chang et al., 2017). Third, the
learning modules should be common for all objects because
physical phenomena apply to all objects. Finally, the model
should be flexible to extract unknown patterns instead of be-
ing strictly constrained to physics knowledge. Since it is not
always possible to describe all rules governing real-world
data, data-driven learning is required to fill the gap between
the known physics and real observations.

ar
X

iv
:1

90
2.

02
95

0v
2

 [c
s.L

G
]

11
 F

eb
 2

01
9

Differentiable Physics-informed Graph Networks

! Encoder ℋ GN ℋ′ !$′Decoder

x T
Physics equation Supervised Loss

!′

Figure 3. Recurrent architecture to incorporate physics equation on GN. The blue blocks have learnable parameters and the orange blocks
are objective functions. The middle core block can be repeated as many as the required time steps (T).

Table 2. Examples of dynamic physics in GN

Updating function Physics example

v0
i = vi + ↵�v(vi, {vj:(i,j)2E})
= vi + ↵(�v)i

u̇ = ↵r2u

(Diffusion eqn.)

v00
i = 2v0

i � vi + c2�v(v0
i, {v0

j:(i,j)2E})
= 2v0

i � vi + c2(�v0)i

ü = c2r2u

(Wave eqn.)

understand that there are a number of physics equations
involved in climate observations, it is almost infeasible to
include all required equations for modeling the observations.
Thus, it is necessary to utilize the learnable parameters in
GN to extract latent representations in the data. Then, some
known physics knowledge will be incorporated with the
latent representations.

Forward/Recurrent computation Figure 3 provides
how the desired physics knowledge is integrated with the
learnable GN. Given a graph G = {v, e, c,u}, it is fed into
an encoder which transforms a set of attributes of nodes (v),
edges (e), 3-cliques (c), and a whole graph (u) into latent
spaces.

ṽ, ẽ, c̃, ũ = Encoder(v, e, c,u) (3)

After the encoder, the encoded graph H = {ṽ, ẽ, c̃, ũ} is
repeatedly updated within the core block as many as the
required time steps T . For each step, H is updated to H

0

which denotes the next state of the encoded graph.

H
0 = GN(H) (4)

Finally, the sequentially updated attributes are re-
transformed to the original spaces by a decoder.

v0, e0, c0,u0 = Decoder(ṽ0, ẽ0, c̃0, ũ0) (5)

Objective functions There are two types of objective
function in this architecture. First, we define physics-
informed constraints (Equation 6) between the previous

and updated states based on the known knowledge.

L
i
phy = fphy(Hi,H

0
i+1, · · · ,H

0
i+M�1) (6)

Lphy =
X

i

L
i
phy (7)

where L
i
phy is the physics-informed quantity from the input

at time step i to the predicted M � 1 steps. For example, if
we are aware that the observations should have a diffusive
property, the diffusion equation can be used as the physics-
informed constraint.

fphy(H,H0) = kv0
� v � ↵r2vk2

Secondly, the supervised loss function between the predicted
graph, Ĝ0, and the target graph, G0. This loss function is
constructed based on the task, such as the cross-entropy or
the mean squared error (MSE).

Finally, the total objective function is a sum of the two
constraints:

L = Lsup + �Lphy (8)

where � controls the importance of the physics term.

5. Experiment

In this section, we evaluate DPGN on both a synthetic
dataset and a real-world climate dataset over the Southern
California region.

5.1. Synthetic Data

First, we explore whether physics constraints in DPGN is
powerful to infer physics behaviors/patterns. Here we gen-
erate dynamical sequences based on the analytical solutions
of two physics equations, a) the diffusion equation and b)
the wave equation (See Table 2). For the diffusion equation,
we randomly pick a node to assign initially localized heat
source and set other nodes with zero values. For the wave
equation, we put a pulse signal at the end of a given path.
Then, we train DPGN by minimizing the physics constraint
term (Equation 7) only and any single target value is not
used to optimize the supervised loss.

To visually evaluate DPGN, we generated two sequences of
snapshots based on the trained DPGN. Figure 4 illustrates

Differentiable Physics-informed Graph Networks

t = 1 t = 2 t = 3 t = 4

t = 1 t = 2 t = 3 t = 4

Figure 4. Heat and wave dynamics on a graph.

how the heat (Top) on a vertex is dissipated and the pulse
(Bottom) is propagated along the graph. These sequences
show that the desired dynamics can be extracted by the
physics knowledge without optimizing supervised loss, and
thus, it shows that physics knowledge can be beneficial.

5.2. Climate Data

We found that the simulated climate observations over 16
days around the Southern California region (Zhang et al.,
2018) by using the Weather Research and Forecasting
(WRF) model (Skamarock et al., 2008). In this dataset,
the region (Latitude: 32.22 to 35.14, Longitude: -119.59
to -116.29) is divided into 18,189 grid patches and the ob-
servations are recorded hourly. We provide the details in
Appendix.

Figure 5. Southern CA region

LA area

SD area

Instead of using all patches at once, we sampled two subsets
of the patches, Los Angeles and San Diego areas (Figure 5),
for training DPGN. To build a graph, we considered each
patch as a vertex (similar to Santoro et al. (2017)) and con-
nect a pair of adjacent pixels to define an edge.

The vertex attributes consist of 10 climate observations, Air
temperature, Albedo, Precipitation, Soil moisture, Relative
humidity, Specific humidity, Surface pressure, Planetary
boundary layer height, and Wind vector (2 directions). Al-
though the edge attributes are not given, we could specify
the type of each edge by using the type of connected patches.
There are 13 different land-usage types and each type sum-

marizes how the corresponding land is used. For example,
some patches are classified as commercial/industrial land
(e.g., Downtown LA) but some other patches are grassland.
Based on the type of connected patches, we assigned differ-
ent embedding vectors to edges.

5.3. DPGN architecture

As explained in Section 4, DPGN consists of three modules,
the graph encoder, the GN block, and the graph decoder
(Figure 3). The encoder contains two feed forward networks,
�e and �v, applied to node and edge features, respectively.
By passing the encoder, the features are mapped to the latent
space (H) where we will constrain physics equations to the
hidden representations.

In the GN block, the node/edge/graph features are updated
by the GN algorithm in Sanchez-Gonzalez et al. (2018).
Here we assume that there is no curl-related constrain for
modeling the climate observations. The latent graph states,
H and H

0, indicate the hidden states of the current and next
observations. For the physics constraint, we informed the
diffusion equation in Table 2, which describes the behavior
of the continuous physical quantities resulting from the ran-
dom movement. As the most of the climate observations are
varying continuously, the diffusion equation is one of the
equations that should be considered for modeling. Note that
the physics law is not directly applied to the input observa-
tions, but rather to the latent representations. It is desired
setting because it is hard to specify which observations are
following the law explicitly and how much the diffusivities
are. For example, wind vectors and surface pressure are
highly probable to follow the diffusive property but they
should have different behaviors. Thus, instead of individ-
ually applying the equation to each observation, it is more
efficient to introduce the constraint on the latent represen-
tations. The state-updating process is repeated at least as
many as the order of temporal derivatives in Equation 2 to
provide the finite difference equation. For multistep predic-
tions, the recurrent module can be repeated more and the
physics equation needs to be applied multiple times as well.

Finally, the decoder takes H
0 as input to return the next

predictions. The following objective function is the generic
total loss function of DPGN with the diffusion equation.

L =
TX

i=1

kŷi � yik
2 + �

T�M+1X

i=1

kṽi � ṽi�1 � ↵r2ṽi�1k
2

(9)

where y is a vector of the target observations and ↵ adjusts
the diffusivity of the latent physics quantities. Note that ṽ0

is the latent node representation of the input v and ṽi:i>0

are the updated latent representations in the GN block.

Seo, S., & Liu, Y. (2019). Differentiable physics-informed graph networks. arXiv preprint arXiv:1902.02950.

Sahli Costabal et al. Physics-Informed Neural Networks for Cardiac Activation Mapping

FIGURE 5 | Correlation of uncertainty and error. For the benchmark problem, trained with 30 samples, the computed entropy tends to be higher at regions where the

error is higher and the points of maximum entropy and maximum error (!) are co-located. The black circles indicate the sampling locations.

FIGURE 6 | Benchmark problem and active learning. We perform 30 simulations of active learning with different initial samples and compare them against a Latin

hypercube design. In the middle and right box plots, we observe a significant reduction in activation time normalized root mean squared error (p < 10−7) and in

conduction velocity normalized mean absolute error (p < 0.015) when using the active learning algorithm.

additional samples. We also train 30 models whereN samples are
placed using a Latin hypercube design for N = {20, 30, 40, 50}.
Figure 6 summarizes the performance of our active learning
algorithm. We observe that the active learning strategy quickly
reduces the error until a total of 20 samples are obtained. Then,
the error reduction is slower and reaches an asymptote. However,
when we compare it to the Latin hypercube design, we see that
the error is smaller in all cases. We test this hypothesis with the
Mann-Whithney test [31] and obtain a significant difference for
all cases, both in activation time (p < 10−7) and in conduction
velocity (p < 0.015). The error in the conduction velocity is
higher than for the activation time in all cases. This difference
may be explained by the difficulty in capturing the discontinuity
of the conduction velocity set in the example. A small difference
in where the different conduction velocity regions are identified
can cause a large error.

3.4. Left Atrium
To test our model in three dimensions, we studying the
electrophysiology of the left atrium. We obtain the mesh from

one of the examples of theMICCAI challenge dataset [32] created
from magnetic resonance imaging. We use the monodomain
model for the tissue and the Fenton Karma model for cells
under the MLR1 conditions [33]. We use the open-source
software cbcbeat [34] to perform the simulation. We consider
two cases, one where the conductivity is homogeneous at 0.1
mm2/ms in the entire domain and one where it is heterogeneous
such that half of the domain has a reduced conductivity of
0.05 mm2/ms. In both cases, we initiate the activation at the
center of the septum. We define the activation time as the
time at which the transmembrane potential reaches 0 mV. We
then compute the conduction velocity as V = 1/‖∇ T|, and
approximate the gradient of the activation time with a finite-
element approximation constructed based on the triangular
mesh. For the neural network, we use the same parameters as
before, except that we now use seven layers of 20 neurons for the
activation time network and a maximum conduction velocity of
Vmax = 1 m/s. We consider two experiments.

In the first experiment, we set the number of samples by the
optimal density [2], which corresponds to 1.05 samples/cm2. We

Frontiers in Physics | www.frontiersin.org 7 February 2020 | Volume 8 | Article 42

Physics-informed deep learning in cardiac electrophysiology
Sahli Costabal et al. Physics-Informed Neural Networks for Cardiac Activation Mapping

FIGURE 1 | Physics-informed neural networks for activation mapping. We use two neural networks to approximate the activation time T and the conduction velocity

V. We train the networks with a loss function that accounts for the similarity between the output of the network and the data, the physics of the problem using the

Eikonal equation, and the regularization terms.

the following minimization problem to train the neural networks
and find the optimal parameters:

argmin
(

θT ,θV
)

L(θT , θV) (7)

2.2. Uncertainty Quantification
We will be interested in quantifying the uncertainty in our
predictions to both inform physicians about the quality of
the estimates as well as to use active learning techniques to
judiciously acquire new measurements. Given the large number
of parameters in neural networks, using gold-standard methods
for Bayesian inference, such as Markov Chain Monte Carlo,
is prohibitively expensive. Instead, we borrow ideas from deep
reinforcement learning and use randomized prior functions [16]
to quantify the epistemic/model uncertainty associated with our
neural network predictions. The key idea is to introduce an
additional neural network with the same architecture, such that:

T(x) ≈ NNT(x, θT)+ NNT(x, θ̃T) (8)

V(x) ≈ NNV (x, θV)+ NNV (x, θ̃V) (9)

We draw the parameters θ̃T , θ̃V from a prior distribution and
keep them fixed during the training process. In this approach,
a mean squared loss is equivalent to a normal likelihood for
the data and the L2 regularization is equivalent to a zero mean
normal prior for the neural network parameters. It can be shown
that training the parameters to minimize the loss is equivalent
to generating samples from a posterior distribution p(θ |D) when
using a linear regressor [16]. To account for uncertainty in our
predictions, we use an ensemble of neural networks initialized

with different prior functions defined by the parameters θ̃T , θ̃V ,
which we randomly sample with Glorot initialization [20].
Additionally, we perturb our data with Gaussian noise with
variance σ 2

N to train each network of the ensemble with a slightly
different dataset. Our final prediction is obtained as the mean
output of the ensemble of neural networks.

2.3. Active Learning
We take advantage of the uncertainty estimates described in the
previous section to create an adaptive sampling strategy. We
start with a small number of randomly located samples, fit our
model, and then acquire the next measurement at the point that
we estimate to reduce the predictive model error the most. We
iteratively fit themodel and acquire samples until we reach a user-
defined convergence or until we exceed our budget or time to
acquire new data. Since the exact predictive error is unknown,
there are several heuristics to determine where to place the next
sample. A common approach is to select the location where the
uncertainty is the highest, which we can quantify by evaluating
the entropy of the posterior distribution p(T|D) [21]. We can
view the entropy as negative information and, in the case of a
Gaussian posterior, it is proportional to the variance, which has
also been proposed for active learning [22]. In our computational
experiments, we observe that the predictive posterior distribution
p(T|D) is generally not Gaussian and we opt to use a non-
parametric estimator for the entropy [23, 24]. This is likely
induced by the discrete jumps in conduction velocity that are
a result of the total variation regularization term. Algorithm 1
summarizes the procedure. Since the initial predictions will be
inaccurate due to the lack of data, it is not necessary to train the
neural network completely to obtain the uncertainty estimates

Frontiers in Physics | www.frontiersin.org 3 February 2020 | Volume 8 | Article 42

Sahli Costabal et al. Physics-Informed Neural Networks for Cardiac Activation Mapping

FIGURE 9 | Evolution of active learning for the heterogeneous case with partly reduced conductivity. The top two rows show the activation times for different sample

densities and the ground truth for two different views. The bottom rows represent the conduction velocity.

In the future, we could easily accelerate this process by using
graphic processing units or other dedicated hardware to train
neural networks. If this is still not sufficient and samples
can arrive faster than the training speed, we could extend
the algorithm to make multiple recommendations for sample
locations or simply gather more samples randomly in the vicinity
of the current recommendation. Even though our method is
computationally more expensive than other alternatives, the
gains in accuracy could lead to reduction in procedural times for
the patient, which outweighs the cost of training the model. Our
methodology displays remarkable consistency and robustness
and achieving similar error levels, irrespective of the initial set
of samples.

Even though our method shows promising results when
compared to existing solutions, it displays some limitations.
First, we have ignored the anisotropy in conduction of cardiac
tissue [19, 37]. However, we could easily use the anisotropic
Eikonal equation in our loss and estimate fiber and cross-fiber
conduction velocities. This would require information of the
fiber orientations in the atria and ventricles. There are several

methodologies to incorporate this information with ruled-based
approaches [38, 39] and mapping techniques [40, 41]. On the
estimation of uncertainties, we see two limitations: First, we
have not included the noise that is generated by the acquisition
of the activation times with the electrode. We can incorporate
this source of uncertainty by estimating some variance in the
activation times [3] and include it in the Gaussian perturbation
σN that we use in the randomized prior functions. Second, our
uncertainty estimates are only approximations, since the true
uncertainties depend on the geodesic distance between points
on the manifold and not on the Euclidean distance in R3,
which we have used to parametrize this problem [3, 42]. We
can address this limitation by using more complex architectures,
such as convolutional neural networks on graphs [43], which
we plan to explore in the future. However, empirically, we
see that active learning works well with this approximation.
Finally, we have only tested our method with synthetic data and
additional challenges could arise when applying it to real clinical
data. We expect that the method will perform well for focal
activations and macro re-entry tachycardia [2]. For localized

Frontiers in Physics | www.frontiersin.org 10 February 2020 | Volume 8 | Article 42

Sahli Costabal et al. Physics-Informed Neural Networks for Cardiac Activation Mapping

and start the active learning process. We can train the model
and acquire data in parallel, as the prediction step and the
entropy computation are of negligible computational cost. Here,
we iteratively refine the predictions and the uncertainty estimates
as more data become available and the model is trained.

Algorithm 1: Active learning algorithm to iteratively
identify the most efficient sampling points

Given: number of initial samples Ninit , number of active
learning samples NAL, set of candidate locations Xcand,
number of initial training iterationsMinit , number of active
learning training iterationsMAL, and empty sets X and T

that contain locations and activations times:
Randomly select Ninit samples from Xcand

Remove the Ninit samples from Xcand and add them to X
Acquire the values of the activation times at the Ninit

locations and add them to T
Initialize the model and train it using the ADAM optimizer
[25] forMinit iterations.
for i = {1,NAL} do

compute entropy H(Xcand)
find the new location of maximum entropy:
argmaxx∈Xcand

H(x)
remove x from Xcand and add it to X
acquire activation time at x and add it to T train the
model using ADAM [25] forMAL iterations.

end

2.4. Application to Surfaces From
Electro-Anatomic Mapping
During electro-anatomic mapping, data can only be acquired
on the cardiac surface, either of the ventricles or the atria. We
thus represent the resulting map as a surface in three dimensions
and neglect the thickness of the atrial wall. This is a reasonable
assumption since the thickness-to-diameter ratio of the atria is in
the order of 0.05. Our assumption implies that the electrical wave
can only travel along the surface and not perpendicular to it. To
account for this constraint, we include an additional loss term:

LN = αN
1

NR

NR
∑

i=1

(

∇T(xi) · N i
)2

(10)

This form favors solutions where the activation time gradients
are orthogonal to the surface normal N i. To implement this
constraint, we assume a triangular discretization of either
the left or right atrium, which we obtain from magnetic
resonance imaging or computed-tomography imaging. We can
then compute a surface normal N i for each triangle. We define
the NR collocation points as the centroids of each triangle in the
mesh xi. We enforce this constraint weakly by adding a factor αN .
If the gradient of the activation times were exactly orthogonal to
the triangle normals, it would force a linear interpolation between
mesh nodes in the neural network, which is not desirable and
unlikely attainable.

2.5. Implementation and Training
We implement all models in Tensorflow [26] and use the
Tensorflow ADAM optimizer [25] with default parameters and
a learning rate of 0.001. For the NR collocation points, we use
a minibatch implementation, in which we use a subset of all
available collocation points to compute the loss function and
its gradient. For the two-dimensional benchmark problem, we
randomly sampleNmb points using a Latin hypercube design [27]
and use them as collocation points. For the three-dimensional
left atrium, we shuffle the order of the triangles in the mesh
and divide them into batches of size Nmb. For each iteration,
we use the centroid locations of the triangles of one of these
batches as collocation points and loop through them as the
optimization progresses.

3. NUMERICAL EXPERIMENTS

In this section, we explore our method using a two-dimensional
benchmark problem and a three-dimensional personalized
left atrium. We also quantify the effectiveness of the active
learning algorithm.

3.1. Benchmark Problem
To characterize the performance of the proposed model, we
design a synthetic benchmark problem that analytically satisfies
the Eikonal equation. We introduce a discontinuity in the
conduction velocity and collision of two wavefronts in the
following form:

T(x, y) = min

(

√

x2 + y2, 0.7
√

(x− 1)2 + (y− 1)2
)

(11)

V(x, y) =

{

1.0 if
√

x2 + y2 < 0.7
√

(x− 1)2 + (y− 1)2

1.0
0.7 otherwise

(12)

with x, y ∈ [0, 1]. Figure 2, left, illustrates the exact mapping
of the activation times and conduction velocity. We generate
N = 50 samples with a Latin hypercube design and train our
model. We only have data on the activation times and we predict
both the activation times and the conduction velocity. We use 5
hidden layers with 20 neurons each for the activation time neural
network and 5 hidden layers with 5 neurons each for conduction
velocity neural network. We perform a sensitivity study for αTV

and αL2 and then select them to αTV = 10−7 and αL2 = 10−9

while keeping all other parameters fixed. We train the network
for 50,000 ADAM iterations with a batch size Nmb = 100 and
then train with the L-BFGS method [28].

We compare our method against three other methodologies:
a neural network with the same architecture and parameters
except without including the physics, linear interpolation [2],
and Gaussian process regression [3, 29]. In the neural network
without physics, we compute the conduction velocity analytically
as V = 1/‖∇T‖. In the linear interpolation case, we use
the scatteredInterpolant function from MATLAB with
linear extrapolation [2]. We compute the conduction velocity
by approximating the gradient of the activation time with
finite differences on a regular grid across the domain. Then,

Frontiers in Physics | www.frontiersin.org 4 February 2020 | Volume 8 | Article 42

Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D. E., &
Kuhl, E. (2020). Physics-informed neural networks for
cardiac activation mapping. Frontiers in Physics, 8, 42.

Physics-informed filtering of 4D-flow MRI
Velocity Magnitude

V-velocity

W-velocity

Recent advances

Discovery of PDEs

0 10 20 30 40

t

�20

�10

0

10

20

x

Exact Dynamics

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40

t

�20

�10

0

10

20

x

Learned Dynamics

�0.5

0.0

0.5

1.0

1.5

2.0

Figure 3: The KdV equation: A solution to the KdV equation (left panel) is compared to

the corresponding solution of the learned partial di↵erential equation (right panel). The

identified system correctly captures the form of the dynamics and accurately reproduces

the solution with a relative L2
-error of 6.28e-02. It should be emphasized that the training

data are collected in roughly two-thirds of the domain between times t = 0 and t = 26.8
represented by the white vertical lines. The algorithm is thus extrapolating from time

t = 26.8 onwards. The relative L2
-error on the training portion of the domain is 3.78e-02.

fectiveness of our approach, we solve the learned partial di↵erential equation
(7) using the PINNs algorithm [34]. We assume periodic boundary condi-
tions and the same initial condition as the one used to generate the original
dataset. The resulting solution of the learned partial di↵erential equation as
well as the exact solution of the KdV equation are depicted in figure 3. This
figure indicates that our algorithm is capable of accurately identifying the
underlying partial di↵erential equation with a relative L2-error of 6.28e-02.
It should be highlighted that the training data are collected in roughly two-
thirds of the domain between times t = 0 and t = 26.8. The algorithm is
thus extrapolating from time t = 26.8 onwards. The corresponding relative
L2-error on the training portion of the domain is 3.78e-02.

To test the algorithm even further, let us change the initial condition to
cos(�⇡x/20) and solve the KdV (6) using the conventional spectral method
outlined above. We compare the resulting solution to the one obtained by
solving the learned partial di↵erential equation (5) using the PINNs algo-
rithm [34]. It is worth emphasizing that the algorithm is trained on the
dataset depicted in figure 3 and is being tested on a di↵erent dataset as
shown in figure 4. The surprising result reported in figure 4 strongly indi-
cates that the algorithm is accurately learning the underlying partial di↵er-

13

3.2. The KdV equation

As a mathematical model of waves on shallow water surfaces one could
consider the Korteweg-de Vries (KdV) equation. The KdV equation reads as

ut = �uux � uxxx. (6)

To obtain a set of training data we simulate the KdV equation (6) using
conventional spectral methods. In particular, we start from an initial con-
dition u(0, x) = � sin(⇡x/20), x 2 [�20, 20] and assume periodic boundary
conditions. We integrate equation (6) up to the final time t = 40. We use the
Chebfun package [43] with a spectral Fourier discretization with 512 modes
and a fourth-order explicit Runge-Kutta temporal integrator with time-step
size 10�4. The solution is saved every �t = 0.2 to give us a total of 201
snapshots. Out of this data-set, we generate a smaller training subset, scat-
tered in space and time, by randomly sub-sampling 10000 data points from
time t = 0 to t = 26.8. In other words, we are sub-sampling from the orig-
inal dataset only in the training portion of the domain from time t = 0 to
t = 26.8. Given the training data, we are interested in learning N as a
function of the solution u and its derivatives up to the 3rd order6; i.e.,

ut = N (u, ux, uxx, uxxx). (7)

We represent the solution u by a 5-layer deep neural network with 50 neurons
per hidden layer. Furthermore, we letN to be a neural network with 2 hidden
layers and 100 neurons per hidden layer. These two networks are trained by
minimizing the sum of squared errors loss of equation (3). To illustrate the ef-

6
A detailed study of the choice of the order is provided in section 3.1 for the Burgers’

equation.

1st order 2nd order 3rd order 4th order
Relative L2-error 1.14e+00 1.29e-02 3.42e-02 5.54e-02

Table 2: Burgers’ equation: Relative L2
-error between solutions of the Burgers’ equa-

tion and the learned partial di↵erential equation as a function of the highest order

of spatial derivatives included in our formulation. For instance, the case correspond-

ing to the 3rd order means that we are looking for a nonlinear function N such that

ut = N (u, ux, uxx, uxxx). Here, the total number of training data as well as the neural

network architectures are kept fixed and the data are assumed to be noiseless.

12

Raissi, M. (2018). Deep Hidden Physics Models: Deep
Learning of Nonlinear Partial Differential Equations.

arXiv preprint arXiv:1801.06637.

Discovery of ODEs

x

�20

0

20

y�40

0

40

z

0

25

50

Exact Dynamics

x

�20

0

20

y�40

0

40

z

0

25

50

Learned Dynamics

Figure 2: Lorenz System: The exact phase portrait of the Lorenz system (left panel) is

compared to the corresponding phase portrait of the learned dynamics (right panel).

The Lorenz system has a positive Lyapunov exponent, and small di↵er-
ences between the exact and learned models grow exponentially, even though
the attractor remains intact. This behavior is evident in figure 3, as we com-
pare the exact versus the predicted trajectories. Small discrepancies due to
finite accuracy in the predicted dynamics lead to large errors in the fore-
casted time-series after t > 4, despite the fact that the bi-stable structure of
the attractor is well captured (see figure 2).

3.3. Fluid flow behind a cylinder

In this example we collect data for the fluid flow past a cylinder (see fig-
ure 4) at Reynolds number 100 using direct numerical simulations of the two
dimensional Navier-Stokes equations. In particular, following the problem
setup presented in [23] and [24], we simulate the Navier-Stokes equations de-
scribing the two-dimensional fluid flow past a circular cylinder at Reynolds
number 100 using the Immersed Boundary Projection Method [25, 26]. This
approach utilizes a multi-domain scheme with four nested domains, each suc-
cessive grid being twice as large as the previous one. Length and time are
non-dimensionalized so that the cylinder has unit diameter and the flow has
unit velocity. Data is collected on the finest domain with dimensions 9⇥4 at
a grid resolution of 449⇥ 199. The flow solver uses a 3rd-order Runge Kutta

10

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2018). Multistep
Neural Networks for Data-driven Discovery of Nonlinear

Dynamical Systems. arXiv preprint

High-dimensional PDEs

Raissi, M. (2018). Forward-backward stochastic neural
networks: Deep learning of high-dimensional partial

differential equations. arXiv preprint arXiv:
1804.07010.

0.0 0.2 0.4 0.6 0.8 1.0

t

�1.0

�0.5

0.0

0.5

1.0

x

u(t, x)

Data (200 points)

�0.75
�0.50
�0.25
0.00
0.25
0.50
0.75

�1 0 1

x

�1

0

1

u
(
t,
x
)

t = 0.25

�1 0 1

x

�1

0

1

u
(
t,
x
)

t = 0.50

Exact Prediction Two std band

�1 0 1

x

�1

0

1

u
(
t,
x
)

t = 0.75

0.0 0.2 0.4 0.6 0.8 1.0

t

�1.0

�0.5

0.0

0.5

1.0

x

Variance of u(t, x)

0.2

0.4

0.6

0.8

Figure 5: Burgers equation with noisy data: Top: Mean of p✓(u|x, t, z), along with the

location of the training data {(xi, ti), ui}, i = 1, . . . , Nu. Middle: Prediction and predictive

uncertainty at t = 0.25, t = 0.5 and t = 0.75. Bottom: Variance of p✓(u|x, t, z).

20

Stochastic PDEs

Yang, Y., & Perdikaris, P. (2019). Adversarial uncertainty
quantification in physics-informed neural

networks. Journal of Computational Physics.

Recent advances

Fractional PDEs

Pang, G., Lu, L., & Karniadakis, G. E. (2018). fpinns: Fractional
physics-informed neural networks. arXiv preprint arXiv:

1811.08967.

Figure 1: fPINNs for solving integral, differential, and integro-differential equations. Here we
choose specific integro-differential operators in the form of time- and/or space- fractional deriva-
tives. fPINNs can incorporate both fractional-order and integer-order operators. In the PDE
shown in the figure, f(·) is a function of operators. The abbreviations “SM” and “AD” represent
spectral methods and automatic differentiation, respectively.

In this paper, we focus on the NN approaches due to the high expressive power of NNs in
function approximation [24, 25, 26, 27]. In particular, we concentrate on physics-informed neural
networks (PINNs) [28, 29, 30, 1], which belong to the second aforementioned category. The recent
applications of PINNs include (1) inferring the velocity and pressure fields from the concentra-
tion field of a passive scalar in solving the Navier-Stokes equations [31], and (2) identifying the
distributed parameters of stochastic PDEs [21]. However, PINNs, despite their high flexibility,
cannot be directly applied to the solution of fractional PDEs, because the classical chain rule,
which works rather efficiently in forward and backward propagation for NN, is not even valid in
fractional calculus. We could consider a fractional version of chain rule, but it is in the form of
an infinite series, and hence it is computationally prohibitive. To overcome this difficulty here
we propose an alternative method in the form of fractional PINNs (fPINNs). Specifically, we pro-
pose fPINNs for solving integral, differential, and integro-differential equations, and more generally
fPINNs can handle both fractional-order and integer-order operators. We employ the automatic
differentiation technique to analytically derive the integer-order derivatives of NN output, while
we approximate the fractional derivatives numerically using standard methods for the numerical
discretization of fractional operators; an illustrative schematic is shown in Fig. 1. There are three
attractive features of fPINNs.

(1) They have superior accuracy for black-box and noisy forcing terms. When the
forcing term is simply measured at scattered spatio-temporal points, interpolation has to
be performed using standard numerical methods but this may introduce large interpolation
errors for sparse measurements. In contrast, fPINNs can bypass the forcing term interpolation
and instead construct the equation residual at these measurement points. Numerical results
show that fPINNs can achieve higher solution accuracy for sparse measurements for both
forward and inverse problems. Additionally, the noise in the data can be naturally taken into
account by employing regularization techniques, such as L

1, L2 and L
1 regularization [32],

early stopping [33], as well as dropout [34, 35].

(2) They can easily handle high-dimensional, irregular-domain problems. Being in-
herently data-driven, fPINNs do not rely on fixed meshes or grids, and thus they have higher
flexibility in tackling high-dimensional problems on complex-geometry domains. The train-
ing points for fPINNs can be arbitrarily distributed in the spatio-temporal domain. We

3

Integrated software

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (2019).
DeepXDE: A deep learning library for solving differential

equations. arXiv preprint arXiv:1907.04502.

10 L. LU, X. MENG, Z. MAO, AND G. E. KARNIADAKIS

Geometry Differential
equations

Boundary/initial
conditions Neural net

Training data data.PDE or
data.TimePDE Model

Model.compile(...)Model.train(...,
callbacks=...)Model.predict(...)

Fig. 5. Flowchart of DeepXDE corresponding to Procedure 3.1. The white boxes define the
PDE problem and the training hyperparameters. The blue boxes combine the PDE problem and
training hyperparameters in the white boxes. The orange boxes are the three steps (from right to
left) to solve the PDE.

In DeepXDE, The built-in primitive geometries include , ,
, , , and . Other geometries can be con-

structed from these primitive geometries using three boolean operations: ,
and . This technique is called constructive solid

geometry (CSG), see Figure 6 for examples. CSG supports both two-dimensional and
three-dimensional geometries.

A B

A | B

A - B

A & B

| &

-

Fig. 6. Examples of constructive solid geometry (CSG) in 2D. (left) A and B represent the
rectangle and circle, respectively. The union A|B, di↵erence A � B, and intersection A&B are
constructed from A and B. (right) A complex geometry (top) is constructed from a polygon, a
rectangle and two circles (bottom) through the union, di↵erence, and intersection operations. This
capability is included in the module geometry of DeepXDE.

DeepXDE supports four standard boundary conditions, including Dirichlet (),
Neumann (), Robin (), and periodic (). The initial
condition can be defined using . There are two types of neural networks available
in DeepXDE: feed-forward neural network () and residual neural network
(). It is also convenient to choose di↵erent training hyperparameters,
such as loss types, metrics, optimizers, learning rate schedules, initializations and
regularizations.

In addition to solving di↵erential equations, DeepXDE can also be used to ap-

Surrogate modeling & high-dimensional UQ

(a) GRF KLE512, test 1. (b) GRF KLE512, test 2.

(c) Channelized, test 1. (d) Channelized, test 2.

Figure 8: Prediction examples of the PCS under the mixed residual loss. (a) and (b) are

2 test results for the PCS trained with 8192 samples of GRF KLE512; (c) and (d) are 2

test results for the PCS trained with 4096 samples of channelized fields.

Varying the number of training inputs. We train the PCS with di↵erent num-
ber of samples from GRF KLE512, and compare its predictive performance
against the DDS in Fig. 9. From the figure, the relative L2 error decreases
as the PCS is trained with more input data. While this is not surprising,
it shows the convergence behavior of physics-constraint learning approach.
Moreover, the PCS achieves similar relative L2 error of predicted pressure
field with the DDS when there are enough training input samples, and even
lower when the number of training input samples is 8192.

The common requirement for data-driven modeling of physical systems is

25

Zhu, Y., Zabaras, N., Koutsourelakis, P. S., & Perdikaris, P. (2019).
Physics-constrained deep learning for high-dimensional

surrogate modeling and uncertainty quantification without
labeled data. Journal of Computational Physics, 394, 56-81.

Multi-fidelity modeling for stochastic systems

Conditional deep surrogate models for stochastic, high-dimensional,
and multi-fidelity systems. Computational Mechanics, 1-18.

z1

z2

x

y

y = f✓(x, z)

z ⇠ p(z)

y = f✓(x, z), z ⇠ p(z) , y ⇠ p✓(y|x, z)
Latent space Physical space

x, y ⇠ q(x, y) = q(y|x)q(x)

Figure 1: Building probabilistic surrogates using conditional generative models: We assume
that each observed data pair in the physical space (x, y) is generated by a deterministic
nonlinear transformation of the inputs x and a set of latent variables z, i.e. y = f✓(x, z).
This construction generalizes the classical observation model used in regression, namely
y = f✓(x)+ ✏, which can be viewed as a simplified case corresponding to an additive noise
model.

the evidence lower bound (ELBO), provides a tractable lower bound to the
marginal likelihood of the model, and takes the form [24]

� log p✓(y|x) KL [q�(z|x,y)||p(z|x)]� Ez⇠q�(z|x,y) [log p✓(y|x, z)] , (2)

where KL [q�(z|x,y)||p(z|x)] denotes the Kullback-Leibler divergence be-
tween the approximate posterior q�(z|x,y) and the prior over the latent
variables p(z|x) [23, 24]. Due to the resemblance of this approach to neural
network auto-encoders [25, 26], the model proposed by Kingma and Welling
has been coined as the variational auto-encoder, and the resulting approx-
imate distributions q�(z|x,y) and p✓(y|x, z) are usually referred to as the
encoder and decoder distributions, respectively.

In a short period of time, this line of work has sparked great interest,
and has led to remarkable results in very diverse applications – ranging from
the design optimization of light emitting diodes [27], to the design of new
molecules [28], to the calibration of cosmological surveys [29], to RNA se-
quencing [30], to analyzing cancer gene expressions [31] – all involving the
approximation of very high-dimensional probability densities. It has also led
to many fundamental studies that aim to further elucidate the capabilities

5

Differentiable programming for scientific computing

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., ... & Ramadhan, A. (2020). Universal Differential Equations for
Scientific Machine Learning. arXiv preprint arXiv:2001.04385.

Adaptive computation Euler’s method is perhaps the simplest method for solving ODEs. There
have since been more than 120 years of development of efficient and accurate ODE solvers (Runge,
1895; Kutta, 1901; Hairer et al., 1987). Modern ODE solvers provide guarantees about the growth
of approximation error, monitor the level of error, and adapt their evaluation strategy on the fly to
achieve the requested level of accuracy. This allows the cost of evaluating a model to scale with
problem complexity. After training, accuracy can be reduced for real-time or low-power applications.

Scalable and invertible normalizing flows An unexpected side-benefit of continuous transforma-
tions is that the change of variables formula becomes easier to compute. In Section 4, we derive
this result and use it to construct a new class of invertible density models that avoids the single-unit
bottleneck of normalizing flows, and can be trained directly by maximum likelihood.

Continuous time-series models Unlike recurrent neural networks, which require discretizing
observation and emission intervals, continuously-defined dynamics can naturally incorporate data
which arrives at arbitrary times. In Section 5, we construct and demonstrate such a model.

2 Reverse-mode automatic differentiation of ODE solutions

The main technical difficulty in training continuous-depth networks is performing reverse-mode
differentiation (also known as backpropagation) through the ODE solver. Differentiating through
the operations of the forward pass is straightforward, but incurs a high memory cost and introduces
additional numerical error.

We treat the ODE solver as a black box, and compute gradients using the adjoint sensitivity
method (Pontryagin et al., 1962). This approach computes gradients by solving a second, aug-
mented ODE backwards in time, and is applicable to all ODE solvers. This approach scales linearly
with problem size, has low memory cost, and explicitly controls numerical error.

Consider optimizing a scalar-valued loss function L(), whose input is the result of an ODE solver:

L(z(t1)) = L

✓
z(t0) +

Z t1

t0

f(z(t), t, ✓)dt

◆
= L (ODESolve(z(t0), f, t0, t1, ✓)) (3)

Adjoint State
State

Figure 2: Reverse-mode differentiation of an ODE
solution. The adjoint sensitivity method solves
an augmented ODE backwards in time. The aug-
mented system contains both the original state and
the sensitivity of the loss with respect to the state.
If the loss depends directly on the state at multi-
ple observation times, the adjoint state must be
updated in the direction of the partial derivative of
the loss with respect to each observation.

To optimize L, we require gradients with respect
to ✓. The first step is to determining how the
gradient of the loss depends on the hidden state
z(t) at each instant. This quantity is called the
adjoint a(t) = @L/@z(t). Its dynamics are given
by another ODE, which can be thought of as the
instantaneous analog of the chain rule:

da(t)

dt
= �a(t)T

@f(z(t), t, ✓)

@z
(4)

We can compute @L/@z(t0) by another call to an
ODE solver. This solver must run backwards,
starting from the initial value of @L/@z(t1). One
complication is that solving this ODE requires
the knowing value of z(t) along its entire tra-
jectory. However, we can simply recompute
z(t) backwards in time together with the adjoint,
starting from its final value z(t1).

Computing the gradients with respect to the pa-
rameters ✓ requires evaluating a third integral,
which depends on both z(t) and a(t):

dL

d✓
= �

Z t0

t1

a(t)T
@f(z(t), t, ✓)

@✓
dt (5)

The vector-Jacobian products a(t)T @f
@z and a(t)T @f

@✓ in (4) and (5) can be efficiently evaluated by
automatic differentiation, at a time cost similar to that of evaluating f . All integrals for solving z, a

2

and @L
@✓ can be computed in a single call to an ODE solver, which concatenates the original state, the

adjoint, and the other partial derivatives into a single vector. Algorithm 1 shows how to construct the
necessary dynamics, and call an ODE solver to compute all gradients at once.

Algorithm 1 Reverse-mode derivative of an ODE initial value problem

Input: dynamics parameters ✓, start time t0, stop time t1, final state z(t1), loss gradient @L/@z(t1)

s0 = [z(t1),
@L

@z(t1)
,0|✓|] . Define initial augmented state

def aug_dynamics([z(t),a(t), ·], t, ✓): . Define dynamics on augmented state
return [f(z(t), t, ✓), �a(t)T @f

@z , �a(t)T @f
@✓] . Compute vector-Jacobian products

[z(t0),
@L

@z(t0)
, @L

@✓] = ODESolve(s0, aug_dynamics, t1, t0, ✓) . Solve reverse-time ODE
return @L

@z(t0)
, @L

@✓ . Return gradients

Most ODE solvers have the option to output the state z(t) at multiple times. When the loss depends
on these intermediate states, the reverse-mode derivative must be broken into a sequence of separate
solves, one between each consecutive pair of output times (Figure 2). At each observation, the adjoint
must be adjusted in the direction of the corresponding partial derivative @L/@z(ti).

The results above extend those of Stapor et al. (2018, section 2.4.2). An extended version of
Algorithm 1 including derivatives w.r.t. t0 and t1 can be found in Appendix C. Detailed derivations
are provided in Appendix B. Appendix D provides Python code which computes all derivatives for
scipy.integrate.odeint by extending the autograd automatic differentiation package. This
code also supports all higher-order derivatives. We have since released a PyTorch (Paszke et al.,
2017) implementation, including GPU-based implementations of several standard ODE solvers at
github.com/rtqichen/torchdiffeq.

3 Replacing residual networks with ODEs for supervised learning

In this section, we experimentally investigate the training of neural ODEs for supervised learning.

Software To solve ODE initial value problems numerically, we use the implicit Adams method
implemented in LSODE and VODE and interfaced through the scipy.integrate package. Being
an implicit method, it has better guarantees than explicit methods such as Runge-Kutta but requires
solving a nonlinear optimization problem at every step. This setup makes direct backpropagation
through the integrator difficult. We implement the adjoint sensitivity method in Python’s autograd
framework (Maclaurin et al., 2015). For the experiments in this section, we evaluated the hidden
state dynamics and their derivatives on the GPU using Tensorflow, which were then called from the
Fortran ODE solvers, which were called from Python autograd code.

Table 1: Performance on MNIST. †From LeCun
et al. (1998).

Test Error # Params Memory Time

1-Layer MLP† 1.60% 0.24 M - -
ResNet 0.41% 0.60 M O(L) O(L)
RK-Net 0.47% 0.22 M O(L̃) O(L̃)
ODE-Net 0.42% 0.22 M O(1) O(L̃)

Model Architectures We experiment with a
small residual network which downsamples the
input twice then applies 6 standard residual
blocks He et al. (2016b), which are replaced
by an ODESolve module in the ODE-Net vari-
ant. We also test a network with the same archi-
tecture but where gradients are backpropagated
directly through a Runge-Kutta integrator, re-
ferred to as RK-Net. Table 1 shows test error, number of parameters, and memory cost. L denotes
the number of layers in the ResNet, and L̃ is the number of function evaluations that the ODE solver
requests in a single forward pass, which can be interpreted as an implicit number of layers. We find
that ODE-Nets and RK-Nets can achieve around the same performance as the ResNet.

Error Control in ODE-Nets ODE solvers can approximately ensure that the output is within a
given tolerance of the true solution. Changing this tolerance changes the behavior of the network.
We first verify that error can indeed be controlled in Figure 3a. The time spent by the forward call is
proportional to the number of function evaluations (Figure 3b), so tuning the tolerance gives us a

3

Chen, T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural ordinary differential equations. In Advances in neural information
processing systems (pp. 6571-6583).

Universal ODE -> SInDy
Sparse Identification on only the beta(t) term

KƉĞƌĂƚŝŽŶƵЇ�Ύ�Ϭ͘ϯϬϲϱϮϰϭϰϰϱϴϯϴϬϬϯ�н�ƵІ�Ύ�
0.0011560597253354426]

Replace
Unknown

Portion

Replace
Unknown

Portion

Universal ODE -> SInDy
Sparse Identification on only the beta(t) term

KƉĞƌĂƚŝŽŶƵЇ�Ύ�Ϭ͘ϯϬϲϱϮϰϭϰϰϱϴϯϴϬϬϯ�н�ƵІ�Ύ�
0.0011560597253354426]

Replace
Unknown

Portion

Replace
Unknown

Portion

Lin et. al. (2020). A conceptual model for the coronavirus disease 2019
(COVID-19) outbreak in Wuhan, China with individual reaction and
governmental action. International journal of infectious diseases.

