CIS522: Deep learning

Physics-informed deep learning

Paris Perdikaris
April 7, 2020

15th National U.S. Congress on Computational Mechanics (July 28, Austin, TX)

SC15-009: Recent Advances in PhysicsInformed Deep Learning

| Correct PDE | $\left.\begin{array}{c}u_{t}+\left(u u_{x}+v u_{y}\right)=-p_{x}+0.01\left(u_{x x}+u_{y y}\right) \\ v_{t}+\left(u v_{x}+v v_{y}\right)\end{array}\right)=-p_{y}+0.01\left(v_{x x}+v_{y y}\right)$ |
| :---: | :---: |$|$| $u_{t}+0.999\left(u u_{x}+v u_{y}\right)=-p_{x}+0.01047\left(u_{x x}+u_{y y}\right)$ | |
| :---: | :---: |
| Identified PDE (clean data) | $v_{t}+0.999\left(u v_{x}+v v_{y}\right)=-p_{y}+0.01047\left(v_{x x}+v_{y y}\right)$ |
| Identified PDE (1\% noise) | $u_{t}+0.998\left(u u_{x}+v u_{y}\right)=-p_{x}+0.01057\left(u_{x x}+u_{y y}\right)$
 $v_{t}+0.998\left(u v_{x}+v v_{y}\right)=-p_{y}+0.01057\left(v_{x x}+v_{y y}\right)$ |

Instructors:

- Paris Perdikaris (UPenn, pgp@seas.upenn.edu)
- Maziar Raissi (NVIDIA, maziar.raissi@gmail.com)

Time	Lecturer	Topic
$8.30-9.20 \mathrm{am}$	Paris Perdikaris	Supervised learning with neural networks in Tensorflow
$9.20-10.10 \mathrm{am}$	Maziar Raissi	Physics-informed neural networks (Part I)
$10.10-10.30 \mathrm{am}$	Coffee Break	
$10.30-11.20 \mathrm{am}$	Paris Perdikaris	Physics-informed neural networks (Part II)
$11.20-12.10 \mathrm{pm}$	Maziar Raissi	Multi-step neural networks
$12.10-1.00 \mathrm{pm}$	Lunch Break	
$1.00-1.50 \mathrm{pm}$	Paris Perdikaris	PINNs on Graphs
$1.50-2.20 \mathrm{pm}$	Maziar Raissi	Hidden physics models
$2.20-3.10 \mathrm{pm}$	Paris Perdikaris	Physics-informed deep generative models
$3.10-3.30 \mathrm{pm}$	Coffee Break	Forward Backward Stochastic Neural Networks
$3.30-4.20 \mathrm{pm}$	Maziar Raissi	Open challenges
$4.20-5.10 \mathrm{pm}$	Paris Perdikaris	Maziar Raissi
$5.10-5.30 \mathrm{pm}$	Summary and future work	

https://github.com/PredictiveIntelligenceLab/USNCCM15-Short-Course-Recent-Advances-in-Physics-Informed-Deep-Learning

Motivation and open challenges

Goal: Predictive modeling, analysis and optimization of complex systems

ML
CSE

Challenges:

Data

- High cost of data acquisition
- Limited and high-dimensional data
- Multiple tasks and data modalities (e.g. images, time-series, scattered measurements, etc.)
- Large parameter spaces
- Incomplete models, imperfect data (e.g., missing data, outliers, complex noise processes)
- Uncertainty quantification
- Robust design/control

Hypothesis:

- Can we bridge knowledge from scientific computing and machine learning to tackle these challenges?

DARPA Physics of Al:Two schools of thought

I. Physics is implicitly baked in specialized neural architectures with strong inductive biases (e.g. invariance to simple group symmetries).

*figures from Kondor, R., Son, H.T., Pan, H., Anderson, B., \& Trivedi, S. (2018). Covariant compositional networks for learning graphs. arXiv preprint arXiv:I80I.02 I 44.
2. Physics is explicitly imposed by constraining the output of conventional neural architectures with weak inductive biases.

Psichogios \& Ungar, 1992
Lagaris et. al., 1998
Raissi et. al., 2019
Lu et. al., 2019
Zhu et. al., 2019

Physics-informed Neural Networks

$f\left(\mathbf{x} ; \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{d}} ; \frac{\partial^{2} u}{\partial x_{1} \partial x_{1}}, \ldots, \frac{\partial^{2} u}{\partial x_{1} \partial x_{d}} ; \ldots ; \boldsymbol{\lambda}\right)=0, \quad \mathbf{x} \in \Omega, \quad \mathcal{B}(u, \mathbf{x})=0 \quad$ on $\quad \partial \Omega$,

Psichogios, D. C., \& Ungar, L. H. (I992).A hybrid neural network-first principles approach to process modeling. AIChE Journal, 38(I0), I 499 - I 5 I I .
Lagaris, I. E., Likas, A., \& Fotiadis, D. I. (I998).Artificial neural networks for solving ordinary and partial differential equations. IEEE transactions on neural networks, 9(5), 987-I000.
Raissi, M., Perdikaris, P., \& Karniadakis, G. E. (2019). Physics-informed neural networks:A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707.
Lu, L., Meng, X., Mao, Z., \& Karniadakis, G. E. (20I9). DeepXDE:A deep learning library for solving differential equations. arXiv preprint arXiv: I 907.04502.

General formulation of PINNs

Physics-informed neural networks (PINNs) aim at inferring a continuous latent function $\boldsymbol{u}(\boldsymbol{x}, t)$ that arises as the solution to a system of nonlinear partial differential equations (PDE) of the general form

$$
\begin{aligned}
& \boldsymbol{u}_{t}+\mathcal{N}_{\boldsymbol{x}}[\boldsymbol{u}]=0, \quad \boldsymbol{x} \in \Omega, t \in[0, T] \\
& \boldsymbol{u}(\boldsymbol{x}, 0)=h(\boldsymbol{x}), \quad x \in \Omega \\
& \boldsymbol{u}(\boldsymbol{x}, t)=g(\boldsymbol{x}, t), \quad t \in[0, T], \quad \boldsymbol{x} \in \partial \Omega
\end{aligned}
$$

We proceed by approximating $\boldsymbol{u}(\boldsymbol{x}, t)$ by a deep neural network $f_{\theta}(\boldsymbol{x}, t)$, and define the residual of the PDE as

$$
\boldsymbol{r}_{\theta}(\boldsymbol{x}, t):=\frac{\partial}{\partial t} f_{\theta}(\boldsymbol{x}, t)+\mathcal{N}_{\boldsymbol{x}}\left[f_{\theta}(\boldsymbol{x}, t)\right]
$$

The corresponding loss function is given by

$$
\mathcal{L}(\theta):=\underbrace{\mathcal{L}_{u}(\theta)}_{\text {Data fit }}+\underbrace{\mathcal{L}_{r}(\theta)}_{\text {PDE residual }}+\underbrace{\mathcal{L}_{u_{0}}(\theta)}_{\text {ICs fit }}+\underbrace{\mathcal{L}_{u_{b}}(\theta)}_{\text {BCs fit }}
$$

Training via stochastic gradient descent:

$$
\theta_{n+1}=\theta_{n}-\eta \nabla_{\theta} \mathcal{L}\left(\theta_{n}\right)
$$

*all gradients are computed via automatic differentiation

Physics-informed Neural Networks

Example: Burgers' equation in ID

$$
\begin{align*}
& u_{t}+u u_{x}-(0.01 / \pi) u_{x x}=0, \quad x \in[-1,1], \quad t \in[0,1], \tag{3}\\
& u(0, x)=-\sin (\pi x), \\
& u(t,-1)=u(t, 1)=0
\end{align*}
$$

Let us define $f(t, x)$ to be given by

$$
f:=u_{t}+u u_{x}-(0.01 / \pi) u_{x x},
$$

```
def u(t, x):
    u = neural_net(tf.concat([t,x],1), weights, biases)
    return u
```

Correspondingly, the physics informed neural network $f(t, x)$ takes the form

```
def f(t,x):
    u = u(t, x)
    u_t = tf.gradients(u, t) [0]
    u_x = tf.gradients(u, x) [0]
    u_xx = tf.gradients(u_x, x) [0]
    f = u_t + u*u_x - (0.01/tf.pi)*u_xx
    return f
```


Physics-informed Neural Networks

The shared parameters between the neural networks $u(t, x)$ and $f(t, x)$ can be learned by minimizing the mean squared error loss

$$
\begin{equation*}
M S E=M S E_{u}+M S E_{f} \tag{4}
\end{equation*}
$$

where

$$
M S E_{u}=\frac{1}{N_{u}} \sum_{i=1}^{N_{u}}\left|u\left(t_{u}^{i}, x_{u}^{i}\right)-u^{i}\right|^{2}
$$

and

$$
M S E_{f}=\frac{1}{N_{f}} \sum_{i=1}^{N_{f}}\left|f\left(t_{f}^{i}, x_{f}^{i}\right)\right|^{2}
$$

Here, $\left\{t_{u}^{i}, x_{u}^{i}, u^{i}\right\}_{i=1}^{N_{u}}$ denote the initial and boundary training data on $u(t, x)$ and $\left\{t_{f}^{i}, x_{f}^{i}\right\}_{i=1}^{N_{f}}$ specify the collocations points for $f(t, x)$. The loss $M S E_{u}$ corresponds to the initial and boundary data while $M S E_{f}$ enforces the structure imposed by equation (3) at a finite set of collocation points.

Physics-informed Neural Networks

Figure 1: Burgers' equation: Top: Predicted solution $u(t, x)$ along with the initial and boundary training data. In addition we are using 10,000 collocation points generated using a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact solutions corresponding to the three temporal snapshots depicted by the white vertical lines in the top panel. The relative \mathcal{L}_{2} error for this case is $6.7 \cdot 10^{-4}$. Model training took approximately 60 seconds on a single NVIDIA Titan X GPU card.

Physics-informed Neural Networks

Correct PDE	$u_{t}+\left(u u_{x}+v u_{y}\right)=-p_{x}+0.01\left(u_{x x}+u_{y y}\right)$ $v_{t}+\left(u v_{x}+v v_{y}\right)=-p_{y}+0.01\left(v_{x x}+v_{y y}\right)$
Identified PDE (clean data)	$u_{t}+0.999\left(u u_{x}+v u_{y}\right)=-p_{x}+0.01047\left(u_{x x}+u_{y y}\right)$ $v_{t}+0.999\left(u v_{x}+v v_{y}\right)=-p_{y}+0.01047\left(v_{x x}+v_{y y}\right)$
Identified PDE (1\% noise)	$u_{t}+0.998\left(u u_{x}+v u_{y}\right)=-p_{x}+0.01057\left(u_{x x}+u_{y y}\right)$ $v_{t}+0.998\left(u v_{x}+v v_{y}\right)=-p_{y}+0.01057\left(v_{x x}+v_{y y}\right)$

Raissi, M., Yazdani, A., \& Karniadakis, G. E. (2020). Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science.

Extensions to CNNs and GCNs

SD area
Zhu, Y., Zabaras, N., Koutsourelakis, P. S., \& Perdikaris, P. (20I9). Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. Journal of Computational Physics, 394, 56-8I.

Seo, S., \& Liu, Y. (20I9). Differentiable physics-informed graph networks. arXiv preprint arXiv:I902.02950.

Physics-informed deep learning in cardiac electrophysiology

Loss
data similarity
$\frac{1}{N_{T}} \sum_{i}^{N_{T}}\left(T\left(\boldsymbol{x}_{i}\right)-\hat{T}_{i}\right)^{2}$

Eikonal equation
0.12 samples/cm

identify the most efficient sampling points
Given: number of initial samples $N_{\text {init }}$, number of active learning samples $N_{A L}$, set of candidate locations $\boldsymbol{X}_{\text {cand }}$, number of initial training iterations $M_{i n i t}$, number of active learning training iterations $M_{A L}$, and empty sets \boldsymbol{X} and \boldsymbol{T} that contain locations and activations times: Randomly select $N_{\text {init }}$ samples from $\boldsymbol{X}_{\text {cand }}$ Remove the $N_{\text {init }}$ samples from $\boldsymbol{X}_{\text {cand }}$ and add them to \boldsymbol{X} Acquire the values of the activation times at the $N_{\text {init }}$ locations and add them to T
Initialize the model and train it using the ADAM optimizer [25] for $M_{\text {init }}$ iterations.
for $i=\left\{1, N_{A L}\right\}$ do
compute entropy $H\left(\boldsymbol{X}_{\text {cand }}\right)$
find the new location of maximum entropy:
$\arg \max _{\boldsymbol{x} \in \boldsymbol{X}_{\text {cand }}} H(\boldsymbol{x})$
remove \boldsymbol{x} from $\boldsymbol{X}_{\text {cand }}$ and add it to \boldsymbol{X}
acquire activation time at \boldsymbol{x} and add it to \boldsymbol{T} train the model using ADAM [25] for $M_{A L}$ iterations. end
0.25 samples $/ \mathrm{cm}^{2}$
0.74 samples $/ \mathrm{cm}^{2}$
ground truth

Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D. E., \& Kuhl, E. (2020). Physics-informed neural networks for cardiac activation mapping. Frontiers in Physics, 8, 42.

Physics-informed filtering of 4D-flow MRI

Recent advances

Discovery of ODEs

Exact Dynamics

Raissi, M., Perdikaris, P., \& Karniadakis, G. E. (2018). Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems. arXiv preprint

High-dimensional PDEs

Raissi, M. (2018). Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations. arXiv preprint arXiv: I804.070IO.

Raissi, M. (2018). Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations. arXiv preprint arXiv: I 80 I. 06637.

Stochastic PDEs

Yang,Y., \& Perdikaris, P. (20 I9). Adversarial uncertainty quantification in physics-informed neural networks. Journal of Computational Physics.

Recent advances

Pang, G., Lu, L., \& Karniadakis, G. E. (20 I 8). fpinns: Fractional physics-informed neural networks. arXiv preprint arXiv: |81I. 08967.

Multi-fidelity modeling for stochastic systems

$$
y=f_{\theta}(x, \boldsymbol{z}), \boldsymbol{z} \sim p(\boldsymbol{z}) \Leftrightarrow y \sim p_{\theta}(y \mid x, \boldsymbol{z})
$$

Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems. Computational Mechanics, I-I8.

Surrogate modeling \& high-dimensional UQ

Zhu, Y., Zabaras, N., Koutsourelakis, P. S., \& Perdikaris, P. (2019).
Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. Journal of Computational Physics, 394, 56-8I.

Integrated software

Lu, L., Meng, X., Mao, Z., \& Karniadakis, G. E. (2019).
DeepXDE:A deep learning library for solving differential equations. arXiv preprint arXiv:1907.04502.

Differentiable programming for scientific computing

Chen, T. Q., Rubanova, Y., Bettencourt, J., \& Duvenaud, D. K. (2018). Neural ordinary differential equations. In Advances in neural information processing systems (pp. 6571-6583).
Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., ... \& Ramadhan, A. (2020). Universal Differential Equations for Scientific Machine Learning. arXiv preprint arXiv:200 I.04385.

