ENCE353 HW4 Solutions Spring 2023

Problem 1: The cantilever beam structure shown in Figure 1 carries a uniform load w (N/m) along its
entire length.
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Figure 1: Cantilever beam carrying a uniform load.
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The beam is fully fixed at point A and the flexural stiffness El is constant along the beam. The coordinate
system is positioned at point A.

[1a] Starting from the differential equation,
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[1b] Using the results of question [1a] as a starting point, compute the support reactions at A and B for
the propped cantilever shown in Figure 2.
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Figure 2: Propped cantilever beam carrying a uniform load.




Using Superposition:
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Problem 2: Consider the cantilever shown in Figure 3.

Figure 3: Front elevation view of a cantilever.

The cantilever has constant section properties, El, along its entire length (a+b). A vertical load P (kN) is
applied at point C.

[2a] Use the method of moment area to show that the vertical deflection of the cantilever at point C is:
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[2b] Use the method of moment area to show that the vertical deflection of the cantilever at point B is:
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Figure 4: Front elevation view of a cantilever supported by a roller at point B.

[2c] Show that the vertical support reaction at B is:
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[2d] Hence, derive a simple expression for the bending moment at A.
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Finally, let’s replace the roller support below point B with a spring.
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Figure S: Cantilever supported by a spring at point B.
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[2e] Show that the support reaction, V,,, is now given by the equation:
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[2f] Explain why V}, for spring support (i.e., equation 6) is always lower than for roller support (i.e.,
equation 5).

Considering the case of spring support:
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A roller support can be modeled as a spring with k — oo, therefore as shown above, /5 increases as the
denominator decreases. Thus, Vg is always larger when there is a roller support compared to the case
with a spring.



Problem 3: Consider the cantilevered beam structure shown in Figure 6.
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Figure 6: Front elevation view of a cantilevered beam structure.

Notice that segments A-B and B-C have cross-sectional properties El and 2El, respectively.

[3a] Use the method of moment-area to compute the rotation at point A.
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[3b] Use the method of moment-area to compute the vertical deflection of the beam at point C.
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[3c] Draw the deflected shape of the beam.
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