Problem 1: The cantilever beam structure shown in Figure 1 carries a uniform load $w(N / m)$ along its entire length.

Figure 1: Cantilever beam carrying a uniform load.
The beam is fully fixed at point A and the flexural stiffness El is constant along the beam. The coordinate system is positioned at point A.
[1a] Starting from the differential equation,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\left[\frac{M(x)}{E I}\right], \tag{1}
\end{equation*}
$$

and appropriate boundary conditions, show that:

$$
\begin{equation*}
y(x)=\left(\frac{w}{24 E I}\right)\left(6 L^{2} x^{2}-4 L x^{3}+x^{4}\right) . \tag{2}
\end{equation*}
$$

$\frac{d^{2} y}{d x^{2}}=\frac{M(x)}{E I} \xrightarrow{\text { Finding } M(x)} M(x)=w(L-x) \frac{L-x}{2}=\frac{w}{2}(L-x)^{2}$
$\frac{d^{2} y}{d x^{2}}=\frac{M(x)}{E I}=\frac{w(L-x)^{2}}{2 E I}=\frac{w}{2 E I}\left(L^{2}-2 L x+x^{2}\right) \xrightarrow{\text { Integration }} \frac{d y}{d x}=\frac{w}{2 E I}\left(L^{2} x-L x^{2}+\frac{x^{3}}{3}+A\right)$
$\xrightarrow{\text { Integration }} y(x)=\frac{w}{2 E I}\left(\frac{L^{2} x^{2}}{2}-\frac{L x^{3}}{3}+\frac{x^{4}}{12}+A x+B\right) \xrightarrow{\text { Boundary Conditions }}\left\{\begin{array}{c}y(0)=0 \rightarrow B=0 \\ \left.\frac{d y}{d x}\right|_{x=0}=0 \rightarrow A=0\end{array}\right.$
$y(x)=\frac{w}{24 E I}\left(6 L^{2} x^{2}-4 L x^{3}+x^{4}\right)$
[1b] Using the results of question [1a] as a starting point, compute the support reactions at A and B for the propped cantilever shown in Figure 2.

Figure 2: Propped cantilever beam carrying a uniform load.

Using Superposition:

Case A:

$$
\begin{gathered}
y(x)=\frac{w}{24 E I}\left(6 L^{2} x^{2}-4 L x^{3}+x^{4}\right) \rightarrow \Delta_{B}=y(L)=\frac{w}{24 E I}\left(6 L^{4}-4 L^{4}+L^{4}\right)=\frac{w}{24 E I}\left(3 L^{4}\right) \\
=\frac{w L^{4}}{8 E I}(\text { downward })
\end{gathered}
$$

Case B : According to the method of moment area:
$\Delta_{B}=\operatorname{Area} * \bar{x}_{B}=\left(\frac{1}{2} * L * \frac{V_{B} L}{E I}\right) *\left(\frac{2}{3} L\right)=\frac{V_{B} L^{3}}{3 E I}$ (upward)
$\Delta_{B_{\text {total }}}=0 \rightarrow \frac{w L^{4}}{8 E I}=\frac{V_{B} L^{3}}{3 E I} \rightarrow V_{B}=\frac{3}{8} w L($ upward $)$
$\sum F_{y}=0 \rightarrow V_{A}=\frac{5}{8} w L($ upward $)$
$\sum M_{A}=0 \rightarrow M_{A}=\frac{w L^{2}}{8}(C C W)$

Problem 2: Consider the cantilever shown in Figure 3.

Figure 3: Front elevation view of a cantilever.

The cantilever has constant section properties, El, along its entire length (a+b). A vertical load $P(k N)$ is applied at point C .
[2a] Use the method of moment area to show that the vertical deflection of the cantilever at point C is:

$$
\begin{equation*}
y_{C}=\frac{P(a+b)^{3}}{3 E I} \tag{3}
\end{equation*}
$$

$L=a+b ; M(x)=P(L-x) \rightarrow \frac{M(x)}{E I}=\frac{P(L-x)}{E I}$
$\Delta_{C}=y(L)=A r e a * \bar{x}_{c}=\left(\frac{1}{2} * L * \frac{P L}{E I}\right) *\left(\frac{2}{3} L\right)=\frac{P L^{3}}{3 E I}=\frac{P(a+b)^{3}}{3 E I}$
[2b] Use the method of moment area to show that the vertical deflection of the cantilever at point B is:

$$
\begin{equation*}
y_{B}=\frac{P a^{2}}{6 E I}[3 b+2 a] \tag{4}
\end{equation*}
$$

$$
\left\{\begin{array}{c}
A_{1}=\frac{1}{2} * a *\left(\frac{P a}{E I}\right)=\frac{P a^{2}}{2 E I} \\
A_{2}=a *\left(\frac{P b}{E I}\right)=\frac{P a b}{E I}
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
\bar{x}_{1 B}=\frac{2}{3} a \\
\bar{x}_{2 B}=\frac{a}{2}
\end{array}\right.
$$

$\Delta_{B}=A_{1} \bar{x}_{1 B}+A_{2} \bar{x}_{2 B}=\frac{P a^{2}}{2 E I} * \frac{2}{3} a+\frac{P a b}{E I} * \frac{a}{2}=\frac{P a^{3}}{3 E I}+\frac{P a^{2} b}{2 E I}=\frac{P a^{2}}{6 E I}(2 a+3 b)$

Now suppose that a roller support is inserted below point B as follows:

Figure 4: Front elevation view of a cantilever supported by a roller at point B.
[2c] Show that the vertical support reaction at B is:

$$
\begin{equation*}
V_{b}=\frac{P}{2}\left[\frac{3 b+2 a}{a}\right] \tag{5}
\end{equation*}
$$

Using Superposition:

Case A:
$\Delta_{B}=\frac{P a^{2}}{6 E I}(2 a+3 b) ;$ downward
Case B:

$\Delta_{B}=\operatorname{Area} * \bar{x}_{1 B}=\left(\frac{1}{2} * a * \frac{V_{B} a}{E I}\right) *\left(\frac{2}{3} * a\right)=\frac{V_{B} a^{3}}{3 E I} ;$ upward
$\Delta_{B_{\text {total }}}=0 \rightarrow \frac{P a^{2}}{6 E I}(2 a+3 b)=\frac{V_{B} a^{3}}{3 E I} \rightarrow V_{B}=\frac{P}{2}\left(\frac{3 b+2 a}{a}\right) ;$ upward
[2d] Hence, derive a simple expression for the bending moment at A.
$\sum M_{A}=0 \rightarrow M_{A}+V_{B} * a-P * L=0 \rightarrow M_{A}=-\frac{P b}{2}(C C W), M_{A}=\frac{P b}{2}(C W)$
Finally, let's replace the roller support below point B with a spring.

Figure 5: Cantilever supported by a spring at point B.
[2e] Show that the support reaction, V_{b}, is now given by the equation:

$$
\begin{equation*}
V_{b}\left[\frac{1}{k}+\frac{a^{3}}{3 E I}\right]=\frac{P a^{2}}{6 E I}[3 b+2 a] \tag{6}
\end{equation*}
$$

Recall: $\Delta_{B_{\text {total }}}=\frac{P a^{2}}{6 E I}(2 a+3 b)-\frac{V_{B} a^{3}}{3 E I}$
There is a spring at point $B: V_{B}=k \Delta_{B_{\text {total }}}$

$$
=k\left[\frac{P a^{2}}{6 E I}(2 a+3 b)-\frac{V_{B} a^{3}}{3 E I}\right] \xrightarrow{\text { simplifying }} \quad V_{B}\left(\frac{1}{k}+\frac{a^{3}}{6 E I}\right)=\frac{P a^{2}}{6 E I}(3 b+2 a)
$$

[2f] Explain why V_{b} for spring support (i.e., equation 6) is always lower than for roller support (i.e., equation 5).

Considering the case of spring support:
$V_{B}=\frac{\frac{P a^{2}}{6 E I}(3 b+2 a)}{\frac{1}{k}+\frac{a^{3}}{6 E I}} \xrightarrow{k \rightarrow \infty} V_{B}=\frac{\frac{P a^{2}}{6 E I}(3 b+2 a)}{\frac{a^{3}}{6 E I}}$
A roller support can be modeled as a spring with $k \rightarrow \infty$, therefore as shown above, V_{B} increases as the denominator decreases. Thus, V_{B} is always larger when there is a roller support compared to the case with a spring.

Problem 3: Consider the cantilevered beam structure shown in Figure 6.

Figure 6: Front elevation view of a cantilevered beam structure.
Notice that segments A-B and B-C have cross-sectional properties EI and 2EI, respectively.
[3a] Use the method of moment-area to compute the rotation at point A.
$\sum M_{A}=0 \rightarrow V_{B}=2 P($ upward $), \sum F_{y}=0 \rightarrow V_{A}=0$

$$
\left\{\begin{array} { l }
{ A _ { 1 } = \frac { 1 } { 2 } * L * (- \frac { P L } { E I }) = - \frac { P L ^ { 2 } } { 2 E I } } \\
{ A _ { 2 } = \frac { 1 } { 2 } * L * (- \frac { P L } { 2 E I }) = - \frac { P L ^ { 2 } } { 4 E I } }
\end{array} \quad \left\{\begin{array}{l}
\bar{x}_{1 c}=2 L+\frac{L}{3}=\frac{7}{3} L \\
\bar{x}_{2 c}=L+\frac{2 L}{3}=\frac{5}{3} L
\end{array}\right.\right.
$$

$$
\Delta_{B}=A_{1} * \bar{x}_{1 B}=\left(-\frac{P L^{2}}{2 E I}\right) *\left(\frac{L}{3}\right)=-\frac{P L^{3}}{6 E I}
$$

$$
\theta_{A} * 2 L=\Delta_{B} \rightarrow \theta_{A}=-\frac{P L^{2}}{12 E I} \rightarrow \theta_{A}=\frac{P L^{2}}{12 E I}(C C W)
$$

[3b] Use the method of moment-area to compute the vertical deflection of the beam at point C.
$2 \Delta_{B}+\Delta_{C}=A_{1} \bar{x}_{1 c}+A_{2} \bar{x}_{2 c} \rightarrow \Delta_{C}=-\frac{5}{4} \frac{P L^{3}}{E I}$ (downward)

[3c] Draw the deflected shape of the beam.

