Types of Beam Structure	Connection to Mechanics	Relationship between Shear Force and Bending Moment	Examples
			000000000

Analysis of Beam Structures

Mark A. Austin

University of Maryland

austin@umd.edu ENCE 353, Spring Semester 2022

February 20, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Types of Beam Structure	Connection to Mechanics	Relationship between Shear Force and Bending Moment	Examples 0000000000
Overview			

- 1 Types of Beam Structure
- 2 Connection to Mechanics

3 Relationship between Shear Force and Bending Moment

- Mathematical Preliminaries
- Derivation of Equations

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Types of Beam Structure $0 \bullet 00000$

Connection to Mechanic

Relationship between Shear Force and Bending Moment

Examples 0000000000

Types of Beam Structures

Simply Supported Beam:

Cantilever:

Connection to Mechanic

Relationship between Shear Force and Bending Moment

Examples 0000000000

Types of Beam Structures

Supported Cantilever:

Fixed-Fixed Beam Structure:

<□▶ <□▶ < □▶ < □▶ < □▶ = □ のQ(

Connection to Mechanics

Relationship between Shear Force and Bending Moment

Examples 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Types of Beam Structures

Boundary Conditions

Simply Supported Beam

• y(0) = y(L) = 0.

Cantilever Beam

•
$$y(0) = 0, \frac{dy}{dx}|_{x=0} = 0$$

Supported Cantilever Beam

•
$$y(0) = y(L) = 0, \ \frac{dy}{dx}|_{x=0} = 0$$

Fixed-Fixed Beam

•
$$y(0) = y(L) = 0, \ \frac{dy}{dx}|_{x=0} = \frac{dy}{dx}|_{x=L} = 0$$

Q1. What is the relationship between inputs and outputs?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Decisions will be based on estimates of outputs.

Typical problem: Given input parameters, compute y(x), find location and magnitude of y_{min} and y_{max} .

For simple problems, can rely on intuition. Otherwise, need math and mechanics.

Q2. What is the relationship among the outputs? Are they dependent?

We will need to work with a chain of dependencies.

Q3. What is the relationship between V(x) and M(x)? Are they independent? No! We will see: $V(x) = \frac{dM(x)}{dx}$, but not always true!

Types of Beam Structure	Connection to Mechanics	Relationship between Shear Force and Bending Moment	Examples
	00000		

Connection to Mechanics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Connection to Mechanics

Relationship between Shear Force and Bending Moment

Examples 0000000000

Connection to Mechanics

Problem Setup

Stress-Strain Relationships

Connection to Mechanics

Relationship between Shear Force and Bending Moment

Examples 0000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Connection to Mechanics

For design purposes we need to make sure:

$$\sigma_{tension} < \sigma_{max}$$
 tension (1)

and

$$\sigma_{compression} < \sigma_{max}$$
 compression (2)

Also,

$$\epsilon_{\max \text{ compression}} \le \epsilon(y) \le \epsilon_{\max \text{ tension}}$$
 (3)

These constraints limit the amount of load that a beam can carry.

Connection to Mechanics

Connection to Mechanics

Section-Level Behavior

From a design standpoint we can reduce $\sigma(y)$ and $\epsilon(y)$ by increasing the moment of interia in

$$\sigma(y) = \left[\frac{My}{l}\right].$$
 (4)

To maximise I, maximize distance of material from neutral axis.

Good Choice of Inertia

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Assumptions. We will assume beam length / depth \gg 10.

Therefore, displacements will be dominated by flexural bending.

Sections remain perpendicular to the deformed neutral axis.

This is not the case for shear deformations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relationship between Shear Force and Bending Moment

Connection to Mechanics 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Relationship between Shear Force and Bending Moment

Basic Questions

- Are V(x) and M(x) independent? No!
- Under what conditions does a dependency relationship exist?

Strategy

- Introduce relavant mathematics.
- Extract a thin section from a beam and examine its equilibrium.
- See where the mechanics takes us!

Connection to Mechanics

Relationship between Shear Force and Bending Moment

Examples 0000000000

Mathematical Preliminaries

Taylor Series Expansion. Let y = f(x) be a smooth differentiable function.

Given f(x) and derivatives f'(a), f''(a), f'''(a), etc, the purpose of Taylor's series is to estimate f(x + h) at some distance h from x.

Connection to Mechanics

Examples 0000000000

Mathematical Preliminaries

The Taylor series is as follows:

$$f(x+h) = \sum_{k=0}^{\infty} \frac{f^{k}(x)}{k!} h^{k} = f(x) + f'(x)h + \frac{f''(x)}{2!}h^{2} + \frac{f'''(x)}{3!}h^{3} + \cdots$$
(5)

For a Taylor series approximation containing (n + 1) terms

$$f(x+h) = \sum_{k=0}^{k=n} \frac{f^k(x)}{k!} h^n + O(h^{(n+1)})$$
(6)

The big-O notation indicates how quickly the error will change as a function of h, e.g., $O(h^2) \rightarrow magnitude$ of error proportional to h squared.

Types of Beam Structure Connection to Mechanics O000000 Relationship between Shear Force and Bending Moment E

Examples 0000000000

Mathematical Preliminaries

Finite Difference Derivatives. Truncating equation 6 after two terms gives:

$$f(x+h) = f(x) + f'(x)h + O(h^2).$$
 (7)

A simple rearrangement of equation 7 gives:

$$\frac{dy}{dx} = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \right].$$
 (8)

Similarly, we require:

$$\frac{dy}{dx} = \lim_{h \to 0} \left[\frac{f(x) - f(x - h)}{h} \right].$$
(9)

In order for the derivative to exist, equations 8 and 9 need to be the same!

Types of Beam Structure Connection to Mechanics

Relationship between Shear Force and Bending Moment

Mathematical Preliminaries

Simple Example. Let $y = x^2$.

$$\frac{dy}{dx} = \lim_{h \to 0} \left[\frac{(x+h)^2 - x^2}{h} \right] = \lim_{h \to 0} [2x+h] = 2x.$$
(10)

Home Exercise. Use first principles to find dy/dx when:

$$y(x) = (x^2 - 4x + 3)^2$$
 (11)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Counter Example. y(x) = |x| is not differentiable at x = 0.

Connection to Mechanie

Examples 0000000000

Test Problem for Derivation of Equations

 Types of Beam Structure
 Connection to Mechanics
 Relationship between Shear Force and Bending Moment
 Examples

 Observation of Equations
 Observation
 Observation
 Observation
 Observation

Part 1: Equilibrium in Vertical Direction:

$$\sum F_{y} = 0 \; \to \; V(x) - V(x + dx) - w(x)dx = 0 \qquad (12)$$

From the Taylors series expansion:

$$V(x+dx) = V(x) + \frac{dV}{dx}dx + O(dx^2)$$
(13)

Plugging equation 13 into 12 and ignoring higher-order terms:

$$\sum F_{y} = 0 \rightarrow V(x) - \left[V(x) + \frac{dV}{dx}dx\right] - w(x)dx = 0 \quad (14)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Connection to Mechanics

Derivation of Equations

Hence,

$$\frac{dV}{dx} + w(x) = 0 \leftarrow \text{gradient of shear force equals -}w(x). \quad (15)$$

Part 2: $\sum M_o = 0$ (anticlockwise +ve)

$$-V(x)dx - M(x) + M(x + dx) + w(x)dx \cdot \frac{dx}{2} = 0$$
 (16)

Note:

- The term w(x)dx is the vertical load acting on the element.
- The term dx/2 is the distance from O to the centroid of loading.

Types of Beam Structure Connection to Mechanics 0000000 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Derivation of Equations

From the Taylor Series expansion:

$$M(x + dx) = M(x) + \frac{dM}{dx}dx + O(dx^2)$$
(17)

Plugging equation 17 into 16 and ignoring terms $O(dx^2)$ and higher:

$$V(x) = \frac{dM}{dx} \leftarrow \text{shear force} = \text{gradient of bending moment.}$$
 (18)

Note. Equation 18 only applies when the derivatives of M(x) with respect to x exist.

Connection to Mechanic

Relationship between Shear Force and Bending Moment $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Examples 0000000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Derivation of Equations

Illustrative Example

Connection to Mechanics

Shear Force and Bending Moment

Interpretation. Consider an interval [a, b] on a beam:

$$dV = -w(x)dx \rightarrow \int_{a}^{b} dV = -\int_{a}^{b} w(x)dx = V(b) - V(a).$$
 (19)

Key Point: Change in shear force between points a and b = total loading within interval.

$$dM = V(x)dx \rightarrow \int_a^b dM = \int_a^b V(x)dx = M(b) - M(a). \quad (20)$$

Key Point: Change in moment between points a and b = area under the shear force diagram.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Types of Beam Structure	Connection to Mechanics	Relationship between Shear Force and Bending Moment	Examples
			•000000000

Examples

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

Connection to Mechanic 00000 Relationship between Shear Force and Bending Moment

Examples 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Shear Force and Bending Moment

Example 1.

Check Shear Loading (a = 0, b = L):

$$V(b) - V(a) = V(L) - V(o) = -wL = -\int_0^L w_o dx.$$
 (21)

Connection to Mechanics

Examples 000000000

Shear Force and Bending Moment

Check Relationship between Shear and Bending Moment:

$$V(x) = \frac{dM(x)}{dx} = w_o(L - x).$$
⁽²²⁾

For a = 0 and b = L we expect:

$$\int_0^L V(x) dx = w_o \int_0^L () dx = M(L) - M(0).$$
 (23)

For a general value x:

$$M(x) = w_o \int_x^L (L-s) ds = w_o L x - \frac{1}{2} w_o x^2 + A.$$
 (24)

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Connection to Mechanics

Examples 000000000

Shear Force and Bending Moment

Apply Boundary Conditions:

$$M(L) = 0 \to A = -\frac{1}{2}wL^2.$$
 (25)

Hence,

$$M(x) = wLx - \frac{1}{2}wx^2 - \frac{1}{2}wL^2 = -\frac{1}{2}w(L-x)^2.$$
 (26)

Check Moment at Boundary Conditions:

•
$$M(L) = wL^2 - \frac{1}{2}2wL^2 = 0. \checkmark$$

• $M(0) = -\frac{1}{2}wL^2. \checkmark$

Connection to Mechanics

Examples 0000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Shear Force and Bending Moment

Physical Interpretation

For the extracted element:

$$\sum F_{y}(x) = 0 \to V(x) = w_{o}(L - x).$$
 (27)

Similarly,

Connection to Mechanic

Examples 00000000000

Shear Force and Bending Moment Diagrams

Connection to Mechanie

Examples 00000000000

Shear Force and Bending Moment

Example 2.

Connection to Mechanics

Relationship between Shear Force and Bending Moment

Examples 00000000000

Shear Force and Bending Moment

Bending Moment at x = L/2 (extract substructure):

Taking moments:

$$M(L/2) = \underbrace{\frac{w_o L}{2}}_{reaction} \frac{L}{2} - \underbrace{\frac{w_o L}{2}}_{loading \ centroid} \underbrace{\frac{L}{4}}_{entroid} = \frac{w_o L^2}{8}.$$
 (29)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Connection to Mechanics

Shear Force and Bending Moment

Equation for M(x)?

We have:

- Axis of symmetry at x = L/2.
- M(x) will have roots at x = 0 and x = L.

Hence, let M(x) = Ax(x - L), then use midpoint moment to determine A:

$$M(L/2) = A \frac{L}{2} \left(\frac{-L}{2} \right) - > A = -\frac{w_o}{2}.$$
 (30)

Thus,

$$M(x) = \frac{w_o}{2} x (L - x).$$
 (31)

Connection to Mechanie

Relationship between Shear Force and Bending Moment ${\tt ooooooooooo}$

Examples 0000000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Shear Force and Bending Moment

Example 3.

